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The two most common primary bone malignancies, osteosarcoma (OS), and Ewing sar-
coma (ES), are both aggressive, highly metastatic cancers that most often strike teens,
though both can be found in younger children and adults. Despite distinct origins and
pathogenesis, both diseases share several mechanisms of progression and metastasis,
including neovascularization, invasion, anoikis resistance, chemoresistance, and evasion
of the immune response. Some of these processes are well-studies in more common car-
cinoma models, and the observation from adult diseases may be readily applied to pediatric
bone sarcomas. Neovascularization, which includes angiogenesis and vasculogenesis, is a
clear example of a process that is likely to be similar between carcinomas and sarcomas,
since the responding cells are the same in each case. Chemoresistance mechanisms also
may be similar between other cancers and the bone sarcomas. Since OS and ES are mes-
enchymal in origin, the process of epithelial-to-mesenchymal transition is largely absent in
bone sarcomas, necessitating different approaches to study progression and metastasis in
these diseases. One process that is less well-studied in bone sarcomas is dormancy, which
allows micrometastatic disease to remain viable but not growing in distant sites – typically
the lungs – for months or years before renewing growth to become overt metastatic dis-
ease. By understanding the basic biology of these processes, novel therapeutic strategies
may be developed that could improve survival in children with OS or ES.

Keywords: osteosarcoma, Ewing sarcoma, metastasis, intravasation, neovascularization, tumor dormancy, anoikis
resistance, cancer signaling

BASICS OF PEDIATRIC BONE SARCOMAS
Osteosarcoma (OS) derives from primitive bone-forming mes-
enchymal cells and is the most common primary bone cancer (1).
It occurs predominantly in growing adolescents and young adults,
with a peak incidence at the age of 15–19 years. OS accounts for
approximately 900 new diagnoses each year in the US, of which
15–20% patients present with overt lung metastases at initial
diagnosis and about 40% patients develop metastases at a later
stage (2, 3). Based upon the clinical outcomes of patients without
overt metastasis at diagnosis during the pre-chemotherapy area, in
which approximately 90% of patients developed lung metastasis 6–
36 months later, it is presumed that the vast majority of apparently
non-metastatic patients actually have micrometastatic disease at
diagnosis. Current treatment including surgery, neoadjuvant, and
adjuvant chemotherapy, has increased the overall survival rate for
OS to around 70%. However, the clinical outcome for metasta-
tic OS remains poor: fewer than 30% of patients presenting with
metastases survive 5 years after initial diagnosis (4). More intensive
chemotherapy protocols have not substantially increased long-
term survival for patients with resistant or recurrent disease. Our
knowledge of the mechanisms underlying OS metastasis is still
limited. In order to improve the clinical outcomes for patients
with poor prognosis, it is urgent to find new approaches to block
metastasis in this disease.

Ewing’s sarcoma (ES) is the second most common bone malig-
nancy in adolescents and young adults, after OS. This disease is
most often characterized by a chromosomal translocation between
chromosome 11 and 22, generating the EWS-FLI1 fusion gene (5).
The protein encoded by this and other related EWS transloca-
tions acts as an aberrant transcription factor, driving the malignant
behaviors of the transformed cell. ES has a peak incidence in the
second decade of life, with a slightly higher rate in males (6, 7).
Each year over 200 new cases are diagnosed in the United States.
ES can develop at any site of the body, but it arises most frequently
in bones and occasionally in soft tissues of the leg, pelvis, and chest
wall (8). Similar to other pediatric sarcomas, nearly all mortality
in patients with ES is caused by metastatic disease, not the pri-
mary tumor. Current therapy is directed toward treating both the
primary tumor, since reducing tumor bulk prior to local control
can result in better control, a less morbid procedure and better
functional outcomes, and also at treating presumed microscopic
metastasis. The intensive multimodal treatment with combina-
tion chemotherapy, surgery, and radiation has increased the 5-year
event-free survival rate from less than 10% to over 70% (9–14).

The third most common type of primary bone malignancy is
chondrosarcoma, which occurs mostly in adults and older teens.
Chondrosarcoma is less well-studied than OS or ES, and there are
few chondrosarcoma laboratory models in wide use. Since this
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condition is extremely rare in children, we will not address the
biology of chondrosarcoma in this review.

BONE SARCOMA TUMORIGENESIS
INITIATING EVENTS
Consistent with its high incidence in adolescents, OS preferen-
tially develops in the growth plates of the most rapidly growing
bones such as the distal femur and proximal tibia (15). A key
driver of OS pathogenesis is thought to be over-activation of
signal transduction pathways initiated by various growth factors
such as insulin-like growth factor (IGF), transforming growth
factor (TGF), and connective tissue growth factor (CTGF). Pre-
vious studies indicated that IGF-I, IGF-II, and their receptors
are of vital importance to malignant growth of OS (16–18).
High expression levels of TGF-β1 in OS samples has been asso-
ciated with a worse prognosis, and inhibition of TGF-β signaling
severely hindered OS cell proliferation (19, 20). CTGF has been
shown to exert its pro-tumorigenic effects on OS cells via integrin
signaling (21).

A variety of genetic and chromosomal alterations also con-
tribute to the generation of OS. Germline and somatic mutations
of the retinoblastoma tumor suppressor gene (Rb) and p53 path-
ways are among the most common genetic changes found in OS
(22, 23). Inactivation of the Rb pathway is observed in up to 70%
of primary OS tumors (24). Retinoblastoma patients who have
inherited Rb mutations are predisposed to OS (25). Experimental
mice with both p53 and Rb inactivated in osteoblast progenitors or
in limb-bud tissues develop OS (26, 27). While cyclin-dependent
kinase inhibitor p16INK4a acts upstream to promote Rb dephos-
phorylation and activation, deletion of this protein is detected in
more than 10% of OS (28–31). The negative regulators of Rb,
including cyclin-dependent kinase 4 (CDK4) and cyclin D1, have
been found to be overexpressed in a small portion of high-grade
OS (28, 30). The frequency of p53 mutations in OS is between
20 and 50% according to different reports and patients with Li–
Fraumeni syndrome who carry inactivating mutations in p53 are
at a much higher risk for developing OS than is the general pop-
ulation (32–34). MDM2, a major negative regulator of p53, is

frequently amplified in OS (35–37). The p14ARF protein which
activates p53 function by inhibiting MDM2-mediated p53 degra-
dation is absent in about 10% of OS cases (38). In addition to
the alterations of major tumor suppressor pathways, oncogene
activation is also centrally involved in OS tumorigenesis. Elevated
expression of proto-oncogenes c-myc and c-fos could be detected
in the majority of OS and is associated with poor prognosis (36,
39, 40). Forced overexpression of c-myc in bone marrow stro-
mal cells derived from Ink4a/Arf null mice leads to genesis of OS
(41). Coexpression of c-fos and c-jun enhanced OS formation
in transgenic mice (42). The activator protein-1 (AP-1) is a het-
erodimeric transcription factor complex composed of c-jun and
c-fos. Papachistou et al. displayed that AP-1 activity is associated
with the pathogenesis and progression of OS (43). In addition,
upregulation of Notch signaling components has been shown to
contribute to the pathogenesis and invasiveness of OS (44, 45).
Other molecular events that have been indicated in the tumor
initiation of OS include the RECQ helicase pathways and the
telomere maintenance mechanisms (46). These genetic alterations
are summarized in Table 1.

The vast majority of ES is characterized by the specific chromo-
somal translocation which fuses the EWSR1 gene on chromosome
22 and the FLI1 gene on chromosome 11 to form the chimeric
EWS-FLI1 oncogene. It is believed that the EWS-FLI1 fusion pro-
tein is the master regulator of tumorigenesis in ES. It functions
as a transcription factor and modulates multiple signaling path-
ways including Hedgehog/GLI, Wnt/β-catenin, IGF1/IGF1R and
TGF-β, and Notch/p53 (47–52). According to previous studies,
c-Myc, GLI1, cyclin D1, Cav-1, VEGFA, IGF1, NKX2-2, AURKA,
EZH2, and NR0B1 are among the downstream targets of EWS-
FLI1 that are upregulated in ES to promote cell survival and
proliferation (53–56). Tumor suppressor genes such as NOTCH,
p53, p21WAF/Cip1, p27Kip1, p57z, TGFBR2, IGFBP3 are downregu-
lated by EWS-FLI1 to protect cells from growth arrest, senescence,
and apoptosis (55). In addition to the formation of EWS-FLI1,
other genetic alterations also contribute to pathogenesis of ES.
Like OS and many other human cancers, p53 mutations have been
detected in a small fraction of ES cases (57, 58). Amplification

Table 1 | Genetic alterations in osteosarcoma.

Gene Percent affected Hereditary syndrome? Murine model? Reference

TUMOR SUPPRESSORS

p53 20–50 (or more) Li–Fraumeni Yes McIntyre et al. (32), Lonardo et al. (37),

Gokgoz et al. (33), Hauben et al. (34)

Rb Up to 70 Retinoblastoma Yes Eng et al. (25)

p16INK4A/p14ARF ∼10% Dysplastic nevus syndrome Only with AP-1 or c-myc

overexpression

Lopez-Guerrero et al. (38), Shimizu et

al. (41)

ONCOGENES

MDM2 6–14 SNP309 of MDM2 have

accelerated tumor formation

Not for OS; roles for other

malignancies

Bond et al. (227)

AP-1 (c-jun/c-fos) 40–60 for both c-fos and c-jun None known Yes David et al. (228)

Notch Unknown No Upregulated in p53/Rb

models of OS

Engin et al. (44)

Frontiers in Oncology | Pediatric Oncology September 2013 | Volume 3 | Article 230 | 2

http://www.frontiersin.org/Pediatric_Oncology
http://www.frontiersin.org/Pediatric_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhu et al. Pediatric bone sarcoma biology

of MDM2 and Ras are also commonly found in ES tumor sam-
ples (59, 60). The CDKN2A locus where p14ARF and p16INK4a are
located is lost in 15–30% of ES and is associated with poor clinical
outcomes (60, 61).

NEOVASCULARIZATION
The process of blood vessel formation, or neovascularization,
is comprised of angiogenesis and vasculogenesis. Tumor angio-
genesis is the extension of blood vessels from preexisting vas-
cular structures, while vasculogenesis is the de novo formation
of vessel networks through the recruitment of bone marrow-
derived precursor cells. Neovascularization is essential for sus-
tained tumor growth and provides the systemic network that
stimulates metastasis. Without the formation of supporting vas-
culature, tumor cells would be unable to obtain the nutri-
ents and oxygen necessary for proliferation and would not be
able to mediate metastatic spread. A delicately controlled bal-
ance between pro- and anti-angiogenic factors typically regu-
lates angiogenesis; environmental stressors or genetic changes like
hypoxia, acidosis, oncogene activation, and loss of tumor sup-
pressor genes lead to dysfunction of this balance and result in
angiogenesis.

Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor
that regulates the expression of genes responsible for the survival
and adaptation of cells as they move from normoxia (∼21% O2)
to hypoxia (∼1% O2). HIF-1 is made up of an oxygen related
α subunit (HIF-1α) and a constitutive β subunit (HIF-1β) (62).
The stability of HIF-1α is regulated by prolyl hydroxylase domain
proteins (PHDs), while its transcription is regulated by factor
inhibiting HIF (FIH). In normoxic and mildly hypoxic condi-
tions, PHDs hydroxylate HIF-1α, resulting its association with
von Hipper–Lindau (pVHL) ubiquitin E3 ligase complex allow-
ing for rapid proteasomal degradation of HIF-1α (63–65). Under
the extreme hypoxic conditions within a tumor, HIF-1α is stabi-
lized and binds to the promoter region of VEGF where it mediates
its upregulation (66). This signaling cascade can take place in
both tumor cells and the non-malignant cells – tumor associ-
ated endothelial cells, etc. – that are found in the hypoxic center
of tumors (67).

VEGF has been shown to be upregulated by a number of other
factors that are released in response to the rapid proliferation of
tumor cells; these include transforming growth factor α (TGF-
α), fibroblast growth factor 2 (FGF-2), and hepatocyte growth
factor (HGF) (68). Upregulation of VEGF also can be mediated
by the transcription factor Wilms tumor protein 1 (WT1) (69).
As the activation of growth factor receptors like EGFR and Inte-
grin lead to Src activation, Ras/MAPK signaling and activation of
the transcription factor STAT3 are initiated, allowing for cell cycle
progression and proliferation (70, 71). STAT3 signaling is required
for VEGF production and its activation results in a positive feed-
back loop that further increases the production of FGF and VEGF,
leading to the increased induction of vascular permeability and
neovascularization (72). Thus signaling by EGFR or other ERBB
family kinases is upstream of VEGF release in most cases.

VEGF is the best characterized pro-angiogenic factor and is
considered the most important factor involved in the develop-
ment of the vasculature. There are a number of different VEGF

molecules (VEGFA through VEGFE) that bind to VEGF receptors
(VEGFR1-3). VEGFA binds to VEGFR2 and initiates a number
of divergent signaling pathways (73). Among the proteins that
are upregulated upon VEGF activation are the matrix metal-
loproteinase (MMP) and plasmin proteases (74), which act on
the vascular network by breaking down the extracellular matrix
(ECM) and allow for tumor cell invasion, as well as the migration
of the precursor cells that give rise to vascular structures: peri-
cytes and endothelial cells. These events are depicted in Figure 1.
Additionally, VEGF signaling also induces the expression of the
anti-apoptotic factors Bcl-2 and survivin (75), as well as the
ERK/NF-kB and PI3K pathways (76). These effectors promote
tumor cell proliferation and survival.

VEGF has been shown to be amplified in human OS (77).
Elevated VEGF expression in OS has been associated with the
development of lung metastases, compared to patients with VEGF-
negative tumors (82 vs. 10% respectively), and VEGF-positive OS
tumors have been shown to have significantly worse overall and
disease-free survival rates (78–80). Patients with ES have increased
circulating VEGF levels compared to controls (79, 81, 82). Inter-
estingly, EWS-ETS fusion oncoproteins drive the expression of
VEGF in an SP1 dependent manner (83) and may contribute
to the increased VEGF levels observed in patients. Bone mar-
row driven vasculogenesis is essential for tumor growth in ES
(84). The upregulation of pro-angiogenic factors like VEGF, FGF,
TGF-α, HGF, platelet-derived growth factor (PDGF), angiopoi-
etin 1 (Ang1), and ephrin-B2 combined with the down-regulation
of anti-angiogenic proteins like thrombospondin-1, TGF-β, tro-
ponin I, pigment epithelial-derived factor (PEDF), and reversion-
inducing cysteine-rich protein with Kazal motifs (RECK) allows
for rapid neovascularization (68, 85–88).

INTRAVASATION
The first step in metastasis is migration from the primary tumor
site and invasion through the basement membrane, allowing
metastatic cells to enter circulation and disseminate distantly.
These events are depicted in Figure 2. Since pulmonary metas-
tasis is the major cause of death in both OS and ES, elucidating the
mechanisms controlling metastasis is vital for improving patient
outcomes. By identifying the molecular alterations associated with
cell migration and invasion, it is hoped that novel therapies could
be developed to prevent metastases.

Degradation of the ECM, facilitated by the action of MMPs,
is a prerequisite of tumor invasion and metastasis in a variety
of human cancers including OS and ES. MMP-2 and MMP-9
in particular have been repetitively implicated in OS cell inva-
sion (89–91). In addition, m-calpain, an intracellular protease
that modulates cell adhesion and motility, plays a pivotal role
in promoting cell invasion in OS. Fan et al. demonstrated that
the inhibition of m-calpain and the concomitant blockade of
MMP-2 secretion led to a strong decrease in OS cell adhesive
and invasive ability (92). The urokinase plasminogen activator
(uPA) and its receptor uPAR are important mediators of OS cell
invasion through activation of plasminogen and pro-MMPs (93).
Down-regulation of uPAR prohibited cell adhesion, migration,
and invasion without affecting cell proliferation in vitro, resulting
in a marked reduction of pulmonary metastases in vivo.
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FIGURE 1 | Hypoxia and angiogenesis. Inset, upper right: HIF1a has been
stabilized in the hypoxic center of a tumor, allowing it to bind to the VEGF
promotor. Additionally, EGFR signaling, acting through SRC and the MAPK
cascade, induce STAT3, which helps promote VEGF transcription. Larger
picture: the hypoxic tumor, in purple, releases VEGF that establishes a
gradient from the tumor to the nearby blood vessel. VEGF stimulates release

of MMPs and plasmin, which help mediate digestion of extracellular matrix
proteins, facilitating migration of both endothelial cells and tumor cells. In
response to the VEGF gradient, some endothelial cells acquire a “tip cell”
phenotype, pushing long extensions toward the tumor. These tip cells will
eventually form the new blood vessels that provide a blood supply to the
growing tumor.

The Wnt/β-catenin pathway and its antagonists are involved
in multiple facets of tumor progression including invasion and
metastasis. High levels of β-catenin and aberrant activation of Wnt
signaling are frequently observed in OS samples and such mole-
cular alterations are correlated with the incidence of metastasis
(94, 95). Evidence from multiple sources suggests that the Wnt/β-
catenin pathway promotes metastasis in OS through modulation
of Wnt target genes including MMP-9, cyclin D, c-myc, and sur-
vivin (96). Various approaches to disrupt Wnt signaling have been
proven effective in inhibiting cell migration and invasion in labo-
ratory models (96, 97). Wnt signaling also may mediate activation
of Notch pathway signaling, which also has been implicated in
OS pathogenesis and metastasis. The Notch receptor 1, 2, and the
downstream target gene Hes1 is upregulated in highly metastatic
OS cells (44, 98), and inhibition of Notch signaling by either mole-
cular or pharmacologic means reduced both OS proliferation and
metastasis (44).

Src signaling is another pivotal pathway that contributes to the
aggressive phenotype of OS cells. Pharmacologic inhibition of the

c-Src-mediated signaling pathway suppressed phosphorylation of
focal adhesion kinase (FAK) and activation of other downstream
proteins, resulting in significantly decreased cell migration and
invasion in a panel of OS cells (70, 99). However, the therapeutic
effect of Src inhibition is very limited in animal models (70), sug-
gesting that Src is not an essential mediator of metastasis in OS, or
that “rescue pathways” exist to activate FAK and other Src targets.

Recent studies in OS have uncovered some novel targets for
anti-metastatic strategies. Parathyroid hormone (PTH), PTH pep-
tides, as well as the PTH receptor (PTHR) have been shown
by multiple reports to enhance OS cell migration and invasion
(100, 101). Autocrine motility factor (AMF), a major cell motility-
stimulating factor secreted by tumor cells, is associated with tumor
metastasis in various human cancers including OS (102). Sup-
pression of AMF expression induced mesenchymal-to-epithelial
transition (MET) in OS and reduced cell motility and invasiveness
(103). Tissue microarray analysis revealed that cysteine-rich pro-
tein 61 (CCN1/Cyr61) is overexpressed in most cases of OS when
compared to normal bone tissue (104). The same study showed
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FIGURE 2 | Invasion and intravasation. (A) The growing tumor advances to
the basement membrane of a nearby blood vessel, with the proteolytic
functions of MMPs and plasmins clearing a pathway and allowing the leading
cells to approach (bottom) and eventually push between (middle and top) the
endothelial cells. With mass migration, other tumor cells may follow behind
the leading cells. These trailing cells do not necessarily have as much invasive
capacity as the lead cell, but may have their invasion and intravasation
facilitated by the more invasive lead cells. (B) Migrating tumor cells effectively
form a small “beachhead” in the spaces where lead cells have pushed

between and through gaps in the endothelial cells. (C) With further mass
migration, tumor cells begin obstructing the flow of blood through the vessel,
and encounter red cells, platelets, and other blood components. A tumor
thrombus may occlude blood flow and, is the vessel is large enough, cause
symptoms of deep venous thrombosis. Clumps of tumor and individual tumor
cells detach from the main mass of tumors and are carried away in the blood
stream. Individual cells would be subject to anoikis when loose in the blood
stream. Some cells in tumor clumps may be protected from anoikis by their
attachment to other cells in the clump.

that genetic manipulation of Cyr61 expression levels in OS cells
concomitantly influenced cell invasion and migration in vitro and
metastatic potential in vivo. Interleukin-6 (IL-6) is a multipotent
cytokine which has been implicated in the progression of mul-
tiple human malignancies including OS. Lin et al. demonstrated
through a series of IL-6 knockdown experiments that interac-
tion between IL-6 and its receptor IL-6R is required for OS cell
migration via the activation of intercellular adhesion molecule-1
(ICAM-1) expression (105).

Similar to their role in OS, MMPs are essential mediators of
ES cell migration and invasion as they are responsible for the
localized degradation of ECM components, which serve to clear a
pathway for the invading ES cells. Caveolin-1 (CAV-1) controls
ES cell migration, invasion, and lung colonization by upregu-
lation of secreted protein acidic and rich in cysteine (SPARC),
which in turn activates MMP-2 and MMP-9 (106). Studies on ES
patient samples have established a link between the expression
of CCN-3 which is a secreted, ECM-associated signaling pro-
tein, and a higher risk to develop lung metastases (107, 108).
Ectopic expression of CCN-3 in ES cells reduced cell prolifer-
ation rate and anchorage-independent growth while promoting
cell migratory and invasive capabilities, which could be due to

the decreased expression of α2β4 integrin receptor and increased
cell surface localization of MMP-9 (109). Hauer et al. identi-
fied DKK-2 as a pro-metastatic gene highly overexpressed in a
panel of ES cell lines (110). By regulating the activity of MMP-
1, DKK-2 increased ES cell invasiveness and metastatic potential.
The same study also demonstrated that DKK-2 overexpression
enhanced bone invasiveness and osteolysis, both of which facil-
itate the metastatic spread of ES. A DNA microarray analysis
of 11 ES samples and 133 normal tissues revealed that the six-
transmembrane epithelial antigen of the prostate 1 (STEAP1), a
membrane-bound mesenchymal stem cell marker, is a signature
gene highly expressed in ES (111). Further study on this gene
demonstrated that STEAP1 promotes proliferation, anchorage-
independent growth, tumorigenicity, and metastasis in ES cells
(112). In addition, STEAP1 overexpression is associated with ele-
vated reactive oxygen species (ROS) level in ES, which could
also promote tumor aggressiveness. The histone methyltransferase
enhancer of Zeste, Drosophila, Homolog 2 (EZH2) is another
important mediator of ES tumor growth and metastasis, dri-
ven by EWS/FLI1 (54). Down-regulation of EZH2 significantly
impeded tumor growth and inhibited lung and liver metastasis
in vivo.
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Other signaling pathways, such as Src and Wnt signaling, are
also of great importance in ES cell migration and intravasation.
Constitutive activation of Src kinase has been observed in ES
metastasis (99, 113). Shor et al. demonstrated that inhibition of Src
phosphorylation and its downstream targets, including FAK and
Crk-associated substrate (CAS), by dasatinib blocked in vitro cell
migration and invasion (99). Overexpression of C-X-C chemokine
receptor type 4 (CXCR4) correlates with ES metastases (114, 115).
Upregulation of CXCR4 by the non-canonical Wnt family member
Wnt5a has been shown to promote ES cell migration in absence of
Wnt antagonist SFRP5 (115). Landuzzi et al. reported a positive
role of stem cell factor (SCF) and its receptor c-kit in promoting
ES metastasis (116). They have demonstrated in multiple ES cell
lines that SCF, a growth factor abundantly expressed in ES and the
tumor microenvironment, induced a strong increase in cell motil-
ity via activation of c-kit. A recent publication also indicated that
overexpression of ERBB-4, which is observed in a panel of ES cell
lines and metastatic tumor samples, led to increased invasion and
migration in vitro, as well as enhanced metastatic capacity in vivo
through activation of PI3K-Akt, FAK, and the Rac1 GTPase (117).

Specific regulation of microRNA expression also may play a
role in regulating intravasation and metastasis. MicroRNAs (miR-
NAs) are a class of endogenous non-coding small RNAs that
contains about 18–25 nucleotides. miRNAs regulate translational
suppression or cleavage of their target mRNAs through perfect or
imperfect binding to the 3′-untranslated region (3′-UTR) of their
target mRNA. Deregulation of miRNAs has been observed in many
human cancers, and recent reports indicate the involvement of
miRNAs in development and metastasis of bone sarcomas. Ziyan
et al. identified a pro-metastatic function of miR-21 by comparing
tumor samples and matched normal bone tissues (118). miR-21
promotes the activity of matrix MMPs by negatively regulating
the tumor suppressor gene reversion-inducing cysteine-RECK,
and knockdown of miR-21 decreased cell migration and invasion.
miR-27a is another pro-metastatic miRNA validated by Jones and
colleagues after they surveyed a panel of OS cell lines together with
normal osteoblast cells (119). On the contrary, miR-143 stood
out as an anti-metastatic miRNA when the miRNA expression
profiles were compared between HOS cells and its metastatic sub-
clone 143B cells (120). Reintroduction of miR-143 into the highly
metastatic cells suppressed invasiveness and impeded pulmonary
metastasis through inhibition of MMP-13. Expression of miR-183
also correlates with OS pulmonary metastasis (121). Suppression
of miR-183 led to elevated ezrin level and activation of p-p44/42,
resulting in enhanced metastatic ability of OS cells. Mao et al.
found that miR-195 plays a similar role in OS metastasis (122).
With the fatty acid synthase (FASN) as a direct target, miR-195
significantly inhibited OS invasion and migration in USOS cells.

ANOIKIS RESISTANCE
After tumor cells detach from their primary site and enter into
the bloodstream, the absence of cell–cell adhesion, and cell-ECM
interaction can trigger specific cellular apoptosis, a process termed
“anoikis.”Therefore, acquisition of resistance to anoikis is a critical
step in survival and expansion of metastatic cells. Multiple molecu-
lar pathways contribute to anoikis evasion in OS and ES, including
integrin signaling, PI3K/Akt, Src, Wnt/β-catenin, and the BcL

family (123). Since anoikis resistance is an essential step in tumor
progression, elucidation of the molecular mechanisms underly-
ing this process may provide additional therapeutic strategies for
targeting metastasis.

Integrins, a family of cell adhesion receptors that can acti-
vate multiple signal transduction pathways, play a key role in the
survival of tumor cells in anchorage-independent environments.
Several studies have indicated a correlation between integrin
expression and OS metastasis (124, 125). Wan et al. demonstrated
that β4 integrin is highly expressed in OS cell lines and tumor
samples (125). Knockdown of β4 integrin suppressed cell prolifer-
ation in anchorage-independent conditions without affecting cell
growth in adherent cultures in vitro and effectively inhibited pul-
monary metastasis in vivo. In addition, β4 integrin has been found
to interact with ezrin as a way to maintain its expression level in
OS cells. Marco et al. reported that α4 integrin expression also
confers resistance to anoikis in OS cells (124). They demonstrated
that α4 integrin is abundantly expressed in metastatic OS lesions.
Blocking α4 integrin with a monoclonal antibody increased cell
death in suspended cells but not in adherent cells.

Another way for tumor cell to avoid anoikis is to alter the
expression pattern of integrin subunits, which leads to elevated
PI3K/Akt signaling and decreased cell apoptosis (126). One study
revealed that Src-dependent activation of the PI3K/Akt pathway,
which is independent of FAK phosphorylation, is essential for
OS cells to gain anoikis resistance (127). Pharmacological inhi-
bition of Src or PI3K activity restored sensitivity to anoikis in
OS cells. Cantiani et al. also confirmed the role of Src in mediat-
ing anoikis resistance by showing that Cav-1, a tumor suppressor
gene significantly downregulated in OS cell lines and tumor sam-
ples, inhibited migration, invasion, and anchorage-independent
growth of OS cells by blocking Src family kinase activity and
Met signaling (128). Beristain et al. indicated that the receptor
activator of NF-κB (RANK) signaling pathway also protects OS
cells from anoikis (129). Activation of RANK enhanced cell sur-
vival in anchorage-independent environments while knockdown
of endogenous RANK inhibited the tumorigenic ability of sev-
eral mouse OS cell lines. Other survival mechanisms adopted by
solitary OS cells to evade anoikis include activation of the Wnt/β-
catenin pathway and overexpression of anti-apoptotic genes such
as Bcl-2. Lin et al. demonstrated that upregulation of Bcl-2 pro-
tected detached OS cells from anoikis by inhibiting activation of
caspase-8, which can induce apoptosis when cell adherence is
disrupted (130). High levels of Wnt family proteins have been
reported in OS patient samples, and constitutive Wnt activation
is associated with high metastatic potential (94). Rubin et al.
showed that overexpression of the Wnt inhibitory factor-1 (WIF-
1) significantly decreased anchorage-independent growth and cell
motility in 143B cells and inhibited in vivo tumorigenesis and
metastasis (97).

Some of the molecular pathways mediating anoikis resistance
in ES are similar to that of OS. Sustained activation of PI3K/Akt
and Ras/ERK pathways in ES cells has been indicated as an essen-
tial process for anchorage-independent cell survival (131). PI3K
inhibition markedly reduced anchorage-independent growth of
TC32 cells through regulation of the cyclin D1 level. Aberrant
activation of the MEK/MAPK pathway contributes to the survival
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of detached ES cells (132). Blockade of the MEK/MAPK path-
way by specific inhibitors impaired cell motility and colony for-
mation ability in vitro. The insulin-like growth factor receptor
(IGF-1R), a receptor tyrosine kinase upstream of PI3K/Akt and
MAPK pathways, is another important signaling pathway involved
in anoikis resistance in ES (133). IGF-1R is highly expressed in
both ES cell lines and patient tumor samples and inhibition of
the IGF-1R signaling resulted in profoundly reduced cell migra-
tory ability and increased anoikis-induced apoptosis in several
ES cell lines. Additional pathways also may mediate anoikis resis-
tance in ES. Douglas et al. demonstrated that the polycomb gene
BMI-1 is highly expressed in ES cells and it promotes anchorage-
independent growth and tumorigenesis by activating downstream
targets which modulate cell adhesion pathways (134). Tirado et
al. showed that, unlike its tumor suppressive role in OS, Cav-1
is highly expressed as an oncogene in ES cell lines and tumor
samples (135). As the direct transcriptional target of EWS-FLI1,
Cav-1 promotes the malignant phenotype of ES cells. Knockdown
of Cav-1 impeded anchorage-independent growth in vitro and
tumorigenesis in vivo, which is associated with suppression of E-
cadherin and upregulation of Snail. E-cadherin belongs to a class
of transmembrane proteins that regulate cell–cell adhesion. As
ES cells readily form multicellular spheroids under detachment
conditions, a concomitant upregulation of E-cadherin has been
observed. Kang et al. reported that E-cadherin protects ES cells
from anoikis-induced apoptosis through downstream activation

of Akt in an ERBB-4 dependent manner (136). Several pathways
relevant to anoikis resistance are depicted in Figure 3.

EXTRAVASATION AND ATTACHMENT
To form metastases, disseminated tumor cells (DTCs) that survive
circulation must extravagate into foreign tissues by attaching and
adapting to the metastatic microenvironment. DTCs are signifi-
cantly larger than normal blood cells; this causes the formation of
microembolisms that can get trapped in capillary beds throughout
the body (137). Interestingly, these microembolism do not spread
indiscriminately. Rather, they tend to appear in a small number
of highly specific target organs, which can vary depending on the
histology of the original tumor. Over 80% of all metastases in
OS occur in the lungs (138). Most ES metastases also occur in the
lungs, but ES also spreads frequently to the bone and bone marrow
(139). This suggests that there are specific environmental cues that
allow for the survival and growth of DTCs. These environmental
factors that make specific organ sites favorable to DTC metastases
rely on the interactions between specific molecules expressed on
both the DTCs and the endothelium of the target organ (76).

Chemokines and proteinases mediate distant colonization (76,
140). Chemokines and proteinases are responsible for the organ-
specific localization of DTCs and the extravasation of DTCs into
foreign tissues, respectively (140–145). In sarcomas, chemokines
bind to G-protein coupled receptors on the plasma membrane of
tumor cells in the lungs (115, 141, 142, 144, 146, 147). CXCR4

FIGURE 3 | Signaling in anoikis resistance. The α4 and β4 integrins, paired
either with each other or with other integrins, initiate signals vital to anoikis
resistance, through interaction with Ezrin in the case of β4, and Src for α4.
Src-mediated activation of PI3K may be independent of its well-described role
in activating FAK. Her-4, induced by E-cadherin, signals strongly through AKT

and mediates anoikis resistance, certainly for Ewing sarcoma and probably in
osteosarcoma as well. While many receptor tyrosine kinases may mediate
Ras activation and Ras-dependent and – independent activation of the MAP
kinase cascade, IGF1R is an especially important source of these signals,
especially for anoikis resistance in Ewing sarcoma.
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is a highly expressed chemokine in OS and is implicated as the
most important contributor in the development of site-specific
metastases. Binding of CXCR4 to C-X-C motif chemokine ligand
12 (CXCL12), which is abundantly expressed in the lungs, allows
for the adhesion and extravasation of OS cells into the lung (140–
144, 146, 148, 149). High CXCR4 expression in OS patient samples
is inversely correlated with event-free, overall, and metastasis-free
survival (142). Although inhibition of CXCR4 binding to CXCL12
did not consistently inhibit the development of tumor metastases
(148), targeting CXCR3 in vivo to inhibit its binding to ligands
CXCL9, 10, and 11 did inhibit OS lung metastases (149). In ES
CXCR4 expression correlated with Wnt5a expression and was
significantly higher in patients that presented with metastasis at
diagnosis, compared with patients without metastases, and also
correlated with poor survival (115). Selectins and integrins also
facilitate the adhesion of malignant sarcoma cells to the endothelial
lining of the lungs (150).

Ezrin is a membrane cytoskeleton linker protein that mediates
membrane organization and cell microenvironment interactions
(151) and is also believed to facilitate OS-DTC anchorage to the
lung tissue. High Ezrin expression is correlated with: metastasis in
animal models of OS (152–154), higher risk of metastatic relapse,
and poor survival in pediatric OS patients (153, 154). Ezrin is
thought to promote the formation of metastases through β4 Inte-
grin mediated activation of the PI3K, Akt, and MAPK pathways
and thus Ezrin stimulates survival and proliferation of the DTC
in the lung (76, 125, 146, 153, 154). Inhibition of Ezrin-activated
MAPK/Akt signaling with Sorafenib suppresses the development
of lung metastases in laboratory models (155).

The nuclear factor-kappa B (NF-κB) is known to be involved in
the development of lung metastases (156–159). The linear ubiq-
uitin chain assembly complex (LUBAC) activates both NF-κB and
intercellular adhesion molecule-1 (ICAM-1), and is necessary for
the extravasation and retention of DTCs in the lungs (160). There-
fore, the knockdown of LUBAC is able to decrease both the number
and the size of the metastatic nodules within the lungs of mice
injected with OS cells (160).

DORMANCY
For patients who present without radiographic evidence of metas-
tasis, pulmonary metastases often become evident only 6 months
to 3 years after diagnosis, long after the resection of the primary
site. This suggests that as cells disseminate, extravagate, and attach
to the lung environment, they undergo growth arrest and become
dormant. Despite the clinical significance of this dormancy, the
mechanisms underlying it and the outgrowth of macrometasta-
tic lesions from these dormant micro-metastases remain poorly
understood. Some evidence suggests that a subpopulation of can-
cer cells exhibit stem-like properties which are capable of dissem-
inating to distant organs (161–165). These cancer stem-like cells
(CSCs) are purported to have the ability to self-renew and popu-
late a growing tumor, an increased capacity for DNA repair, and
higher expression levels of anti-apoptotic proteins than differen-
tiated cells (166–170). These properties provide CSCs with the
ability to survive for long periods of time under metabolic and
environmental stresses (e.g., hypoxia) while they arm tumor cells
with ATP-binding cassette (ABC) transporters that actively efflux

chemotherapeutics from target cells, thus providing tumor cells
with increased drug resistance (171–176).

Two additional explanations for tumor dormancy focus on
the senescence of either multiple cells (tumor mass dormancy)
or individual cells (cellular dormancy). Tumor mass dormancy is
the process by which the cells that make up micro-metastases are
balanced between proliferation and apoptosis, and accordingly the
mass does not grow (177, 178). This process purportedly relates to
the lack of nutrients and oxygen from the vasculature (179–183).
Cellular dormancy cites the process by which individual tumor
cells enter a quiescent state and do not divide anymore (177, 184,
185). Such cells are typically more resistant to conventional drugs
because current treatments tend to target dividing cells. The two
processes, of course, are not mutually exclusive, as small foci of
tumors may contain individual cells that are growth arrested but
not terminally differentiated.

In order to elucidate the cellular mechanisms that define
metastatic dormancy, Almog et al. designed an OS in vivo model
for dormancy and performed gene expression analysis of cells
in the dormant state versus cells in the proliferative state (186).
Since tumor growth is dependent on vascularization, metastatic
dormancy is generally associated with the upregulation of anti-
angiogenic proteins such as angiomotin, which suppresses tumor
growth while maintaining the dormant state of DTCs (179). Almog
et al. observed a marked increase in the upregulation of anti-
angiogenic proteins in dormant cells (186). Administration of
recombinant angiogenic factors was shown to allow the transition
from anti-angiogenic dormancy, to pro-angiogenic tumor growth
(187). Additionally, an upregulation of endocan in rapidly pro-
liferating cells was observed, suggesting that poor connection to
the ECM of the pulmonary environment may also be associated
with dormant micro-metastases (186) while proper anchorage to
the ECM would stimulate cells to proliferate via β1-integrin sig-
naling (183). The anti-apoptotic protein Bcl-xL, α5β1-integrin
mediated activation of NF-κB, and the ratio between ERK and
p38-MAPK proteins all appear to be involved in the regulation of
tumor dormancy (76, 146, 182, 183). The role of anti-angiogenic
signals in maintaining dormancy and pro-angiogenic signals in
promoting renewed growth of pulmonary micro-metastases may
explain the clinical observation, often repeated by patients and
families, that pulmonary metastases are often identified within a
few months after a major operation. Patients often tell us that
“operations spread the sarcoma.” The more probable truth is that
major operations, and the cytokines released as a result of them,
awaken dormant micrometastatic lesions.

As of now, we are unaware of publications that describe dor-
mancy in ES. Given that ES patients do experience recurrence after
long periods of disease-free survival, it seems probable that sys-
tems of dormancy do occur for ES. Whether these systems are
mechanistically similar to dormancy in other sarcomas remains to
be shown.

CHEMORESISTANCE
Tumor resistance to chemotherapy has always been a major obsta-
cle for treating patients with bone sarcomas. Intrinsic resistance to
chemotherapy has been detected in a small portion of patients.
More commonly, however, patients present with disease that
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initially is responsive to cytotoxic therapy, but acquires resistance
that is evident when tumors recur. Thus, a better understand-
ing of the molecular mechanisms underlying the development
of chemoresistance will facilitate the discoveries of novel treat-
ment strategies to overcome this resistance and improve patient
outcomes.

Most studies of chemoresistance in bone sarcomas thus far
have focused on molecules and pathways already known to effect
sensitivity to chemotherapy in more common tumors. Increased
levels of P-glycoprotein, a transmembrane ATP-dependent efflux
pump which plays a key role in multidrug resistance, is strongly
associated with poor response to chemotherapy and reduced sur-
vival in both OS and ES patients (188–191). As an important
predictive factor for chemoresponse in many other cancers, Her-
2/ERBB2 has been extensively studied in bone tumors, yet the
role of Her-2 overexpression in the development of chemoresis-
tance in OS and ES remains controversial and ambiguous. Some
studies suggested that Her-2 expression is significantly correlated
with histologic responses to preoperative chemotherapy while
other studies indicated that Her-2 expression in OS and ES has
no prognostic significance (191–195). Our group has shown that
expression of Her-4/ERBB-4 confers a worse prognosis for neu-
roblastoma by mediating reduced cell proliferation and anoikis
resistance, as well as conferring direct resistance to cisplatin, dox-
orubicin, and ifosfamide (196). Similar studies to evaluate the role
of ERBB-4 in OS are ongoing in our lab, and a role for ERBB-
4 in ES has been established (136). The Bcl-2 family proteins,
which mediate various steps of apoptosis, are important regu-
lators of chemotherapy-induced cell death. The anti-apoptotic
proteins Bcl-2 and Bcl-xL are frequently overexpressed in OS and
ES and are associated with development of resistance to a variety of
chemotherapeutic agents or radiation (197–201). Up- and down-
regulation of these proteins can significantly reduce or enhance the
chemosensitivity of OS and ES cells. Overexpression of EWS/FLI-
1 direct target genes, CAV-1 and glutathione S-transferase M4
(GSTM4), also help modulate resistance to chemotherapy in ES
cells (202, 203). In addition, miRNA has been found to play a
vital role in conferring chemoresistance in OS and ES cells. Song
et al. indicated that miR-140 and miR-215 are both involved in
OS chemoresistance by inducing a decreased cell proliferation
through cell cycle arrest at G1 and G2 phase respectively (204,
205). The miRNAs miR-34a, miR-708, and miR-125b are essen-
tial miRNAs that regulate cell survival and chemosensitivity of
ES cells (206–208). Analysis of 34 ES tumor samples revealed
that reduced or absent expression of miR-34a, which is associ-
ated with p53 inactivation, predicted a worse clinical outcome
and restoration of miR-34 activity in vitro markedly increased
ES cell sensitivity to doxorubicin and vincristine (206). Similarly,
repression of miR-708 in ES tumor samples is associated with up-
regulation of the DNA repair protein and transcriptional cofactor
EYA3, which directly led to enhanced cell survival and resistance
to DNA-damaging chemotherapeutics (207). On the contrary,
miR-125b has been shown to promote multidrug resistance in
ES cells by suppressing the expression of pro-apoptotic proteins,
p53 and Bak. Knocking down miR-125b in the chemo-resistant
ES cells increased their sensitivity to doxorubicin, etoposide, and
vincristine (208).

EVASION OF IMMUNE SURVEILLANCE
The survival of DTCs and, to a lesser extent primary tumors,
depends on the evasion of the host immune system. Faulty regu-
lation of a number of key genes that control the immune system
allow DTCs to achieve a survival advantage. The down-regulation
of HLA class 1, a cell surface receptor that impairs the recognition
of tumor cells by the host cytotoxic T-lymphocytes, is one such
mechanism (209, 210), and expression of HLA class I has prognos-
tic significance for OS (209). DTCs can also induce the production
of IL-10 expression in OS, resulting in immunosuppression (146,
211). Additionally, corruption of the Fas pathway or low expres-
sion of Fas on the cell surface of OS and ES cells inhibits the
ability of cytotoxic natural killer cells to detect and clear DTCs,
thus yielding an increase in metastatic potential. OS metastatic
tissue samples are Fas negative (212, 213), and low Fas expression
correlates with disease progression and poor survival (212, 214–
217). Despite these observations, adoptively transferred T cells did
show some clinical benefit in one pilot study (218). The use of
interferon in OS patients has been studied, though the results of
the Euramos study – the largest clinical evaluation of interferon
for OS to date, have still not been reported as of the time of this
review.

The innate immune system may offer greater promise for treat-
ing OS and ES. The macrophage-activating agent L-MTP-PE,
first evaluated by Kleinerman and colleagues, reduced metastatic
tumor burden in experimental laboratory models (219), and had
proven benefit in dogs with spontaneously occurring OS (220).
After a series of smaller trials, a cooperative group study of L-
MTP-PE demonstrated an 8% improvement in overall survival in
patients treated with L-MTP-PE (221), though the initial studies
were difficult to interpret due to an interaction with ifosfamide
that has not been fully characterized (222). The benefit was great-
est for patients who presented with metastatic disease that were
able to achieve a complete remission through surgical resection
(26). This drug, now with the generic name mifamurtide, has been
given regulatory approval by the EMA, Mexico, Japan, Israel, and
several other countries, but has yet to be accepted by the FDA. A
similar agent, Imm-Ther, was studied in ES, but the data from that
small study have not been reported.

Natural killer cells (NK cells) may be another option for har-
nessing immune responses against OS and ES. Multiple laboratory
studies demonstrated the ability of NK cells to recognize and kill
OS cells (223–226). The regulation of NK cell cytolytic activity is
complex, and includes both activating and inhibitory receptors, as
well as induced tolerance to specific self-receptors. These mech-
anisms have been reviewed recently (227). One aspect on NK
recognition, however, can be described relatively simply: the pres-
ence of “self-HLA Class I” has an inhibiting function for NK cells.
Thus the down-regulation of HLA that facilitates evasion of T
cell recognition actually facilitates NK recognition. Clinical trials
using autologous and haplo-identical (i.e., parent or sibling donor)
NK cells have been conducted for several tumor types, with some
promising early results. These events are depicted graphically in
Figure 4.

Once factor related to the efficacy of any immune-mediated
therapy that must be considered is the tumor burden at the time of
treatment. Whether the intervention is T cells, NK cells, cytokines,
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FIGURE 4 | Evasion of immune response. To survive, tumor cells must
evade several components of cellular immunity. Cytotoxic T cells, through
their T cell receptors (TCR), recognize foreign antigens, and kill cells bearing
these antigens presented by class I HLA. Tumor-specific antigens can
potentially be treated as foreign by the immune system. Tumor cells, such as
the one in the lower right, typically downregulate HLA expression as a means
of evading T cell response. Natural killer (NK) cells (left side of figure)
recognize specific surface molecules expressed on “stressed” cells,
especially tumor cells. One requirement for full NK response is the absence

of self-HLA, so the down-regulation of HLA that allows tumors to evade
cytotoxic T cells may facilitate their recognition by NK cells. Macrophages may
ingest and destroy tumor cells in an antigen non-specific manner, though this
process may require macrophage activation such as typically occurs in the
sites of infection. The macrophage-activating drug L-MTP-PE has been shown
to induce macrophage activation (top of figure) and improves survival in
high-risk osteosarcoma patients when given in first complete remission or at
a time of minimal residual disease, presumably by increasing phagocytosis on
tumor cells.

or immune-modulating agents such as L-MTP-PE, the greatest
efficacy would be expected if the intervention begins in a minimal
residual disease state. All available data regarding immune ther-
apies suggests that bulky tumors are unlikely to respond, while
microscopic disease may be controlled. This fact about immune
therapies needs to be considered carefully, both when clinicians
and investigators are evaluating outcomes from early-phase studies
and when clinician-investigators are designing phase II and phase
III studies incorporating immune-based treatments. If we design
trials evaluating immune approaches in advanced-disease patients,
we are quite likely to discard potentially beneficial treatments
because we evaluated them in the wrong cohort of patients.

SUMMARY AND NEXT STEPS
The desperate need for better therapies for both OS and ES is
clear, given the numbers of children and young adults each year
who develop treatment-resistant disease that follows a relent-
less, downward course. A better understanding of the biology

related to the several steps of disease development and progres-
sion, especially the biology of metastasis, immune evasion, and
latency/reactivation, is needed to foster new approaches. While
our investigations can sometimes be informed by following the
literature for common adult carcinomas, one must bear in mind
the important differences between carcinomas and either OS or ES.
For example, since OS is derived from mesenchymal tissues, stud-
ies of epithelial-to-mesenchymal transition (EMT) and the reverse
–MET – seem unlikely to be very informative, since the tumor is
mesenchymal in the first place, and the data for state changes such
as EMT or MET as a part of OS and ES metastasis is not very clear.
The specific signals involved in tumor dormancy in particular also
are not well-characterized and may offer a new therapeutic entry
point for changing the landscape of OS and ES. Three distinct
parts of dormancy should be considered, as each could be its own
novel therapy. First, an active signal causes OS tumor cells to arrest
growth while metastasizing, which helps contribute to chemore-
sistance. At the same time, dormant tumor cells have an active

Frontiers in Oncology | Pediatric Oncology September 2013 | Volume 3 | Article 230 | 10

http://www.frontiersin.org/Pediatric_Oncology
http://www.frontiersin.org/Pediatric_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhu et al. Pediatric bone sarcoma biology

developmental block that prevents them from pursuing a differen-
tiation cascade. Finally, something later causes individual tumors
in the metastatic niche to resume growth. The latter may be con-
nected to angiogenesis and the cytokines of wound healing, given
the association, more frequently commented upon than observed,

of metastatic tumor growth beginning a few weeks after major
surgery. Better understanding of these signals and pathways will
enable novel therapies to be used in the manner most likely to lead
to improved outcomes, such as employing immune therapies in a
minimal residual disease state.
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