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Abstract: For the first time, σ-hole interactions within like· · · like carbon-containing complexes were
investigated, in both the absence and presence of the external electric field (EEF). The effects of the
directionality and strength of the utilized EEF were thoroughly unveiled in the (F-C-F3)2, (F-C-H3)2,
and (H-C-F3)2 complexes. In the absence of the EEF, favorable interaction energies, with negative
values, are denoted for the (F-C-F3)2 and (H-C-F3)2 complexes, whereas the (F-C-H3)2 complex
exhibits unfavorable interactions. Remarkably, the strength of the applied EEF exhibits a prominent
role in turning the repulsive forces within the latter complex into attractive ones. The symmetrical
nature of the considered like· · · like carbon-containing complexes eradicated the effect of directionality
of the EEF. The quantum theory of atoms in molecules (QTAIM), and the noncovalent interaction (NCI)
index, ensured the occurrence of the attractive forces, and also outlined the substantial contributions
of the three coplanar atoms to the total strength of the studied complexes. Symmetry-adapted
perturbation theory (SAPT) results show the dispersion-driven nature of the interactions.

Keywords: noncovalent interaction; σ-hole interactions; like· · · like complexes; EEF; SAPT

1. Introduction

Owing to their profuse contributions to various fields, including supermolecular chem-
istry [1–3], drug discovery [4–6], and molecular recognition [7–9], σ-hole interactions have
recently attracted the interest of many experimentalists and theoreticians. The occurrence of
σ-hole interactions was previously attributed to the presence of an electron-deficient region,
compared to the surroundings, which is directly located along the extension of covalently
bonded group IV–VII elements [10,11]. In addition, the σ-hole size is reported to be strongly
associated with the polarizability of the σ-atom and the electron-withdrawing power of
the attached group(s)/atom(s) [12,13]. The nomination of the σ-hole interactions to study
was settled according to the position of the group IV–VII σ-hole bond donor in the periodic
table as tetrel [14–16], pnicogen [13], chalcogen [17,18], and halogen [19–21] bonds.
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Among the σ-hole interactions, diverse experimental [22–24] and theoretical [25–27]
studies enticed significant scrutiny towards the tetrel bonding interactions, as a result of
their primordial roles in catalytic chemistry [28,29] and ligand–protein interactions [24,30].
Further, the ability of tetrels to engage in like· · · like interactions was previously docu-
mented and precisely investigated [31–33], compared to the literature regarding pnico-
gen [34,35], chalcogen [36–38], and halogen [39–41]. The origin and nature of such interac-
tions were widely demonstrated in the literature.

The efficacious role of the directionality and strength of the external electric field (EEF)
on the intermolecular noncovalent interactions were precisely illustrated [42–47]. Initially,
the EEF effect on Group VII σ-hole interactions was explained through tunning the Cl· · ·N
traditional halogen bond to a shared chlorine bond, or an ion-pair bond [48]. Subsequently,
the elucidation of the EEF effect on the σ-hole interactions was expanded to involve group
IV–VIII elements–Lewis base interactions [45,46,49]. Nevertheless, the impact of EEF on
the σ-hole interactions within the like· · · like complexes is still ambiguous.

Accordingly, for the first time, σ-hole interactions within like· · · like carbon-containing
complexes were delicately studied and comparatively explored, in both the absence and the
presence of the positively- and negatively-directed EEF (Figure 1). Three carbon-containing
complexes, namely, (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2, were precisely investigated. A
plethora of quantum mechanical calculations, including molecular electrostatic potential
(MEP) and surface electrostatic potential extrema (Vs,max), were performed for the con-
sidered monomers. Further, for the inspected like· · · like complexes, interaction energy,
quantum theory of atoms in molecules (QTAIM), and noncovalent interaction (NCI) index
analyses were executed. To pinpoint the physical nature of the investigated interactions,
the symmetry-adapted perturbation theory (SAPT) analysis was adopted. The findings of
this study provide versatile and noteworthy contributions to enhance the understanding of
the effect of the EEF on the σ-hole interactions within like· · · like complexes.
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Figure 1. Representation of (i) the external electric field (EEF) effect on carbon σ-hole and (ii) the
like· · · like carbon-containing complexes. Positive and negative signs represent the directionality of
the employed EEF.

2. Results and Discussion
2.1. MEP and Vs,max Calculations

Recent versatile studies demonstrate the molecular electrostatic potential (MEP) as a
reliable technique to provide a powerful clue for the charge distribution over the molecular
surface [50–52]. MEP maps were generated for the optimized carbon-containing molecules
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in the absence and the presence of the positively- and negatively-directed EEF, with values
ranging from 0.004 to 0.020 au (Figures S1 and S2). Moreover, the surface electrostatic
potential extrema (Vs,max) was assessed in order to present quantitative evidence for the
molecular electrostatic potential. MEP maps, along with Vs,max values, are depicted in
Figure 2 for the optimized molecules in the absence of EEF (i.e., EEF = 0.000), and in the
presence of +0.040 and −0.040 au EEF. The intercorrelation of the Vs,max values with the
direction and magnitude of the applied EEF is represented in Figure 3.
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Figure 2. Molecular electrostatic potential (MEP) maps plotted at an 0.002 au electron density contour
for F-C-F3, F-C-H3, and H-C-F3 optimized molecules in the absence of EEF (i.e., EEF = 0.000 au), and
the presence of the positively- and negatively-directed EEF (i.e., +0.004 and −0.004 au, respectively).
The electrostatic potential varies from−0.01 (red) to +0.01 (blue) au. The surface electrostatic potential
extrema (Vs,max) at the investigated σ-holes are given in kcal/mol.

From the MEP maps depicted in Figures S1 and S2, positive, blue-coded electrostatic
potential regions (i.e., σ-hole) are detected along the outer surface of the carbon atoms, in
varying sizes. As seen in Figure 2, the most prominent σ-hole size is found in the case of
F-C-F3, followed by F-C-H3 and H-C-F3, outlining the direct correlation between the σ-hole
size and the electronegativity of the covalently bonded atoms to the central carbon atom.
Numerically, in the absence of EEF, the Vs,max values increase as follows: H-C-F3 < F-C-H3
< F-C-F3, with Vs,max values of 15.4, 26.0, and 31.6 kcal/mol, respectively.

Turning to the effect of EEF directionality, as illustrated in Figure 2, the sizes of the
σ-holes increase and decrease by orienting the employed EEF in the positive and negative
directions, respectively. In the same context, Figure 3 consistently reveals the direct and
reverse correlation between the positive value of the surface electrostatic potentials extrema
(Vs,max), and the strength of the positively- and negatively-directed EEF, respectively.

Using the directional EEF, the σ-hole size exhibits a superior behavior (i.e., becomes
more positive) by applying the EEF along the positive direction, whereas an inversed
pattern is observed under the effect of the negatively-directed EEF. Illustratively, for the
H-C-F3 molecule, the Vs,max value in the absence of EEF increases from 15.4 kcal/mol to
18.6 kcal/mol, and decreases from 15.4 kcal/mol to 12.2 kcal/mol, with the implementation
of +0.004 au and −0.004 au EEF, respectively. Turning to the effect of EEF strength, direct
and inverse correlations are disclosed between the σ-hole size and the magnitude of the
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positively- and negatively-directed EEF, respectively. For example, the Vs,max value of the
H-C-F3 molecule increases to 18.6, 22.0, 25.2, 28.3, and 31.7 kcal/mol when the positively-
directed EEF increases to 0.004, 0.008, 0.012, 0.016, and 0.020 au, respectively.
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2.2. Interaction Energy

The σ-hole interactions of the like· · · like carbon-containing complexes were thor-
oughly studied in the absence and the presence of the EEF (see Figure 1). Initially, the
(F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes were optimized at the MP2/aug-cc-pVTZ
level of theory. For the optimized complexes, the interaction energies (E1) were evaluated
at the same level of theory, and then benchmarked at the CCSD(T)/CBS level of theory
(E2) (Table 1). The correlation between the interaction energies with the EEF direction and
strength is graphically represented in Figure 4.

Table 1. Interaction energies calculated (in kcal/mol) at MP2/aug-cc-pVTZ (E1) and CCSD(T)/CBS
(E2) levels of theory for the optimized (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes in the absence
and the presence of the positively- and negatively-directed external electric field (EEF), with values
ranging from 0.004 to 0.020 au.

EEF a

(au)

(F-C-F3)2 (F-C-H3)2 (H-C-F3)2

D b E1 E2 D b E1 E2 D b E1 E2

0.000 3.88 −0.55 −0.87 3.45 0.02 0.01 4.00 −0.27 −0.31
±0.004 3.88 −0.57 −0.89 3.45 0.00 −0.16 4.00 −0.29 −0.35
±0.008 3.87 −0.63 −1.00 3.44 −0.04 −0.18 4.00 −0.33 −0.42
±0.012 3.86 −0.74 −1.21 3.43 −0.12 −0.26 3.99 −0.39 −0.54
±0.016 3.84 −0.89 −1.58 3.41 −0.23 −0.38 3.98 −0.49 −0.73
±0.020 3.83 −1.09 −1.88 3.39 −0.37 −0.53 3.97 −0.62 −0.97

a The positive and negative signs represent the directionality of the employed EEF. b Distances (D) computed (in
Å) between the two carbon atoms in (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes.
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From data listed in Table 1, in the absence of the EEF (i.e., EEF = 0.000), the (F-C-
F3)2 and (H-C-F3)2 complexes exhibit an elegant penchant to participate in noncovalent
interactions, with negative interaction energies. On the other hand, positive values of
interaction energies are denoted for the (F-C-H3)2 complex. This might be ascribed to the
repulsive contributions of the three coplanar substituents. In general, interaction energies
become less favorable according to the following order: (F-C-F3)2 > (H-C-F3)2 > (F-C-H3)2,
with values of −0.55, −0.27, and 0.02 kcal/mol, respectively.

With regard to the effect of the EEF-based results, it is worth noting that the imple-
mentation of the positively- and negatively-directed EEF exhibit the same pattern on the
considered like· · · like complexes (Figure 4). This similar amplitude could be ascribed to
the domination of the symmetrical nature of the complexes under consideration, which led
in turn to the elimination of the directionality effect of the applied EEF.

According to the data registered in Table 1, notable enhancement of the strength of the
studied like· · · like complexes is observed when applying the positively- and negatively-
directed EEF. For example, the MP2 energetic quantities of the optimized (F-C-F3)2 com-
plexes are −0.57, −0.63, −0.74, −0.89, and −1.09 kcal/mol by implementing ±0.004,
±0.008, ±0.012, ±0.016, and ±0.020 au EEF, respectively.

The foregoing observations also highlight the role of EEF in turning the repulsive
interactions (i.e., positive interaction energy) into attractive ones (i.e., negative interaction
energy) within the studied complexes. Numerically, the MP2 interaction energies of the
(F-C-H3)2 complex become more favorable, and turn from 0.02 kcal/mol (in the absence of
EEF) to 0.00, −0.04, −0.12, −0.23, and −0.37 kcal/mol in the presence of ±0.004, ±0.008,
±0.012, ±0.016, and ±0.020 au EEF, respectively. Moreover, an inverse correlation is
discerned between the C–C intermolecular distance and the strength of the applied EEF,
alluding to the interaction energy enhancement.

Regarding energetic quantities, the MP2/aug-cc-PVTZ interaction energy is bench-
marked at the CCSD(T)/CBS level of theory (Table 1), and both quantities are comparable,
outlining a nearly similar trend.
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2.3. QTAIM Analysis

The quantum theory of atoms in molecules (QTAIM) was presented as an informative
tool to precisely characterize both the origin and nature of the noncovalent interactions,
based on the electron density features [53,54]. In the current study, QTAIM analysis was
implemented to indicate the origin of the studied σ-hole interactions through generating the
bond critical points (BCPs) and bond paths (BPs). Figure 5 displays the QTAIM diagrams for
the considered complexes in the absence and the presence of the positively- and negatively-
directed EEE. The topological parameters, including the electron density (ρb), Laplacian
(∇2ρb), and total energy density (Hb) were estimated and are collected in Table S1.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 5. QTAIM diagrams of the optimized (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes in the 
absence and the presence of the positively- and negatively-directed external electric field (EEF), with 
values ranging from 0.004 to 0.020 au. Positive and negative signs represent the directionality of the 
employed EEF. Red dots indicate the location of bond critical points (BCPs) and bond paths (BPs). 

As illustrated in Figure 5, all the considered like⋯like complexes demonstrate six 
BCPs and BPs between the three coplanar substituents in each interacting monomer. 
These observations affirm the prominent contributions of the attractive forces between 
coplanar substituents over carbon analogs, which is in line with our earlier affirmations 
[31,55,56].  

From Table S1, positive values are denoted for the electron density (ρb), Laplacian 
(∇2ρb), and total energy density (Hb), ensuring the closed-shell nature of the investigated 
σ-hole interactions. Interestingly, the computed topological parameters highlight the EEF 
effect on the studied interactions, with growing ρb, ∇2ρb, and Hb values with an increasing 
EEF magnitude, which is in line with the energetic findings (Table S1). For instance, the 
electron density (ρb) values of (F-C-F3)2 complex are 0.0029, 0.0029, 0.0033, 0.0034, and 
0.0035 au, which exhibit interaction energies of −0.57, −0.63, −0.74, −0.89, and −1.09 
kcal/mol in the presence of ±0.004, ±0.008, ±0.012, ±0.016, and ±0.020 au EEF, respectively. 

2.4. NCI Analysis 
The noncovalent interaction (NCI) index [45,57] was considered as a dependable 

index to characterize the noncovalent interactions, based on the electron density and its 
derivatives. The 3D NCI plots were generated for the (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 
complexes using (λ2)ρ ranging from −0.035 (blue) to 0.020 (red), where the second 
eigenvalue of the hessian matrix and the electron density are represented by λ2 and ρ, 
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As illustrated in Figure 5, all the considered like· · · like complexes demonstrate six BCPs
and BPs between the three coplanar substituents in each interacting monomer. These observa-
tions affirm the prominent contributions of the attractive forces between coplanar substituents
over carbon analogs, which is in line with our earlier affirmations [31,55,56].

From Table S1, positive values are denoted for the electron density (ρb), Laplacian
(∇2ρb), and total energy density (Hb), ensuring the closed-shell nature of the inves-
tigated σ-hole interactions. Interestingly, the computed topological parameters high-
light the EEF effect on the studied interactions, with growing ρb, ∇2ρb, and Hb val-
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ues with an increasing EEF magnitude, which is in line with the energetic findings
(Table S1). For instance, the electron density (ρb) values of (F-C-F3)2 complex are 0.0029,
0.0029, 0.0033, 0.0034, and 0.0035 au, which exhibit interaction energies of −0.57, −0.63,
−0.74, −0.89, and −1.09 kcal/mol in the presence of ±0.004, ±0.008, ±0.012, ±0.016, and
±0.020 au EEF, respectively.

2.4. NCI Analysis

The noncovalent interaction (NCI) index [45,57] was considered as a dependable
index to characterize the noncovalent interactions, based on the electron density and its
derivatives. The 3D NCI plots were generated for the (F-C-F3)2, (F-C-H3)2, and (H-C-
F3)2 complexes using (λ2)ρ ranging from −0.035 (blue) to 0.020 (red), where the second
eigenvalue of the hessian matrix and the electron density are represented by λ2 and ρ,
respectively. Figure S3 shows the 3D NCI plots for the optimized complexes in the absence
and the presence of the positively- and negatively-directed EEF.

Based on the data displayed in Figure S3, the potentiality of the inspected carbon-
containing molecules to participate in σ-hole interactions is assured and detected by the
existence of green-colored isosurfaces between the two interacting molecules. Furthermore,
the occurrence of circular-shaped green isosurface between the three coplanar substituents
demonstrates their contributions, which is in line with the QTAIM affirmations. The
superior effect of the EEF on the strength of the investigated complexes is evidently unveiled
via increasing the green isosurfaces, by increasing the strength of the applied EEF.

2.5. SAPT Analysis

Symmetry-adapted perturbation theory (SAPT) analysis was settled on as an authori-
tative tool to elucidate the physical forces beyond the occurrence of the noncovalent inter-
actions [58]. SAPT was carried out for the (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes at
the SAPT2+ level of truncation (Figure 6). The total SAPT2+ energies, accompanied by the
fundamental components of all the studied complexes, are compiled in Table S2.

For all the inspected complexes, the Edisp is found to be the most dominant force
within the inspected interactions (Figure 6). In comparison, the contributions of the Eelst
and Eind, along with Eexch, are generally limited. Illustratively, the Eelst, Eind, Edisp, and
Eexch are −0.15, −0.04, −1.89, and 1.17 kcal/mol, respectively, in the case of the (F-C-F3)2
optimized complex in the absence of EEF (Table S2).

As listed in Table S2, the Edisp component exhibit the prevalent contributions of the
studied complexes to the total energies in the absence and the presence of EEF. Notably, the
contributions of Edisp are found to be enhanced in line with the interaction energy pattern
as follows: (F-C-H3)2 < (H-C-F3)2 < (F-C-F3)2. For example, for (F-C-F3)2, (H-C-F3)2, and
(F-C-H3)2, the Edisp, calculated in the presence of±0.020 au EEF, has values of−2.06,−1.84,
and −1.39 kcal/mol, along with interaction energies of −1.09, −0.62, and −0.37 kcal/mol,
respectively. Evidently, the favorable contributions of the Eelst, Eind, and Edisp increase
upon utilizing the positively- and negatively-directed EEF, which is in coincidence with
the interaction energy findings (Table 1). For instance, the Edisp of the (F-C-F3)2 complex is
−1.90, −1.94, −1.96, −2.02, and −2.06 kcal/mol upon applying an EEF of ±0.004, ±0.008,
±0.012, ±0.016, and ±0.020 au, respectively. The accuracy of the considered level for SAPT
analysis is appreciated through assessing the energy difference between the MP2 energy
and the computed SAPT2+ energy (∆∆E) (Table S2). The resulting tiny energy difference
(∆∆E) outlines the accuracy of the utilized SAPT level of truncation.
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Figure 6. Bar chart illustrating physical components of SAPT2+ energy, including electrostatic (Eelst),
induction (Eind), dispersion (Edisp), and exchange (Eexch) terms of the optimized (F-C-F3)2, (F-C-H3)2,
and (H-C-F3)2 complexes in the absence and the presence of the positively- and negatively-directed
external electric field (EEF), with values ranging from 0.004 to 0.020 au. Positive and negative signs
represent the directionality of the employed EEF.

3. Computational Methods

The inclination of carbon-containing molecules to engage in σ-hole interactions within
like· · · like complexes is elucidated in the absence and the presence of the positively- and
negatively-directed EEF (Figure 1). In the current study, (F-C-F3)2, (F-C-H3)2, and (H-C-
F3)2 were chosen as the carbon-containing complexes. The EEF strength was employed
with values ranging from 0.004 to 0.020 au, with an interval of 0.004 au. Geometrical
optimization was executed at the MP2/aug-cc-pVTZ level of theory [59–61]. Molecular
electrostatic potential (MEP) analysis was accomplished through generating MEP maps, and
then assessing the surface electrostatic potential extrema (Vs,max), using 0.002 au electron
density contour. The value of electron density contour was selected to provide a precise
characterization for the electrostatic potential on the molecular surfaces, as previously
reported [62,63]. The extraction of the Vs,max values was also carried out using Multiwfn
3.7 software [64].

Within the optimized like· · · like complexes, the interaction energies were evaluated
in the absence and the presence of the positively- and negatively-directed EEF, with values
of 0.004, 0.008, 0.012, 0.016, and 0.020 au. The interaction energies were estimated as the
difference in energy between the complex and the sum of the monomers. The benchmark-
ing of the interaction energies was executed at the CCSD(T)/CBS level of theory [65,66],
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according to the idea that correlation energy is roughly proportional to X−3 for basis sets of
the aug-cc-pVXZ type [67], using the following equations:

ECCSD(T)/CBS = ∆EMP2/CBS + ∆ECCSD(T) (1)

where:
∆EMP2/CBS = (64EMP2/aug−cc−pVQZ − 27EMP2/aug−cc−pVTZ)/37 (2)

∆ECCSD(T) = ECCSD(T)/aug−cc−pVDZ − EMP2/aug−cc−pVDZ (3)

By using the counterpoise (CP) correction procedure [68], the basis set superposition
error (BSSE) was eradicated from the calculated interaction energies. The origin of the con-
sidered interactions was illustrated by generating the bond critical points (BCPs) and bond
paths (PBs) with the utilization of the quantum theory of atoms in molecules (QTAIM) [61].
In the context of QTAIM, a variety of topological parameters, including electron density (ρb),
Laplacian (∇2ρb), and total energy density (Hb), were computed. NCI index analysis was
also invoked, and the corresponding NCI plots were portrayed. The NCI isosurfaces were
distinguished by the coloring scale of electron density (ρ) that distinguished the attractive
forces (i.e., −0.035 au (blue)) from the repulsive ones (i.e., 0.020 au (red)) [69]. The QTAIM
and NCI calculations were carried out via Multiwfn 3.7 software [64], and visualized using
the Visual Molecular Dynamics (VMD) package [70]. All quantum mechanical calculations
were performed using Gaussian 09 software [71].

Moreover, symmetry-adapted perturbation theory (SAPT) analysis was executed
to reveal the physical nature of the σ-hole interactions. Using SAPT, the fundamental
components, including the electrostatic (Eelst), induction (Eind), dispersion (Edisp), and
exchange (Eexch), were calculated for the studied complexes using the PSI4 code [72,73],
at the SAPT2+ level of truncation. The sum of these physical components is given as
follows [74]:

ESAPT2+
int = Eelst + Eexch + Eind + Edisp (4)

where:
Eelst = E(10)

elst + E(12)
elst (5)

Eind = E(20)
ind,resp + E(20)

exch−ind,resp + E(22)
ind + E(22)

exch−ind + δE(2)
HF,resp (6)

Edisp = E(20)
disp + E(20)

exch−disp + E(21)
disp + E(22)

disp (SDQ) + E(22)
dispT (7)

Eexch = E(10)
exch + E(11)

exch + E(12)
exch (8)

4. Conclusions

The predilection of carbon-containing molecules to engage in σ-hole interactions
within the (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes was inspected in the absence and
the presence of the external electric field (EEF). In the absence of EEF, the MP2 energetic
quantities addressed the occurrence of negative interaction energies for the (F-C-F3)2 and
(H-C-F3)2 complexes with a higher favorability for the former. Upon the implementation of
EEF along the positive and negative directions, the interaction energy escalates with the
same magnitude, indicating the neglected effect of the EEF directionality on the strength of
the like· · · like symmetrical complexes. In addition, the investigated like· · · like complexes
demonstrate a supreme penchant to engage in favorable interactions when the applied
EEF strength increases. The QTAIM results assert the closed-shell nature of the studied
interactions. The SAPT calculations reveal the domination of the dispersion forces within all
the studied complexes. These findings proclaim the prominent role of the EEF in enhancing
the strength of the noncovalent interactions within like· · · like complexes, providing a
fundamental linchpin for future studies related to crystal engineering and materials science.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27092963/s1, Figure S1. Molecular electrostatic potential
(MEP) maps plotted at an 0.002 au electron density contour for F-C-F3, F-C-H3, and H-C-F3 optimized
molecules in the presence of the positive EEF, ranged from +0.008 to +0.020; Figure S2. Molecular
electrostatic potential (MEP) maps plotted at an 0.002 au electron density contour for F-C-F3, F-C-H3,
and H-C-F3 optimized molecules in the presence of the negative EEF, ranged from −0.008 to −0.020;
Figure S3. NCI plots of the optimized (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes in the absence
and the presence of the positively- and negatively-directed external electric field (EEF), with values
ranging from 0.004 to 0.020 au; Table S1. Electron density (ρb, au), Laplacian (∇2ρb, au), and total
energy density (Hb, au) at bond critical points (BCPs) of the optimized (F-C-F3)2, (F-C-H3)2, and (H-
C-F3)2 complexes in the absence and the presence of the positively- and negatively-directed external
electric field (EEF), with values ranging from 0.004 to 0.020 au; Table S2. Electrostatic (Eelst), induction
(Eind), dispersion (Edisp), exchange (Eexch), and the estimated total SAPT energy (ETotal SAPT2+) of
the optimized (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes in the absence and the presence of the
positively- and negatively-directed external electric field (EEF), with values ranging from 0.004 to
0.020 au.
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