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Abstract: This study proposes a shape approximation approach to portray the regions of interest
(ROI) from medical imaging data. An effective algorithm to achieve an optimal approximation is
proposed based on the framework of Particle Swarm Optimization. The convergence of the proposed
algorithm is derived under mild assumptions on the selected family of shape equations. The issue
of detecting Parkinson’s disease (PD) based on the Tc-99m TRODAT-1 brain SPECT/CT images
of 634 subjects, with 305 female and an average age of 68.3 years old from Kaohsiung Chang
Gung Memorial Hospital, Taiwan, is employed to demonstrate the proposed procedure by fitting
optimal ellipse and cashew-shaped equations in the 2D and 3D spaces, respectively. According to the
visual interpretation of 3 experienced board-certified nuclear medicine physicians, 256 subjects are
determined to be abnormal, 77 subjects are potentially abnormal, 174 are normal, and 127 are nearly
normal. The coefficients of the ellipse and cashew-shaped equations, together with some well-known
features of PD existing in the literature, are employed to learn PD classifiers under various machine
learning approaches. A repeated hold-out with 100 rounds of 5-fold cross-validation and stratified
sampling scheme is adopted to investigate the classification performances of different machine
learning methods and different sets of features. The empirical results reveal that our method obtains
0.88 ± 0.04 classification accuracy, 0.87 ± 0.06 sensitivity, and 0.88 ± 0.08 specificity for test data
when including the coefficients of the ellipse and cashew-shaped equations. Our findings indicate
that more constructive and useful features can be extracted from proper mathematical representations
of the 2D and 3D shapes for a specific ROI in medical imaging data, which shows their potential for
improving the accuracy of automated PD identification.

Keywords: imaging data; Parkinson’s disease; PSO algorithm; shape equation

1. Introduction

In the medical field, computed tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), and single-photon emission computed tomography (SPECT)
have been used for preventive medicine, screening for disease, and confirming a diagnosis. These
techniques are capable of providing the three-dimensional (3D) structure of a region of interest (ROI)
by a series of two-dimensional (2D) images sequentially ordered in time.

In clinical practice, doctors use their domain knowledge to select a subset of the 2D images
from the series. The selected images are superimposed into a single 2D image, which is called a
2D-combined image hereafter, for disease diagnosis. For example, Prashanth et al. [1], Taylor et al. [2],
Oliveira et al. [3], Nicastro et al. [4], and Iwabuchi et al. [5] constructed classifiers for identifying
Parkinson’s disease (PD) by extracting features from 2D-combined SPECT images. However,

Sensors 2020, 20, 5879; doi:10.3390/s20205879 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6971-2151
https://orcid.org/0000-0002-7883-377X
http://dx.doi.org/10.3390/s20205879
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/20/5879?type=check_update&version=2


Sensors 2020, 20, 5879 2 of 21

this approach may lose some useful information or features for classification since a 2D-combined
image is a projection of the original 3D structure on a specific 2D space. Recently, some methodologies
have been proposed to draw information from medical 3D images. For instance, Ziegler et al. [6]
used multispectral structural magnetic resonance imaging (MRI) tools to measure substantia nigra
volume loss before basal forebrain degeneration in early PD. Palumbo et al. [7] proposed a volumetric
3D region of interest (ROI) of putamen and caudate nucleus by BasGan software. Prashanth et al. [8]
proposed to draw ‘indirect 3D features’ by building a regression surface of an ROI based on the
2D-combined image. Hsu et al. [9] found that the classification performance for identifying PD is
improved by calculating the volumes of an ROI in 3D space. Cheng et al. [10] adopted the 3D features
such as volume, surface area, and diameter to describe the geometric characteristics of the volumes
of interest to assist the diagnosis of idiopathic PD. Xu et al. [11] assessed the longitudinal volume
change of different hippocampal subfields in PD patients with and without cognitive decline using 3D
T1-weighted MRI.

Most of the aforementioned studies of drawing 3D features focused on computing the volumes of
the ROI and applying the quantities derived from the volumes of the ROI to PD identification [6,7,9–11].
Although the geometric features such as volume and the volume-related quantities are valuable proxies
representing the 3D shapes of the ROI, they still cannot fully capture the desired shapes since different
shapes of the ROI could have the same volumes or volume-related quantities. This fact could restrict
the classification performances of these volume-based methods. In addition, the 3D shapes of the
ROI did affect nuclear medicine physicians’ judgment in practice. In visual interpretation, the normal
striatal shape looks cashew-shaped in 3D space. The common pattern of abnormalities in PD is
usually a decrease uptake in the putamen (comma-shaped) initially and progressing anteriorly to
caudate nucleus over time. The striatal shape becomes oval-shaped gradually with disease progression.
Consequently, if there is a way to capture the 3D shapes of the ROI for both normal and abnormal
subjects more specifically and directly than just computing the volumes of the ROI, we might have the
chance to obtain more useful shape features for classification. To fill this gap and unlike the indirect
approach of [8] to obtain ‘3D features’, we propose to directly characterize the 3D shape of an ROI by a
suitable mathematical representation. The coefficients of the fitted equations are then adopted to learn
classifiers to reflect the influence of the 3D shapes of the ROI. To the best of our knowledge, this is the
first work using a family of mathematical equations to portray the 3D shapes of the ROI for normal
and abnormal subjects simultaneously.

Throughout this paper, we adopt the issue of identifying PD to illustrate our approach.
Parkinsonian syndromes (PS) are a group of movement disorders characterized by tremor, bradykinesia,
and rigidity. PD is the most common neurodegenerative movement disorder and accounts for 75%
of all PS. PD with early death of dopaminergic neurons in the substantia nigra pars compacta and
dopamine deficiency within the basal ganglia leads to classical parkinsonian motor symptoms [12,13].
It is important to differentiate between PS caused by nigrostriatal dopaminergic degeneration
and nondegenerative causes of parkinsonism such as essential tremor, vascular parkinsonism,
psychogenic parkinsonism, or drug-induced parkinsonism. Dopamine transporter (DAT) imaging
can detect presynaptic dopamine neuronal dysfunction and is useful in the differentiation between
conditions with and without presynaptic dopaminergic deficit. Currently, SPECT radioligands for DAT,
such as I-123 FP-CIT and Tc-99m TRODAT-1, have been available for daily clinical practice [14,15].
In practice, the healthy cases and abnormal cases have different appearances of uptakes of the ROI
in 2D-combined and 3D imaging data. For example, a healthy subject has comma-shaped uptakes in
his/her 2D-combined SPECT image while a subject with PD has dotted-shaped uptakes. In addition,
a healthy subject has cashew-shaped uptakes around his/her striatum in 3D space while a subject
with PD has sphere-shaped uptakes [8]. As a result, we propose to depict the appearances of uptakes
of the ROI by proper mathematical formulas for the corresponding 2D and 3D shapes, which create
a possibility to identify the differences between healthy and abnormal subjects by the associated
coefficients contained in the mathematical representations. Specifically, for the issue of identifying PD,
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we fit ellipses for the uptakes in the 2D-combined image and cashew-shaped 3D equation for the
uptakes in the 3D space for each subject under the framework of minimizing an associated loss
function. Nevertheless, when conducting these two shape fittings, we have to face multidimensional
optimization problems, which usually have no closed-form solution and one can only rely on numerical
approximations [16].

In this study, we adopt the Particle Swarm Optimization (PSO) algorithm proposed by [17] to deal
with the considered shape fittings. The PSO algorithm is inspired by the behavior of social organisms
in groups, such as bird and fish schooling or ant colonies. It has been applied to numerous areas
and has been shown to be capable of solving multidimensional optimization problems effectively
(see [18–21] and the references therein). Another challenge encountered in the shape fitting process is
to compute the Euclidean distance (also called L2 distance) between an observation and a given shape
equation in R2 or R3 space. Morera et al. [22] proposed to calculate the L2 distance from a point to a
quadratic surface by a partial differential equation (PDE) procedure. However, their PDE procedure
is difficult to be extended to higher-order surfaces like the cashew-shaped equations considered in
this study. To overcome this challenge, we propose a “flashlight-searching” (FS) algorithm to compute
the distance for higher-order cases. The FS algorithm is shown to be capable of producing accurate
results for the quadratic examples in [22]. In addition, under some mild assumptions on the selected
family of shape equations, the convergence of the proposed FS algorithm is derived, which reveals the
effectiveness and easy-for-implementation of the PSO-FS algorithm. Once conducting the proposed
shape fitting procedure, the coefficients of the optimal 2D ellipse and cashew-shaped 3D equation are
employed to learn classifiers for PD.

Between January 2017 and May 2018, 634 patients who underwent Tc-99m TRODAT-1 brain
SPECT/CT in the Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital,
Taiwan, were enrolled in this retrospective study. The Chang Gung Medical Foundation Institutional
Review Board approved this retrospective study and waived the requirement for written informed
consent. The TRODAT SPECT images were interpreted by three experienced-board-certified nuclear
medicine physicians, and were assigned into normal or abnormal accordingly. Six popular classification
methods such as logistic regression (LR), linear discriminant analysis (LDA), naive Bayes (NB),
random forests (RF), support vector machine (SVM), and extreme gradient boost (XGB) are adopted to
learn classifiers for PD using the coefficients contained in the 2D and 3D shape-fitting equations.
The 6 classifiers are usually adopted in many comparison studies for medical data [3,9,23–25].
The numerical results reveal that these coefficients did improve the classification accuracies for most
of the considered classifiers. Beyond the 6 machine learning classifiers considered in this study,
deep learning (DL) is one of the hottest technology applied to classification problem in many fields.
Recently, Dolz et al. [26] proposed a 3D and fully convolutional neural network method for subcortical
brain structure segmentation in MRI, and yielded satisfactory segmentations. The objective of this
study is to show that suitable shape equations of the ROI are useful for classification. Intuitively,
the shape equations of the ROI will be more precise if better segmentations are used. Therefore, it will
be interesting to construct shape equations based on Dolz et al. [26]’s segmentations. Nevertheless,
it is beyond the scope of this work, and we leave it to our future study.

The remainder of this paper is organized as follows. Section 2 describes the proposed criteria for
determining suitable shape equations to approximate the regions where we are interested in. Section 3
introduces an easy-to-implement algorithm for obtaining the optimal solutions of the considered
criteria. The convergence of the proposed algorithm is also derived. The numerical results of applying
the proposed approach to PD imaging data are presented in Section 4. Discussions are presented in
Section 5. Technical calculations and proofs are given in the Appendix A.

2. Optimization Criteria

In this section, we introduce the proposed criteria for shape fitting in 2D and 3D spaces.
Shape analysis and surface fitting are useful and promising methods for extracting features, which can
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be used to develop diagnostic models [8,27–29]. To construct a classifier for PD identification,
Prashanth et al. [8] noticed that the shapes of uptakes in the 2D-combined images are quite different
between normal and PD subjects. They employed a pair of ellipses to describe the ROI for a
2D-combined PD image, and many features are then calculated from the fitted ellipse equations.
For example, the lengths of major and minor axes, the eccentricity, orientation, roundness, area, etc.
of an ellipse can be computed directly from the mathematical representation of the fitted ellipses.
Moreover, they proposed to use the following polynomial equation of order 3 to extract 3D features
from the 2D-combined images:

f (x, y) = p00 + p10x + p01y + p20x2 + p11xy + p02y2 + p30x3 + p21x2y + p12xy2 + p03y3, (1)

where f (x, y) is the grayscale with respect to the point (x, y) on the 2D plane and the coefficients
pij, i, j ∈ {0, 1, 2, 3} are estimated by minimizing the L2 loss. Figure 1 presents the fitting results of
normal and PD subjects by using Prashanth et al. [8]’s approach with (1). Note that for demonstration,
we present the color version of the SPECT images throughout this study. Prashanth et al. [8] used
several characteristics calculated from the fitted ellipses and the coefficients in (1) as features to learn an
SVM classifier. Their numerical results reveal that the classification accuracy for PD can be effectively
improved. One interesting point should be noticed that Prashanth et al. [8] did not construct a
model for the real shapes of uptakes in the 3D space directly, but established a regression model for
the grayscale surface by using the 2D-combined image of each subject solely. This motivates us to
investigate that whether we could obtain more useful features extracted from modeling the real shapes
of uptakes in the 3D space according to the series of 2D scanned images of each subject. The details are
illustrated in the following.

(a) Normal (b) Fitted surface of (a)

(c) PD (d) Fitted surface of (c)

Figure 1. (a,c) are the 2D-combined SPECT images of a normal subject and a PD subject, respectively.
(b,d) are the corresponding polynomial regression surfaces of order 3 for (a,c), respectively, obtained by
Prashanth et al. [8]’s method.

Let pi, i = 1, 2, . . . , n denote the boundary points of the ROI. In Figure 2, the boundary points with
grayscale value greater than 0.6 of two images are marked in black, where the left one is an image of a
normal subject and the right one is an image of a subject with PD. In addition, let Ψ(·; θ) = 0 denote
an equation which is suitable to well depict the shape of the ROI, where θ are unknown parameters.
For example, Figure 2 shows that ellipse equations are suitable to depict the shapes of the ROI shown
in a 2D-combined image and Figure 3 reveals that cashew-shaped equations are suitable to depict
the structures of the ROI for a normal case or a PD case in 3D space. Intuitively, normal subjects
should have similar 2D and 3D shapes while the subjects with PD should have different shapes from
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normal subjects. Potentially, the coefficient θ and the properties of the equation Ψ(·; θ) = 0 could
provide useful information for separating normal and abnormal cases. Nevertheless, the location
of the center and the rotation angles of the surface of the uptakes for each subject (even for normal
subjects) would have slight differences, which increase the complexity of fitting a suitable surface
equation for the boundary points in practical implementation. In this study, we adopt the image
data of PD to demonstrate the performances of the proposed method. As shown in Figures 2 and 3,
the ellipse equations and cashew-shaped equations are selected to depict the ROI in 2D and 3D spaces,
respectively. The details of the two families of equations for including the considerations mentioned
above and the corresponding optimization criteria for 2D and 3D cases are introduced in the following.

(a) Normal (b) Abnormal

Figure 2. The boundary points, denoted by black points, and the approximated ellipses, denoted in red,
of the region of uptakes in 2D-combined images for (a) a normal subject and (b) an abnormal subject.

Figure 3. The 3D cashew-shaped equations to depict the ROI in 3D space, where the figure in the upper
panel is downloaded from http://www.3d-brain.ki.se/atlas/images/basal_ganglia01.jpg, and the
area marked with a red circle denotes the most active region of the highest-uptake. The left and right
cashew-shaped structures shown in the lower panel are examples for a normal case and a PD case with
two specific settings of the coefficients of the cashew-shaped equation defined in (4), respectively.

For 2D surface fitting, an ellipse equation Ψ2D(x; θ2D) = 0 is employed, where

Ψ2D(x; θ2D) =Ax2 + 2Bxy + Cy2 + Dx + Ey + F, (2)

in which x = (x, y), B2 < AC and θ2D = (A, B, C, D, E, F) ∈ R6. Let H(θ2D) = {x : Ψ2D(x; θ2D) = 0}
denote the set of points on the ellipse. An optimization criterion for finding a suitable H(θ2D),
abbreviated by H2D, for the observed boundary points pi, i = 1, . . . , n, in a 2D-combined image:

θ∗2D = arg min
θ2D

n

∑
i=1

d(pi, H2D), (3)

where d(pi, H2D) = minx∈H2D d(pi, x), and d(pi, x) = ‖pi − x‖ denote the Euclidean distance between
pi and x.

http://www.3d-brain.ki.se/atlas/images/basal_ganglia01.jpg
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For 3D surface fitting, a cashew-shaped equation is defined as Ψ0
3D(x; θ3D) = 0, where

Ψ0
3D(x; θ0

3D) = (1.5x2 + y2 + z2 + a2 − b2)2 − 4a2((x− c)2 + (y− d)2), (4)

in which x = (x, y, z) and θ0
3D = (a, b, c, d) ∈ [0, 1]4. In order to consider the translation, rotation,

and scaling of the equation, we do the following:

1. Rotate x by the following rotation matrix M with three radians θx, θy, θz ∈ [0, 2π]3:

M =

1 0 0
0 cos(θx) sin(θx)

0 − sin(θx) cos(θx)

×
cos(θy) 0 − sin(θy)

0 1 0
sin(θy) 0 cos(θy)

×
 cos(θz) sin(θz) 0
− sin(θz) cos(θz) 0

0 0 1


2. Furthermore, by translating and scaling x by t = (tx, ty, tz) ∈ R3 and s > 0, respectively,

the general form of a cashew-shaped equation is represented by

Ψ3D(x; θ3D) = Ψ0
3D

(
sM(x− t); θ0

3D

)
, (5)

where θ3D = (a, b, c, d, s, tx, ty, tz, θx, θy, θz) and Ψ0
3D(·) is defined in (4).

Based on the representation shown in (5), let H(θ3D) = {x : Ψ3D(x; θ3D) = 0} denote the set of
points on the cashew-shaped. Similar to (3), an optimization criterion for finding a suitable H(θ3D),
abbreviated by H3D, for the observed boundary points pi, i = 1, . . . , n, in 3D space:

θ∗3D = arg min
θ3D

n

∑
i=1

d(pi, H3D), (6)

where d(pi, H3D) = minx∈H3D d(pi, x).
The idea for determining optimal shape equations through the criteria shown in Equations (3)

and (6) for 2D and 3D cases, respectively, is based on minimizing the L2 distance of the observed
points to an ellipse or a cashew-shaped equation, which is similar to the classical least-squares (LS)
regression. However, the classical LS cannot be applied directly for the equations Ψ2D = 0 and Ψ3D = 0.
For example, the variable y in the equation Ψ2D = 0 is not a function of x, which makes the shape
approximation problem different from classical regression. Therefore, we propose an algorithm to find
the optimal solutions of (3) and (6), and the details are introduced in the next section.

3. The Proposed Algorithm

For the boundary points pi, i = 1, . . . , n, and a determined family of surface equation Ψ(·; θ) = 0,
we propose to use an optimal surface satisfying Ψ(·; θ∗) = 0 which has the minimal L2 distance to
the boundary points pi, i = 1, . . . , n, to approximate the shapes of the uptakes of the ROI as shown
in (3) and (6). Since the optimal solution θ∗ is a high-dimensional vector and there is usually no
closed-form representation for θ∗, a PSO framework is employed to obtain θ∗ and an effective scheme,
called “flashlight-searching” (FS), is proposed to calculate the distance from a point to a surface in each
PSO iteration. Herein, the proposed algorithm is abbreviated by “PSO-FS”. In the following, we briefly
introduce the PSO procedure.

Kennedy et al. [17] proposed an optimization algorithm, called PSO, which searches the optimal
solution through particles and emulates the interaction of information sharing among particles
iteratively. In each iteration, the updated search position of each particle is determined by the best
position in its historical trajectory and the best position found in the trajectories of all particles.
Specifically, we denote the position of the i-th particle in Rd by a d-dimensional vector xi and denote
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its velocity vector by vi, i = 1, . . . , n. In the (t + 1)-th iteration, each particle changes its position
according to the new velocity. That is, the position xt+1

i is defined as:

xt+1
i = xt

i + vt+1
i (7)

with the new velocity vt+1
i defined by

vt+1
i = ωvt

i + c1r1(Pt
i − xt

i) + c2r2(Gt − xt
i), (8)

where Pt
i and Gt denote the best position of the i-th particle and the best position of all particles up to

the t-th iteration, respectively. The parameters ω, (c1, c2) and (r1, r2) are inertia weight, two positive
constants and two random parameters within [0, 1], respectively. The PSO algorithm is repeated until
a predetermined stopping criterion is reached or the change rate of the particles approaches zero.

For example, suppose that the objective is to find the minimum of a surface f : R2 → R, where the
contour plots of f with the paths of 5 particles for the first 4 iterations of PSO are shown in Figure 4.
In the four panels of Figure 4, the solid points denote the locations of the 5 particles in each iteration and
the gray points combined with dashed lines denote the corresponding path of each particle. For each
particle, the red arrow denotes the velocity of the i-th particle vt+1

i in the t-th iteration, and the black,
green, and yellow dotted-arrows denote the 3 components, vt

i , (Pt
i − xt

i), and (Gt − xt
i), respectively,

on the right-hand side of (8) to obtain vt+1
i . In addition, the green circle represents Pt

i and the particle
with red cross represents Gt. From Figure 4, one can find that the particles did share their information
with others to determine their searching directions in each iteration and all of them tend to approach
the point with minimal f gradually.

In this study, we employ the PSO procedure to obtain the optimal solutions of the criteria (3)
and (6) in 2D and 3D spaces, respectively. For example, to proceed with the PSO procedure for
searching θ∗2D defined in (3), the vector xt

i defined in (7) is set to be xt
i = θt

2D,i, where θt
2D,i denotes

the position of the i-th particle at the t-th PSO iteration. In addition, the Pt
i and Gt defined in (8) are

computed from Ψ2D(·) defined in (2).
Nevertheless, to calculate (3) and (6) in each PSO iteration, we have to calculate d(pi, H),

which usually does not have a closed-form representation and a numerical method can help to compute
the distance. For example, Morera et al. [22] proposed a numerical method under the framework of
PDE to compute the L2 distance from a point to a quadric surface. However, their approach heavily
relies on the properties of quadric equations when handling the corresponding PDEs and is not trivial
to be extended to the cases of higher order surfaces, like the cashew-shaped equations considered
in this study. Therefore, we propose an easy-to-implement FS algorithm instead to overcome the
difficulty. The details of the FS algorithm are illustrated in the following.

For any given p ∈ Rd, d ≥ 2, let Dp ⊆ H denote a set satisfying

Dp = {x∗ ∈ H : d(p, x∗) = d(p, H)}, (9)

which allows the case of more than one x∗ ∈ H such that d(p, x∗) = d(p, H). Further, let Bε(x∗) =
{x : ||x − x∗|| ≤ ε, x∗ ∈ Dp} denote a closed ball of radius ε > 0 centered at an x∗ ∈ Dp,
and J = {⋃x∗∈Dp Bε(x∗)} ∩ H denote the arc of H associated with

⋃
x∗∈Dp Bε(x∗). Since J is allowed

to be a disconnected set, let {Ji, i = 1, 2, . . .} denote a partition of J, where
⋃

i=1,2,... Ji = J, Ji ∩ Jk =

for i 6= k, and each Ji is a connected set. A schematic diagram of these notations is given in Figure 5
for the special case of Dp containing only one x∗. The FS algorithm for computing d(pi, H) proceeds
as follows.
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(a) iterate = 1 (b) iterate = 2

(c) iterate = 3 (d) iterate = 4

Figure 4. A schematic diagram of the Particle Swarm Optimization (PSO) algorithm with 5 particles
in the first 4 iterations, where black points denote the current positions of the particles, gray points
combined with dashed lines denote the corresponding path of each particle, and the red arrows denote
the velocity of each particle determined by the black, green, and yellow dotted-arrows, which represent
the three directions of the components on the right-hand side of (8). In the t-th iteration, the points with
green circle denote Pt

i for i = 1, . . . , 5, and the point with red cross denotes Gt, t = 1, . . . , 4, where Pt
i

and Gt are defined in (8).

Figure 5. A schematic diagram of the flashlight-searching (FS) algorithm, where p is a point in
Rd, d ≥ 2, H is the set of points satisfying Ψ = 0, x∗ is the point such that d(p, x∗) = d(p, H),
Bε(x∗) = {x : ||x− x∗|| ≤ ε} denotes a closed ball of radius ε > 0 centered at an x∗, and J = Bε(x∗)

⋂
H

denotes the arc of H associated with Bε(x∗).

1. Set an r > 0 such that for all y ∈ Br(p), we have Ψ(y) > 0 or Ψ(y) < 0, where Br(p) is defined
similarly to Bε(x∗). Let x0 ∈ H denote the initial point for estimating d(p, H) and x0 can be
obtained by letting

x0 = c(yr − p) + p, c ∈ R, (10)
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where yr = arg miny{Ψ(y) : y ∈ Bb
r (p)} and Bb

r (p) denotes the set of boundary points of Br(p).
2. Let τ be a predetermined tolerance, and set m = 0.

(i) Compute the tangent plane to Ψ at xm and denote it by Γm. Let {xm,j, j = 1, . . . , k} be a set of
points on Γm and ||xm,j − xm|| = δ, where δ is a predetermined positive constant.

(ii) Let x̃m,j ∈ J and x̃m,j = cj(xm,j − p) + p as defined in (10), where cj ∈ R, j = 1, . . . , k. Let

xm+1 = arg min
j=1,...,k

||p− x̃m,j||.

(iii) Let G(x) = cos(θx), where x ∈ J, θx ∈ [0, π/2] is the acute angle of two vectors, vx = (p− x)
and nx, which denotes the normal vector to Ψ at x. If 1− G(xm+1) < τ, set d̂(p, H) =

d(p, xm+1) and stop, where d̂(p, H) denotes the estimate of d(p, H). Otherwise, set m =

m + 1 and repeat Steps (i) and (ii).

Figure 6 presents a schematic diagram of the FS algorithm at the m-th iteration. The idea of the FS
algorithm comes from the gradient descent approach. In Step 1 of the algorithm, the initial point x0

is determined by looking around the neighborhood of p and selecting the searching direction by yr,
which can be treated as a hint of the direction with high possibilities to reach an x∗ ∈ Dp. Similarly,
the algorithm selects the next searching direction around xm at the m-th iteration in the Step 2(i).
This searching method mimics the scenario when one looks for a way out by a flashlight in a dark
room, where r and δ in Steps 1 and 2(i), respectively, play the roles of different irradiation distances of
the flashlight. Therefore, we name the above scheme by FS algorithm.

Figure 6. A schematic diagram of the m-th iteration of the FS algorithm, where p, Ψ, J, and x∗ are
defined the same as in Figure 5, xm is the point at m-th iteration, Γm is the tangent plane of Ψ at xm,
xm,1, and xm,2 are points satisfying ||xm,j − xm|| = δ, δ is a predetermined positive constant, and x̃m,j is
the points in J satisfying x̃m,j = cj(xm,j − p) + p, and cj ∈ R, j = 1, . . . , k.

By using the FS algorithm in each iteration of the PSO procedure, the optimal solutions of the
criteria (3) and (6) can be obtained with the boundary points pi, i = 1, . . . , n. In the rest of this section,
we derive the convergence of the FS algorithm. To begin, assume the following conditions.

C1. Ψ is continuously differentiable, denoted by Ψ ∈ C1.
C2. For any fixed p ∈ R3, x ∈ J, and d(p, x) > d(p, H), there exists a 2-dimensional neighborhood

κx of x, where κx = B(2)
ζ (x)

⋂
J with B(2)

ζ (x) being a 2-dimensional open ball of radius ζ ∈ (0, ε]

centered at x, such that d(p, x) > d(p, κx) and for any xa and xb ∈ κx ∩ Ji, i = 1, 2, . . . , and for

any α ∈ [0, 1], Ψ(·) satisfies Ψ
(

αxa + (1− α)xb

)
Ψ(p) ≤ 0 or Ψ

(
αxa + (1− α)xb

)
Ψ(p) > 0.

The above two conditions are set on the function Ψ, which means that these two conditions can be
checked for any selected family of shape equations. Specifically, C1 is a smoothness condition, which is
satisfied by the equations with polynomial, exponential, logarithmic, and trigonometric components.
C2 is a local convexity condition defined on a 2D subspace in R3. An intuitive way to understand C2
is to cut a cashew, for example, with a knife and check whether C2 is satisfied by the shape of the
boundary of the cross-section.
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In this study, we employ the ellipse and cashew-shaped equations to depict the uptake regions
in the 2D and 3D spaces, respectively. Apparently, the families of equations defined in (2) and (4)
both satisfy C1. Next, we demonstrate that the family of ellipse equations satisfy C2. Without loss
of generality, we consider the equation of the normal to the ellipse, that is, K(x, y) = ax2 + by2 = 1,
a, b > 0. For any (x1, y1) 6= (x2, y2) such that K(x1, y1) = K(x2, y2) = 1, let (u, v) = α(x1, y1) + (1−
α)(x2, y2), where 0 ≤ α ≤ 1. By Jensen’s inequality and since f (x) = x2 is a convex function, we have
K(u, v) ≤ αK(x1, y1) + (1− α)K(x2, y2) = 1, which implies that (u, v) ∈ {(x, y) : K(x, y) ≤ 1} for all
0 ≤ α ≤ 1 and, therefore, {(x, y) : K(x, y) ≤ 1} is a convex set. As a result, let Ψ(x) = K(x)− 1 and if

Ψ(xa) = Ψ(xb) = 0, where xa 6= xb, we have Ψ
(

αxa + (1− α)xb

)
≤ 0 for α ∈ [0, 1], and C2 holds no

matter p is an interior or exterior point of {x : Ψ(x) = 0}. For the cashew-shaped equations, C2 is
also satisfied. However, the calculation is more tedious than that for the ellipse equations. We put the
details in the Appendix A.

Based on C1 and C2, we have the following result.

Theorem 1. Let xm, m = 0, 1, 2, . . ., be a sequence of points obtained from the FS algorithm. If C1 and C2 hold,
then the sequence d(p, xm) converges to d(p, H) as δ→ 0 and τ → 0.

The proof the Theorem 1 is given in the Appendix A. Most importantly, Theorem 1 indicates that
the proposed FS algorithm is capable of computing an accurate distance from a fixed point to a given
surface when the surface equation satisfies the smoothness and local convexity conditions as shown in
C1 and C2, respectively.

4. Numerical Results

In this section, we introduce the details of extracting features from the ellipses and cashew-shaped
surfaces. In addition, 6 popular classification methods are employed to investigate whether these
features are useful for identifying PD subjects from the SPECT images. The SPECT images of
634 subjects with 305 female and an average age of 68.3 years old collected from Kaohsiung Chang Gung
Memorial Hospital between January 2017 and May 2018 are employed for our investigation. For each
subject, 3 SPECT images are selected and combined to a 2D-combined image, and 4 SPECT images
are selected for fitting cashew-shaped surfaces according to physicians’ expertise and experience.
Three experienced board-certified nuclear medicine physicians are invited to give their opinions
on the 2D-combined image of each subject. Blinded to patient clinical symptoms and histories,
the physicians determine the images independently according to the guideline. The final consensus
result of each subject was assigned when at least 2 physicians achieved a common agreement,
where 256 subjects were assigned to be abnormal (grade 2 or 3), 77 subjects were potentially abnormal
(grade 1), 174 were normal, and 127 were nearly normal, which includes the slightly degenerated
cases without neurodegenerative disorder of PD. For simplicity, we combine the first 2 categories as
abnormal and the last two categories as normal, denoted by 1 and 0, respectively. Figure 2 shows
examples of 2D-combined images for the above 2 labels.

Before collecting the shape features, a sensitivity study for the settings of (c1, c2, ω) in (8) is
provided. In the literature, the parameters c1, c2, and w are set differently for different data [30–32].
In these studies, c1 and c2 are tuned between 1 and 3, and ω is tuned between 0.1 and 1.2. In the
following, we conduct a sensitivity analysis with setting c1 ∈ {0.8, 1.0, 1.2}, c2 ∈ {1.6, 2.0, 2.4},
and ω ∈ {0.4, 0.5, 0.6} based on our experience when applying PSO to our data for the subjects shown
in Figures 2 and 7. Table 1 reports the results of these 27 different combinations of (c1, c2, ω). From the
means and standard deviations presented in Table 1, we found that the values of n−1 ∑n

i=1 d(pi, Ψ2D)

and n−1 ∑n
i=1 d(pi, Ψ3D), which are the values of the objective functions defined in (3) and (6),

respectively, are not sensitive to the 27 different settings. To save the computational costs, we adopt
c1 = 1, c2 = 2 and ω = 0.5 in the following comparison study.
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Table 1. The means and standard deviations (SDs) of n−1 ∑n
i=1 d(pi, Ψ2D) and n−1 ∑n

i=1 d(pi, Ψ3D) for
the subjects in Figures 2 and 7 based on 27 different settings of (c1, c2, ω) in (8), where c1 = 0.8, 1.0, 1.2,
c2 = 1.6, 2.0, 2.4, and ω = 0.4, 0.5, 0.6.

Normal Abnormal

2D 3D 2D 3D

L R L R L R L R

mean 0.55 0.69 33.75 42.22 0.40 0.40 34.28 30.52
SD 0.01 0.14 1.43 3.81 0.01 0.04 0.97 0.95

Once the parameters in Equations (3) and (6) are estimated by the convergent values of the
proposed algorithm with the SPECT images for each subject, we treat these parameters of the ellipse and
cashew-shaped equations as the features extracted from 2D and 3D ROIs, respectively. To investigate
whether the features obtained from the ellipse and cashew-shaped equations are useful, we consider the
following 6 different sets of features and compare their classification performances for PD identification.

Set 1 Grayscale features (9 features): For each 2D-combined image, we compute the empirical density
of the grayscale values, which are normalized into [0, 1], and calculate 8 probabilities between
two adjacent percentiles in {0.60, 0.65, . . . , 1} to represent the ratios of areas having different
magnitudes of uptakes. In addition, we also compute the ratios of average uptake values near
striatum to the average uptake values of the background.

Set 2 The features extracted from the ellipse equations (12 features): We employed the PSO-FS
algorithm to approximate the shape of striatum for each 2D-combined image by the criterion
defined in (3), where 100 particles are randomly set centered on an initial estimator of θ2D.
Figure 2 presents approximated ellipses in red of a normal subject and a subject with PD,
which reveal that the PSO-FS algorithm is capable of obtaining satisfactory ellipses to
approximate the shapes of uptakes.

Set 3 The features extracted from the cashew-shaped equations (22 features): The procedure for fitting
a 3D structure is similar to the above 2D shape fitting process. Figure 7 presents the sequences
of 2D images in the upper panel and the corresponding cashew-shaped surfaces in 3D space
in the lower panel of a normal subject and a subject with PD, where the 2D images in the red
rectangles are recommended by the physicians and are used to construct the cashew-shaped
surfaces. The fitting results shown in Figure 7 display that the PSO-FS algorithm is capable of
obtaining satisfactory cashew-shaped equations to approximate the shapes of uptakes.

Set 4 The union of Sets 1 and 2.
Set 5 The union of Sets 1, 2, and 3.
Set 6 The 34 features defined in Table 1 of [8].

Next, 6 well-known classification methods, which are support vector machine (SVM), naive Bayes
(NB), random forests (RF), XGboost (XGB), logistic regression (LR), and linear discriminant analysis
(LDA), are used to learn classifiers for PD imaging classification with the above 6 sets of features
separately [3,9,23–25]. The comparison study is conducted under the following repeated hold-out with
100 rounds of 5-fold cross-validation (CV) and stratified sampling scheme.

1. We randomly split the data into training and test sets with the proportions of 80% and 20%,
respectively, under a stratified sampling scheme, where the proportions of normal, nearly normal,
potentially abnormal, and abnormal subjects in the training and test sets are the same.

2. In the training set, we conduct a stratified 5-fold CV framework on each of the SVM, NB, RF,
XGB, LR, and LDA classifiers by R-packages svm(), naiveBayes(), randomForest(), xgboost(), glm(),
and lda(), respectively. The tuning parameters in each of the SVM, RF, and XGB methods are
determined by computing the validation accuracies under several settings of tuning parameters
and selecting the one with the highest validation accuracy. For each of the SVM, RF, and XGB
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classifiers, we set 5 candidates for each tuning parameters centered at the default values of the
corresponding R packages. Therefore, we have 6 candidate classifiers, where each of them has
the best 5-fold CV performances for the training data.

3. Let the classifier with the best 5-fold CV accuracy from the 6 candidates be our final selection.
Learn this classifier again with all the training data and use it to compute the classification
performances of the test data.

4. Repeat the above 3 steps 100 times. Compute the mean and standard deviation (SD) of accuracy
(ACC), sensitivity (SEN), specificity (SPE), and GM under the 5-fold CV framework of the
6 classifiers for training data, and compute the mean, SD, and 95% confidence interval (CI) of the
4 measurements for test data based on the results of the 100 rounds.

(a) Normal (b) Abnormal

Figure 7. The sequences of 2D images (in the upper panel) and the corresponding cashew-shaped
surfaces (in the lower panel) of (a) a normal subject and (b) an abnormal subject in 3D space. In the
upper panel, the four 2D images in the red rectangles are suggested by the physicians and are used
to construct the cashew-shaped surfaces. In the lower panel, the green points denote the boundary
points collected from the four 2D images for left/right striatum in 3D space, and the gray areas are the
corresponding fitted cashew-shaped surfaces.

In the last step of the above procedure, the ACC, SEN, SPE, and GM [33] are defined by

ACC = (TP + TN)/Total population

GM = (SEN× SPE)0.5,

where SEN = TP/True condition positive, SPE = TN/True condition negative, and ‘TP’ and ‘TN’ are
short for ‘True Positive’ and ‘True Negative’, respectively.

The results of 5-fold CV and test sets are reported in Tables 2 and 3, respectively. In Table 2,
the highest AVEs of the ACC, SEN, SPE, and GM values among the 6 classifiers for each set of features
are marked in bold, where the RF classifier has more robust performances than other classifiers for the
6 sets of features on the average. In Table 3, the highest AVEs of the ACC, SEN, SPE, and GM values
among the 6 sets of features are marked in bold, where Set 5 has the highest ACC, SEN, and GM values.
Interestingly, in the 100 rounds, the SVM and RF classifiers are selected to be our final classifier for test
data most frequently with the features contained in Set 1. However, this is not the case for other sets
of features. For example, the RF and LR classifiers are preferred for Set 3; the RF and LDA classifiers
are preferred for Set 6. This phenomenon reveals that different sets of features or different data might
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need different classifiers to highlight their impact of classification, which is also the main reason why
we use a 5-fold CV scheme to select our final classifier in step 3 of the above procedure.

Table 2. The AVEs and SDs of the ACC, SEN, SPE and GM values of the SVM, NB, RF, XGB, LR,
and LDA classifiers with 6 collections of features for the 5-fold CV results based on 100 rounds,
where the highest AVEs of the ACC, SEN, SPE, and GM values among the 6 classifiers for each set of
features are marked in bold.

Classifier

Measure Set SVM NB RF XGB LR LDA

ACC 1 AVE 0.865 0.753 0.866 0.836 0.842 0.848
SD 0.008 0.008 0.009 0.013 0.009 0.008

2 AVE 0.798 0.760 0.793 0.747 0.789 0.776
SD 0.008 0.007 0.010 0.015 0.010 0.010

3 AVE 0.798 0.805 0.826 0.788 0.824 0.819
SD 0.012 0.009 0.010 0.016 0.010 0.009

4 AVE 0.873 0.788 0.880 0.845 0.854 0.862
SD 0.007 0.008 0.007 0.013 0.009 0.008

5 AVE 0.824 0.824 0.880 0.835 0.855 0.859
SD 0.010 0.008 0.007 0.012 0.011 0.009

6 AVE 0.619 0.620 0.865 0.830 0.849 0.857
SD 0.011 0.012 0.009 0.014 0.004 0.009

SEN 1 AVE 0.823 0.564 0.846 0.825 0.819 0.765
SD 0.013 0.014 0.011 0.018 0.012 0.015

2 AVE 0.760 0.642 0.785 0.734 0.772 0.700
SD 0.015 0.011 0.013 0.018 0.013 0.016

3 AVE 0.715 0.706 0.775 0.760 0.799 0.771
SD 0.026 0.017 0.014 0.021 0.013 0.013

4 AVE 0.845 0.656 0.870 0.828 0.836 0.802
SD 0.010 0.013 0.008 0.017 0.013 0.011

5 AVE 0.766 0.733 0.874 0.813 0.843 0.818
SD 0.017 0.012 0.009 0.016 0.013 0.012

6 AVE 0.975 0.286 0.852 0.815 0.846 0.812
SD 0.006 0.024 0.010 0.017 0.007 0.013

SPE 1 AVE 0.911 0.963 0.888 0.848 0.867 0.939
SD 0.014 0.005 0.012 0.019 0.013 0.010

2 AVE 0.841 0.891 0.802 0.761 0.808 0.861
SD 0.015 0.009 0.016 0.020 0.013 0.013

3 AVE 0.891 0.915 0.882 0.818 0.853 0.873
SD 0.020 0.011 0.012 0.019 0.014 0.012

4 AVE 0.903 0.935 0.890 0.864 0.873 0.928
SD 0.011 0.006 0.011 0.019 0.013 0.011

5 AVE 0.888 0.925 0.888 0.858 0.869 0.904
SD 0.016 0.009 0.009 0.018 0.014 0.011

6 AVE 0.224 0.990 0.879 0.847 0.851 0.907
SD 0.022 0.004 0.014 0.021 0.006 0.013

GM 1 AVE 0.866 0.737 0.867 0.837 0.843 0.848
SD 0.008 0.010 0.009 0.013 0.009 0.008

2 AVE 0.799 0.756 0.793 0.747 0.790 0.776
SD 0.008 0.008 0.010 0.015 0.010 0.010

3 AVE 0.798 0.804 0.827 0.788 0.825 0.820
SD 0.012 0.010 0.010 0.016 0.010 0.009

4 AVE 0.874 0.783 0.880 0.845 0.854 0.863
SD 0.007 0.008 0.007 0.013 0.009 0.008

5 AVE 0.825 0.824 0.881 0.835 0.856 0.860
SD 0.010 0.008 0.007 0.012 0.011 0.009

6 AVE 0.467 0.531 0.865 0.831 0.849 0.858
SD 0.023 0.022 0.009 0.014 0.004 0.009

In view of Tables 2 and 3, we found that the classification performances did not depend on
the number of features solely. For example, the ACCs and GMs of Set 1 are higher than those
of Sets 2 and 3 in most cases although Set 1 contains less number of features than Set 2 or Set 3.
Nevertheless, when we combine the features in Sets 1 and 2 into Set 4 or the features in Sets 1-3 into
Set 5, the classification performances are improved significantly in terms of paired-wise t-tests as shown
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in the previous question. These phenomena reveal that the features in Set 1 did provide useful and
important information for identifying PD but there is still room for improvement. The numerical results
in Tables 2 and 3 reveal that the 2D and 3D features in Sets 2 and 3, respectively, extracted from the
proposed mathematical representations show their potential for improving the accuracy of automated
PD identification.

Moreover, in Table 3, the average ACCs for test data based on 100 rounds with the 6 sets of features
are 0.858, 0.792, 0.825, 0.873, 0.880, and 0.858, respectively. Since we use the same hold-out and 5-fold
CV samples to learn classifiers with each of the 6 feature sets in each round, we adopt paired-wise
t-tests on the ACCs of 4 cases, ‘Set 6 vs. Set 1’, ‘Set 1 vs. Set 4’, ‘Set 6 vs. Set 5’, and ‘Set 4 vs. Set 5’,
to test whether these sets of features provide significantly different ACCs for test data. The p-values
of these 4 cases are 0.44, 2.3× 10−7, 4.3× 10−11, and 7.3× 10−4, respectively, which indicate that
Set 5 � Set 4 � Set 6 ≈ Set 1, where A � B denotes that the population mean of A is significantly
higher than the population mean of B, and A ≈ B denotes that population means of A and B have no
significant difference. Figure 8 presents the scatter plots of the ACCs of the 4 cases for test data based
on 100 rounds, which reveal consistent phenomena with the statistical test results since most points in
Figure 8b–d are located below the 45-degree line.

Table 3. The AVEs, SDs, and 95% CIs of the ACC, SEN, SPE, and GM values of 6 collections of features
for the test data based on 100 rounds, where the highest AVEs of the ACC, SEN, SPE, and GM values
among the 6 sets of features are marked in bold. In addition, n1, n2, . . . , and n6, respectively, denote the
numbers of times that the SVM, NB, RF, XGB, LR, and LDA classifiers being chosen in the 100 rounds.

Measure # Times

Set ACC SEN SPE GM n1 n2 n3 n4 n5 n6

1 AVE 0.858 0.822 0.898 0.859 45 0 54 0 1 0
SD 0.024 0.042 0.036 0.024

95%CI (0.81,0.91) (0.74,0.91) (0.83,0.97) (0.81,0.91)
2 AVE 0.792 0.759 0.828 0.792 60 0 23 0 17 0

SD 0.024 0.045 0.047 0.024
95%CI (0.74,0.84) (0.67,0.85) (0.73,0.92) (0.74,0.84)

3 AVE 0.825 0.788 0.866 0.825 0 0 54 0 41 5
SD 0.028 0.049 0.045 0.028

95%CI (0.77,0.88) (0.69,0.89) (0.78,0.96) (0.77,0.88)
4 AVE 0.873 0.855 0.892 0.873 18 0 80 0 0 2

SD 0.023 0.039 0.038 0.024
95%CI (0.83,0.92) (0.78,0.93) (0.82,0.97) (0.83,0.92)

5 AVE 0.880 0.872 0.888 0.880 0 0 99 0 0 1
SD 0.023 0.031 0.038 0.023

95%CI (0.83,0.93) (0.81,0.93) (0.81,0.96) (0.83,0.93)
6 AVE 0.858 0.839 0.878 0.858 0 0 78 0 3 19

SD 0.026 0.039 0.041 0.026
95%CI (0.81,0.91) (0.76,0.92) (0.80,0.96) (0.81,0.91)
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Figure 8. Scatter plots of the ACCs of different feature sets for test data based on 100 rounds: (a) Set 6
vs. Set 1, (b) Set 1 vs. Set 4, (c) Set 6 vs. Set 5, (d) Set 4 vs. Set 5, where the red line in each plot denotes
the 45-degree line.

5. Discussion

A shape approximation approach is proposed to portray the ROI from medical images.
An effective PSO-FS algorithm for obtaining a suitable approximation is proposed under the framework
of PSO. The convergence of the PSO-FS algorithm is derived under mild assumptions on the selected
family of equations. We apply the proposed procedure to the issue of detecting PD from the SPECT,
where ellipse and cashew-shaped equations are selected to approximate the ROI in the 2D and 3D
spaces, respectively. The coefficients of the ellipse and cashew-shaped equations, together with some
well-known features of PD existing in the literature, are employed to learn PD classifiers under 6
commonly used machine learning approaches. The empirical results reveal that the coefficients of the
ellipse and the cashew-shaped equations are capable of improving classification performances.

According to the findings in our empirical results, the proposed method has shown its potential to
be applied to other medical imaging data to extract important features contained in the corresponding
2D and 3D images. Most importantly, once a suitable family of equations is selected to depict the
regions of uptakes of a specific ROI based on the suggestions made by experts, the PSO-FS algorithm
can help to obtain the optimal equation effectively if the selected family of equations satisfies some
mild conditions. Therefore, more constructive and useful features can be computed according to the
corresponding mathematical representations of the 2D and 3D shapes, which provide researchers the
opportunities to gain more insights into the associated problems.

Moreover, although our empirical study provides numerical evidence to show the usefulness of
the 2D and 3D shape approximations of the ROI for PD identification, the proposed method still has
the following limitations:

• For a specific ROI, the proposed method needs to select a suitable family of mathematical
representation, like the ellipse and cashew-shaped equations for identifying PD in 2D and 3D
spaces, respectively. However, we may not have enough understanding or knowledge to derive
useful features directly from a mathematical representation of any shape of the ROI, like the
cashew-shaped equation used in this study. Therefore, we just adopt the coefficients of the shape
equation as features for classification. Although these coefficients can represent the shape of the
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ROI, it may not be the most effective way for a suitable classifier to learn. More studies are needed
to dig more insights for this issue.

• This study and [8] both adopted the family of ellipse equations to portray the ROI observed from
an 2D-combined image for PD identification. However, the ROI for normal subjects should be
comma-shaped, which is not an ellipse. Due to the reason that we know ellipses better than
comma-shaped equations, the family of ellipse equations is selected to approximate the ROI.
This selection, of course, has systematic biases (or called model risk), which might reduce the
classification performance.

• In the proposed PSO-FS algorithm, we need to compute the distance of each boundary point
of the ROI to a given shape equation in each PSO iteration. This procedure is computationally
expensive, especially when training a classifier with a huge number of boundary points. A more
efficiently computing way should be developed in the future.
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Appendix A. Derivation of the Cashew-Shaped Equation (5) Satisfying C2

The objective is to show that at the m-th iteration of the FS algorithm with the cashew-shaped
equation Ψ3D = 0 defined in (5), if d(p, xm) > d(p, H), there exists an x̃m ∈ J such that d(xm, x̃m) = ζ

and p, xm, and x̃m are not collinear. Moreover, based on the x̃m, one can define a κxm as the intersection
of {x ∈ J : d(xm, x) ≤ ζ} and the plane containing p, xm, and x̃m, where d(p, xm) > d(p, κxm) and
C2 holds.

Without loss of generality, we consider Ψ3D(·) with s = 1 and (tx, ty, tz) = (0, 0, 0) in (5),
and consider the case of p and xm having the same y-coordinate, where p and xm are denoted by
(px, cy, pz) and (mx, cy, mz), respectively. Since d(p, xm) > d(p, H), which indicates that the vector
p − xm = (px − mx, 0, pz − mz) is not orthogonal to the tangent plane to Ψ3D = 0 at xm. Hence,
there must exist one 2D plane, denoted by Lm, such that p, xm ∈ Lm, and the vector (px−mx, 0, pz−mz)

in Lm is not orthogonal to the tangent line to Ψ3D = 0 restricted in Lm at xm, which indicates that
d(p, xm) > d(p, Ĵm), where Ĵm denotes the intersection of Ψ3D = 0 and Lm. The rest of the proof is to
show that there exists an x̃m in Ĵm such that C2 holds.

To achieve this goal, we first rotate the coordinate system such that the equation of the plane
Lm is represented by y = cy in the new coordinate system with a rotation matrix M1, which is
defined similarly to the M in (5). Therefore, p, xm and x̃m have the same y-coordinate in the new
system. For example, Figure A1a presents a schematic diagram, where xm and x̃m are two points on a
cashew-shaped surface Ψ3D = 0, and p is an external point of {x : Ψ3D ≤ 0}. If we rotate Ψ3D = 0
to a new coordinate system, denoted by x̂ = (x̂, ŷ, ẑ) as shown in Figure A1b, with a proper rotation
matrix, we have that p, xm, and x̃m have the same ŷ values. Apparently, to prove that Ψ3D = 0 satisfies
C2 in Figure A1a is equivalent to prove it under the scenario in Figure A1b. In addition, since Ψ3D(·) is
transformed from Ψ0

3D(·) defined in (4), let x̂T = M1 ·M · xT denote the coordinate in the x̂-coordinate
system and the corresponding equation of Ĵm is represented as Ψ0

3D(M−1 ·M−1
1 · (x̂, cy, ẑ)T) = 0, which

is a polynomial equation of x̂ and ẑ. Consequently, for a fixed p̂x, which is the x-coordinate of p in the
x̂-coordinate system, there exists a ζ > 0 such that x̃m = (m̃x, cy, m̃z) ∈ Ĵm, d(xm, x̃m) = ζ, and C2 holds
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in the x̂-coordinate system, which indicates that C2 also holds in the original x-coordinate system since
xT = (M1M)−1x̂T. Therefore, the cashew-shaped equations defined in (5) also satisfy C2.

(a) (b)

Figure A1. A schematic diagram to show the case of (a) xm and x̃m being two points on a cashew-shaped
surface Ψ3D = 0, and p being an external point of {x : Ψ3D ≤ 0}. (b) If we rotate Ψ3D = 0 in (a) to a
new coordinate system, denoted by (x̂, ŷ, ẑ), with a proper rotation matrix, we have that p, xm, and x̃m

have the same ŷ values.

Before presenting the proof of Theorem 1, we derive the following lemmas.

Lemma A1. In Step 1 of the FS algorithm, if Ψ(·) is continuous, there exists an rε > 0 such that for all
rε < r < d(p, H), x0 ∈ J.

Proof. If p ∈ H, then Ψ(p) = 0 and we have d(p, H) = 0. In the following, we only proof the case of
p /∈ H and Ψ(p) > 0 since the case of Ψ(p) < 0 can be obtained by using similar arguments. For the
case of Ψ(p) > 0, there exist some 0 < r < d(p, H) such that

Br(p) ∩ H = ∅ and Ψ(y) > 0 for all y ∈ Br(p), (A1)

where Br(p) is a closed ball of radius r > 0 centered at p. Let

yr = arg min
y
{Ψ(y) : y ∈ Br(p)} (A2)

denote a point in Br(p) having the smallest value of Ψ(·). Note that yr might not be unique and any yr

should be in Bb
r (p), which denotes the set of boundary points of Br(p). Define a new equation Ψr(x) =

Ψ(x)−Ψ(yr) = 0 and let Hr = {x : Ψr(x) = 0}. Then, we have yr ∈ Hr and d(p, Hr) = d(p, yr) = r
for all yr satisfying (A2) since Ψr(y) = 0 for y ∈ Br(p)

⋂
Hr and Ψr(y) > 0 for y ∈ Br(p)

⋂
Hc

r ,
where Hc

r denotes the complement of Hr. In other words, we have

d(p, Hr)→ d(p, H), as r ↑ d, (A3)

where d = d(p, x∗) = d(p, H). Consequently, for a large enough r satisfying (A1), let y∗r = c(yr − p) + p
with c > 1 and Ψ(y∗r ) = 0, which indicate that y∗r ∈ H and y∗r , yr and p are located in the
same line as defined in (10), and yr is in-between p and y∗r . By (A3) and the definition of y∗r ,
we have limr↑d d(p, y∗r ) = limr↑d d(p, yr) = d. This fact together with the continuity of Ψ(·) leads to
limr↑d y∗r ∈ Dp, where Dp is defined in (9). Therefore, for all ε > 0, there exists an rε ∈ [0, d] such that
for all r ≥ rε, we have x0 = y∗r ∈ J.

The result of Lemma A1 indicates that the Step 1 of the FS algorithm can find an initial point in
the neighborhood,

⋃
x∗∈Dp Bε(x∗), of those x∗ in Dp.
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Lemma A2. Assume that C1 and C2 hold. Then we have

1. G is continuous on Ji, i = 1, 2, . . ..
2. If x ∈ J and d(p, x) > d(p, H), there exists another point x′ ∈ Jx ⊆ J such that d(p, x′) < d(p, x).

Proof. Without loss of generality, we consider the case of vx and nx being normalized vectors. Hence,
we have

G(x) = cos(θx) = |<vx, nx>|, for all x ∈ J, (A4)

where <a, b> denotes the inner product of two vectors a and b. For any x0 ∈ J, the triangular inequality
leads to

|G(x)− G(x0)| ≤ |<vx, nx − nx0>|+ |<vx − vx0 , nx0>|
≤ ||nx − nx0 ||+ ||vx − vx0 ||. (A5)

In addition, C1 leads to for all ε1 > 0 and ε2 > 0, there exist δ1 > 0 and δ2 > 0 such that

||vx − vx0 || < ε1, for all ||x− x0|| < δ1, (A6)

and

||nx − nx0 || < ε2, for all ||x− x0|| < δ2, (A7)

where ||x− x0|| < δ1 (or ||x− x0|| < δ2) indicates that x belongs to the Ji containing x0. Consequently,
let ε1 = ε2 = ε/2 and δ = min(δ1, δ2). By (A5)–(A7), we have that for any ε > 0 there exists a δ > 0
such that |G(x)− G(x0)| < ε for all ||x− x0|| < δ. Therefore, G is a continuous function defined on Ji,
i = 1, 2, . . ..

For a point x ∈ J, let Γx denote the tangent plane to Ψ at x. The existence of Γx is provided by C1.
In addition, if x is an interior point of J, there exists a ζ > 0 such that B2

ζ(x) ∩ H ⊆ J, where B(2)
ζ (x)

denotes a 2-dimensional open ball of radius ζ centered at x. Denote B(2)
ζ (x) ∩ H by κx for short.

In particular, if x is a boundary point of J, we defined κx as the intersection of B(2)
ζ (x) ∩ H and J.

Furthermore, if d(p, x) 6= d(p, H), we have G(x) < 1. Consequently, there exists an x̃ ∈ Γx such that
G(x) < G(x̃), which is equivalent to

d(p, x̃) < d(p, x), (A8)

and an x̃′ ∈ κx associated to x̃, where x̃′ denotes the intersection of κx and the line formed by x̃ and p.
According to C2, we consider the following two cases:

C2.1 Ψ
(

αx + (1− α)x̃′
)

Ψ(p) > 0, for α ∈ [0, 1];

C2.2 Ψ
(

αx + (1− α)x̃′
)

Ψ(p) ≤ 0, for α ∈ [0, 1].

Figure A2a,b present schematic diagrams for C2.1 and C2.2, respectively. First, C2.1 and (A8)
lead to

d(p, x̃′) < d(p, x̃) < d(p, x) (A9)

directly. On the other hand, if C2.2 holds, there exists a point y ∈ Bζ(x), such that Ψ(y)Ψ(p) < 0 and
<p− y, x− y> = 0. That is, p, x, and y form a right triangle, which indicates

d(p, x̃′) < d(p, y) < d(p, x), (A10)

where x̃′ is redefined as the intersection of κx and the line formed by p and y. Therefore, by (A9)
and (A10), we conclude that there exists an x̃′ ∈ κx such that d(p, x̃′) < d(p, x) if C1 and C2 hold.
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(a) C2.1 (b) C2.2

Figure A2. The 2 cases of C2. For any point x on J, there exists a point x̃′ ∈ J associated to x̃

which on the tangent plane Γx to Ψ at x, for α ∈ [0, 1], such that (a) Ψ
(

αx + (1− α)x̃′
)

Ψ(p) > 0 or

(b) Ψ
(

αx + (1− α)x̃′
)

Ψ(p) ≤ 0.

The second result of Lemma A2 indicates that in the Step 2 of the FS algorithm, one can find a
better estimate of d(p, H) than d(p, x) if d(p, x) > d(p, H) by setting a small enough δ. According to
Lemmas A1 and A2, we prove Theorem 1 in the following.

Proof of Theorem 1. By Lemma 1, an initial estimate x0 ∈ J can be obtained. In addition, the second
result in Lemma 2 indicates that {G(xm) : m = 0, 1, . . .} is a monotone increasing sequence. Due to
the fact that the sequence {G(xm) : m = 0, 1, . . .} is also bounded above since G(x) ≤ 1 for all x ∈ Rd,
Monotone Convergence Theorem indicates that the sequence {G(xm) : m = 0, 1, . . .} converges.
This fact together with the continuity property of G given in the first result of Lemma 2 leads to
limm→∞ G(xm) = 1, which is equivalent to limm→∞ d(p, xm) = d(p, H). The proof is complete.
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