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Abstract

(1H-Benzo[d][1,2,3]triazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP), 1H-benzo[d][1,2,3]triazol-1-yl
4-methylbenzenesulfonate (Bt-OTs), and 3H-[1,2,3]triazolo[4,5-b]pyridine-3-yl 4-methylbenzenesulfonate (At-OTs) are classically
utilized in peptide synthesis for amide-bond formation. However, a previously undescribed reaction of these compounds with alco-
hols in the presence of a base, leads to 1-alkoxy-1H-benzo- (Bt-OR) and 7-azabenzotriazoles (At-OR). Although BOP undergoes
reactions with alcohols to furnish 1-alkoxy-1H-benzotriazoles, Bt-OTs proved to be superior. Both, primary and secondary alco-
hols undergo reaction under generally mild reaction conditions. Correspondingly, 1-alkoxy-1H-7-azabenzotriazoles were synthe-
sized from At-OTs. Mechanistically, there are three pathways by which these peptide-coupling agents can react with alcohols. From
3lp Iy}, ['80]-labeling, and other chemical experiments, phosphonium and tosylate derivatives of alcohols seem to be intermedi-
ates. These then react with BtO™ and AtO™ produced in situ. In order to demonstrate broader utility, this novel reaction has been
used to prepare a series of acyclic nucleoside-like compounds. Because BtO™ is a nucleofuge, several Bt-OCH,Ar substrates have
been evaluated in nucleophilic substitution reactions. Finally, the possible formation of Pd n—allyl complexes by departure of BtO™
has been queried. Thus, alpha-allylation of three cyclic ketones was evaluated with 1-(cinnamyloxy)-1H-benzo[d][1,2,3]triazole,

via in situ formation of pyrrolidine enamines and Pd catalysis.

Introduction
Benzotriazole derivatives are of importance in diverse contexts. [1], halogenated benzotriazoles have been shown to inhibit heli-
As examples, in medicinal chemistry substituted benzotriazoles case activity of hepatitis C [2], N-alkylbenzotriazoles were

have been evaluated as inhibitors of respiratory syncytial virus  shown to be active and selective towards HCV NTPase/heli-
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case [3]. Benzotriazoles also possess anti-amoebic properties,
particularly against the human pathogen Acanthamoeba that can
infect a variety of organs such as brain, eyes, skin, and lungs
[4]. Triazole and benzotriazole derivatives have been evaluated
as antitumor agents, with several showing high activities [5],
and a benzotriazole derivative was shown to inhibit prolifera-
tion of hepatocarcinoma [6]. Several N-alkylbenzotriazoles
show potent antimicrobial action [7] and others have been eval-
uated as aromatase inhibitors [8]. Benzotriazole derivatives
have also been reported to be inhibitors of MAP kinases [9].
Although esters of BtOH are generally intermediates in amide
synthesis, stable ones have recently been evaluated against the
new coronavirus responsible for SARS, and several compounds
were shown to be irreversible inhibitors of the viral proteinase
3CLP™ (also called MP™) [10]. Benzotriazoles with ether link-
ages on the phenyl ring have been reported to be promising
entities in the treatment of glutamate mGluR2 receptor dysfunc-
tion-related diseases, such as neurological and psychological
disorders [11].

Benzotriazole-derived compounds also have applications in ma-
terials chemistry. For example, 5-alkyl- and 5-alkanoylamino-
benzotriazoles have been developed to prevent corrosion at
metal surfaces, as metal deactivators, and to prevent degrad-
ation of lubricants and coatings [12,13]. Esters of benzotriazole
and alkylbenzotriazoles have been reported as components in
organic lubricating compositions and in turbine lubricants
[14,15]. Of relevance to this work a single ether of hydroxyben-
zotriazole has been evaluated in lubricant compositions [16].

New approaches to benzotriazole derivatives are therefore

expected to have a broad-ranging impact. Among the various
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N-substituted benzotriazolyl derivatives, as compared to
N-alkyl and N-acyl compounds, those with a C—O—N bond are
less common. Typically the latter are synthesized by the alkyl-
ation of BtOH with alkyl halides [17,18], quaternary alkyl am-
monium salts [19], or via a Mitsunobu reaction (Scheme 1)
[20].

Herein, we report a facile approach to 1-alkoxy-1H-benzo- (Bt-
OR) and 7-azabenzotriazoles (At-OR) by a previously
unstudied reaction of benzotriazole-based peptide-coupling
reagents with alcohols [21]. We also describe studies on the
underlying mechanism and a preliminary disclosure of the
potential synthetic applications of these products. Figure 1
shows examples of commercially available phosphonium (e.g.,
BOP, PyBOP, PyAOP, and PyClock) and iminium reagents
(e.g., HBTU, TBTU, HATU, HCTU, and TCTU — uronium
forms are shown) that are commonly used for amide-bond for-
mation.

Results and Discussion

Synthesis of 1-alkoxy-1H-benzo- and
7-azabenzotriazoles (Bt-OR and At-OR)

We have previously described the use of (benzotriazol-1-
yloxy)tris(dimethylamino)phosphonium hexafluorophosphate
(BOP) for the dehydration of aldoximes to cyanides [22]. In that
work, analysis of the reaction course by 3/P{{H} NMR did not
show the formation of a new phosphorus signal other than that
for HMPA, which is a reaction byproduct. However, prior
investigations by others [23,24] and by us [25-27] have demon-
strated the formation of phosphonium ions by the reaction of
BOP with the oxygen atoms in amide linkages of purines and
related heterocycles. In fact, related to these observations we

\
OH
X=HorCl
EtOH ag NaOH | (C4Hg)4N*CI- PPh; KOH Me+N H H
NaOEt CH,Cl, RX DEAD MeOH SN \ﬂ/
CHjsl ROH reflux o)
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N (I °N N (j: °N
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H

Scheme 1: Examples of methods for the synthesis of 1-alkoxy-1H-benzo[d][1,2,3]triazoles.
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HCTY: X=CH, Y =PFg,Z=Cl
TCTU: X=CH, Y =BF4,Z=Cl

Figure 1: Examples of commercially available reagents for amidation
reactions.

have demonstrated the isolation and synthetic utility of a
nucleoside phosphonium salt [28]. Thus, to us the reaction of
oximes with BOP was an intriguing result, leading us to query
whether a benzotriazolyl intermediate, rather than a phospho-
nium ion, was formed en route to the cyanide. This line of
reasoning would then suggest that 1-alkoxy-1H-benzotriazoles
may indeed be obtainable from the reactions of alcohols with
BOP, and that different reaction pathways may be operative
depending upon the nature of the nucleophile (Scheme 2).
However, the formation of 1-alkoxy-1H-benzotriazoles by such
an approach appeared implausible on the basis of prior observa-
tions, where no reaction of BOP with the free hydroxy groups
of nucleosides was observed [23,25].

Our recent work on a two-step one-pot etherification of purine
nucleosides, quinazoline, and pyrimidines, had led some
interesting preliminary observations [29]. Although BOP did
not react with MeOH in the absence of a base, in the presence
of CspCO3 rapid formation of HMPA was observed and
1-methoxy-1H-benzotriazole (1-methoxy-1H-benzo[d][1,2,3]-
triazole) was isolated [29]. This evidence clearly showed that
alcohols are capable of reaction with BOP in the presence of a
base. Thus, we first evaluated whether the reaction of BOP with
alcohols was general and we elected to use DBU as base for
cost considerations. Table 1 shows the results of this analysis.

Reaction of BOP with either 1.4 or 2.7 molar equiv of MeOH,
in the presence of 1.4 molar equiv of DBU, gave comparable
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Scheme 2: Three possible mechanisms for the reaction of BOP with
oxygen nucleophiles.

yields of Bt-OMe (1a, 48% and 50%, respectively). Use of
MeOH as reaction solvent itself resulted in a 47% yield of 1a.
These results seem to imply that maximal conversion of BOP to
the N-alkoxybenzotriazoles is around 50%, possibly due to a
competing reaction between BOP and DBU (see below). Never-
theless, 1° and 2° alcohols appear to react with BOP in the pres-
ence of a base, leading to the direct formation of N-alkoxyben-
zotriazoles.

Because reactions with BOP produce HMPA, a suspected nasal
carcinogen, and the modest yields of the N-alkoxybenzotria-
zoles obtained, we decided to investigate other reactive BtOH
derivatives for this reaction. A variety of phosphorus and
sulfonate derivatives of BtOH has been synthesized and studied
as peptide-coupling agents [30]. Amongst these we selected the
easily synthesized tosylates of BtOH (Bt-OTs) and its 7-aza
analogue AtOH (At-OTs). Furthermore, we have used Bt-OTs
for conversion of aldoximes to nitriles and this reagent was gen-
erally comparable to BOP in those reactions. This factor addi-
tionally favored the selection of these two tosylate derivatives.

As can be seen from Table 2, Bt-OTs is superior to BOP, and a
wide range of 1° and 2° alcohols underwent reaction with
Bt-OTs giving good to excellent yields of 1-alkoxy-1H-benzo-
triazoles. Some notable results are as follows. Despite the
leaving group ability of BtO™, elimination to styrene does not
appear to be a significant problem in the reactions with the
isomeric phenylethanols (Table 2, entries 5 and 6). Not unex-
pectedly, reaction with 1,3-butanediol occurred predominantly
at the 1° hydroxy group (Table 2, entry 12). The reaction with
propargyl alcohol proceeded uneventfully (Table 2, entry 14).
The reaction of 4-nitrobenzyl alcohol (Table 2, entry 15) was
complicated by the formation of 4-nitrobenzaldehyde. This can

potentially occur by benzylic deprotonation, due to the
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Table 1: Reactions of alcohols with BOP and DBU.2

Entry Alcohol Product Time (h at rt) Compound: yield?
N\
N 2 1a: 48%
1 CH3;OH N, 1a: 50%°
\ 24 1a: 47%¢
OCH3
N\
N
2 CH3CH,OH N 24 1b: 52%
\
OCH,CH3

N
\\N
3 CH>=CHCH,0H ©:N’ 48 1c: 52%
N\
OH N
4 g N 48 1d: 39%

N\
N
5 OH N 72 1e: 43%
o

N
\ OH N _

6 | N 48 1£: 30%
Z \ \ 7

aReactions were conducted with 1.1 mmol of BOP (ca. 0.2 M in THF), 1.2 molar equiv of alcohols, and DBU, at room temperature. PYields are of
isolated and purified products. CYield obtained with 2.7 molar equiv of MeOH. 9Yield obtained with MeOH as reaction solvent.

Table 2: Reactions of various alcohols with Bt-OTs.

Entry Alcohol Product Time, temp Compound: yield?
o
N
1 CH30H Z~N 3h,rt 1a: 66%
\
OCHj;
o
N
2 CH3CH,OH Z~N 3h,rt 1b: 85%
\
OCH,CHj;

N
\\N

3 CH,=CHCH,0OH ©:N’ 3h,rt 1c: 73%

N\
OH N

4 ©/\ N 1.5h, rt 1d: 91%
N\
N

5 OH N 24 h, rt 1e: 77%
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Table 2: Reactions of various alcohols with Bt-OTs. (continued)

OH

N\ 7/

4
% /
g
e}
I

o (/E/\OH
o)
~r""OoH

10 C/\
\_0

OH

11 OCHj

OCHs
OH
12 \(\/
OH

OH
13 /Y
14 \\\/OH

OH
15
O,N

OH

- O

aYields are of isolated and purified products.

N\
N _
N 8h, rt 1£: 90%

N\

N 3h, rt 1g: 83%
N

(=

o

N\
N
N J_< 25h,rt 1h: 74%

o]
N\
N ¢ 0
N \— 4h,rt 1i:72%
\
o]
N\
NN
N ﬁ) 24 h, rt 1j: 51%
\
o]
N\
N
N OCHs 25h, 1t 1k: 87%
\
0 OCHj3
N\
N o
N\ 4h,rt 11: 48%
0 OH

N\
oy
N 24,60 °C 1m: 53%
N\
LY
N /// 35h, 1t 1n: 79%

Y
N . RQO
_ N/ 6 h,rt 10: 68%
\
(0]

CH,
O\S/©/ 3h, 1t 1p: 84%

enhanced acidity of these protons in 1o or a reactive intermedi-  mation of the desired product 1o in good yield (see Supporting

ate. Such a problem was not encountered in the reactions of Information File 1 for details). Reaction of phenol with Bt-OTs

other benzylic alcohols. Use of K,CO3 in place of DBU did not  resulted in the formation of the phenyl tosylate (Table 2, entry

ameliorate this problem encountered with 4-nitrobenzyl alcohol.  16), indicating the potential use of this reagent as a tosylating

However, use of slightly modified conditions resulted in the for-  agent for phenols. The outcome in the phenol reaction may be
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linked to the potential reaction pathway, an aspect that is
described below. However, because phenoxide is a softer
nucleophile as compared to alkoxide, we had to consider
whether this was a factor in the reaction mechanism.

In reactions of alcohols with BOP or Bt-OTs, the product struc-
ture is independent of the mechanism since all possible mecha-
nisms result in the same product. However, for reactions with
unsymmetrical peptide-coupling agents, an understanding of the
mechanistic details would be required. Thus, the next stage in
these investigations focused on this aspect.

Mechanistic studies

Our investigations began with the reactions of BOP. We
reasoned that among the three pathways shown in Scheme 2,
31p{IH} NMR may allow for distinguishing pathway a from b
and c¢. Thus, we conducted experiments with 2-phenylethanol as
a representative 1° alcohol. BOP and 2-phenylethanol were
mixed in a 1:1 molar ratio at =78 °C in THF. The mixture was
then transferred to the NMR probe maintained at —30 °C, and a
spectrum was acquired. The only resonances observed were
those of BOP (6 = 42.7 and —145.5 ppm). DBU (1 molar equiv)
was added and the reaction was monitored every five minutes at
—30 °C. The only observable resonance that began to emerge
was that of HMPA (8 = 22.9 ppm). Reacquisition of data after
leaving the mixture at room temperature overnight only showed

an increase in the HMPA resonance (Figure 2).

We also conducted 3'P{'H} experiments where BOP was inde-
pendently exposed to DBU and Cs,CO3. In both cases, rapid
disappearance of BOP was observed with concomitant forma-
tion of HMPA. Although at the present time we do not know

24 hours after addition of DBU
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the exact nature of the interaction of these bases with BOP, it is
clear that a reaction occurs, and this may be responsible for the
lower yields in the reactions of alcohols with BOP. These data
additionally supported the use of Bt-OTs as an alternative.

Although no new phosphonium resonance from a new reactive
species was observed in the NMR experiments, this did not ne-
cessarily exclude pathway a. Thus, we decided to pursue a
second line of investigation via [!80]-labeling. For this experi-
ment, we prepared PhCH,['8O]H via a known procedure [31].
As shown in Scheme 3, we reasoned that exclusive reaction via
pathway a should produce an unlabeled product, reaction via
pathway b and/or ¢ should result in the ['80]-labeled product,
and competing pathways should result in a mixture of labeled

and unlabeled products.

With this mechanistic rationale two reactions of BOP were
conducted in parallel with PhCH,OH as well as PhCH,[130]1H
and DBU. The product yields from both reactions were nearly
identical (ca 39%). High-resolution mass spectrometric analysis
indicated that the ratio of the peak areas [M + 2]7/[M]" was
0.015 for products from both reactions. Pathway a alone can
account for this result and it appears that no leakage occurs via
pathways b and ¢. A comparable ['80]-labeling experiment was
conducted with Bt-OTs, where again no incorporation of the
label was observed in the product, and the ratio of the peak
areas [M + 2]"/[M]" was 0.014. These results showed that both
reagents, BOP and Bt-OTs, appear to react via similar path-
ways, not involving direct reactions at either the N1 or N3 atom
in the benzotriazole ring. In support of this inference, a reaction
of Bt-OTs with allyl alcohol was conducted at =78 °C.

Quenching this reaction after 30 min, followed by preparative

5 hours after addition of DBU

30 minutes after addition of DBU

eyt - " i
5 minutes after addition of DBU
My - o N sk | L'J"J "

T T LAARAE RS ] T T T IRERES]
20 0 -20 -40

T LA | T T T LN T L |

-60 -80

Figure 2: Evaluation of the reaction between 2-phenylethanol and BOP by 3'P{H} NMR.
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PhCH2180"\‘b

N, Pathway a N, PFg~  Pathwayb, ¢ N
@ N PhCH,-80-X-R ~———— @[ N @ N
N — [(Mez)N]sP'80 — N - [(Me2)N];PO N
OCHPh  Or Leaving " 0-x-R or 18OCH,Ph
—Ts'80- group PhCH, 180"~ A —TsO~
a

Scheme 3: Possible products in the [180]—Iabeling experiments.

TLC of a portion of the mixture, led to the isolation of the allyl
alcohol tosylate [32,33]. However, even at this low temperature,
formation of 1-(allyloxy)-1H-benzotriazole (1¢) was clearly
evident, indicating the ease of this transformation. In the light of
these results, the reaction of phenol with Bt-OTs is consistent
with the proposed pathway a, and it appears that both alkoxides
and phenoxides react in a similar manner. The mechanistic basis
in reactions of alcohols with BOP and Bt-OTs described above
appears to parallel that reported for the activation of carboxylic
acids by BOP. In the carboxylic acid activation studies, only
two mechanisms were proposed, namely reaction of the
carboxylate at the phosphorus center (equivalent to pathway a
in Scheme 3) or a SN2’ reaction at the N3 atom (equivalent to
pathway b in Scheme 3) [34]. Experiments with [180]-labeled
benzoate indicated that conversion of carboxylic acids to the
acyl HOBt derivatives occurs by a two-step process, via an
intermediate acyloxyphosphonium ion [34].

One final set of experiments was conducted to evaluate the
mechanism in the context of a desymmetrized benzotriazole.
For this we considered the reaction of At-OTs [30] with MeOH,
where we believed location of the OMe moiety could be ascer-
tained relative to the aromatic protons via NOE experiments
(Scheme 4).

/OMe
XN MeOH XN = MeOH XN
| LN N LN
N~ N NN N~ N
OMe OTs

1-methoxy-1H-7-
azabenzotriazole

1-methoxy-1H-4-

At-OTs azabenzotriazole

Scheme 4: Two possible products from the reaction of At-OTs with
MeOH.

Reaction of At-OTs with MeOH yielded a 1-methoxyazabenzo-
triazole (At-OMe), and the 'H NMR spectrum of the crude
reaction mixture indicated the presence of only one product.
Comparison of the "H NMR data of the purified material to

BOP: X = P*, R = (NMe3);
Bt-OTs: X = SOZ, R = C6H4-4-Me

those reported [35] for 1-methoxy-1H-4-azabenzotriazole
(1-methoxy-1H-[1,2,3]triazolo[4,5-b]pyridine) and 1-methoxy-
1H-7-azabenzotriazole (3-methoxy-3H-[1,2,3]triazolo[4,5-
blpyridine) did not allow for ready identification. A NOE
experiment did not result in observable interactions of the OMe
resonance with the aromatic system. Because neither experi-
ment allowed for unambiguous discrimination between the two
structures, 1-methoxy-1H-7-azabenzotriazole was prepared via
a known procedure [35]. The chemical shifts for the aromatic
protons in the authentic 1-methoxy-1H-7-azabenzotriazole
prepared, the product obtained from the reaction of At-OTs and
MeOH, as well as the literature data are shown in Table 3. From
the Ad values in this table, it becomes clear that the product
obtained in Scheme 4 is in fact 1-methoxy-1H-7-azabenzotria-
zole. Additionally, the melting point of this product was
94.5-95.5 °C, which is consistent with that reported for
1-methoxy-1H-7-azabenzotriazole (93-94 °C [35]) and the
authentic material synthesized herein (94-95 °C). By contrast,
the reported melting point of 1-methoxy-1H-4-azabenzotriazole
is significantly higher (140-144 °C) [35].

Having ascertained the overall mechanism by which alcohols
react with Bt-OTs as well as At-OTs, and that this mechanism is
not altered by the presence of the additional nitrogen atom in
At-OTs, the reactions of At-OTs with alcohols were then evalu-
ated (Table 4). Reactions with At-OTs appear to be more
temperature sensitive than those with Bt-OTs, and reaction
mixtures can turn to dark colors at elevated temperatures.

After demonstrating the one-step preparation of 1-alkoxy-1H-
benzo- and 7-azabenzotriazoles, our next focus was the poten-
tial applications of this chemistry. Since the heterocyclic moiety
resembles a nucleobase, we first considered synthesis of nucleo-
side-like entities (Scheme 5). In this context, N-alkylbenzotria-
zolyl derivatives and ribonucleoside analogues containing a
benzotriazole as a nucleobase surrogate have shown interesting
activities towards NTPase/helicase of Flaviviridae viruses [1,2].
Compounds 3a,b and Sa,b shown in Scheme 5 are both

N-substituted benzotriazoles and, upon appropriate folding of
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Table 3: Comparison of chemical shifts for the aromatic protons in the isomeric 1-methoxyazabenzotriazoles.?

Compound

Ar—H chemical shift (5 ppm)

1-Methoxy-1H-azabenzotriazole obtained by reaction of At-OTs

+ MeOH

aSpectra were obtained in CDCls. PReference [35].

Table 4: Reactions of various alcohols with At-OTs.

Entry Alcohol Product

e

1 CH3;OH N/ N\
OCHj

XN

| N

2 CH,=CHCH,OH N/ 4
\ —
o

OH (\ENN
) OCHs
7 OCH; NN

OCH, o) OCH,

8.73
8.37
7.41

8.67
8.31
7.36

8.75
8.40
7.43

8.80
8.04
7.52

Time, temp

24 h,rt

24 h,rt

24 h,rt

24 h,60°C

24 h,rt

24 h,rt

24 h,rt

A3 (ppm)

8.73 - 8.37 =0.36
8.37 - 7.41=0.96
8.73-7.41=132

8.67 -8.31=0.36
8.31-7.36=0.95
8.67 - 7.36 = 1.31

8.75-8.40=0.35
8.40-7.43=0.97
8.75-7.43=1.32

8.80 - 8.04 =0.36
8.04 - 7.52 =0.52
8.80-7.52=1.28

Compound: yield®

2a: 74%

2b: 69%

2c: 80%

2d: 64%

2e: 68%

2f: 67%

29g: 68%
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Table 4: Reactions of various alcohols with At-OTs. (continued)

6 Y\/OH

N
| °N
NN f(
o) OH

Beilstein J. Org. Chem. 2014, 10, 1919-1932.

24 h, 60 °C 2h: 59%
OH
N
OH N
9 /Y N N\ 24 h, 60 °C 2i: 34%
o
L
N
10 X_OH NN /// 2h, 1t 2j: 73%
o)
aYields are of isolated and purified products.
N@ HO(CH>)30H Z>""0H N@ K,0s04-2H,0 N \ \/
HO N‘N X DBU, THF E\EN\N DBU, THF N\N ¥/ NMO, THF/H,0 N\N X
' X=H:60°C,24h ~y” N  X=H:rt,24h I |
o - . o \ - . o O O
X=N:60°C,48h X=N:60°C, 24 h
OTs __
HO OH
3a: X = CH (79%) X = CH: Bt-OTs 4a: X = CH (56%) (+)-5a: X = CH (68%)
3b: X =N (75%) X = N: At-OTs 4b: X = N (86%) (£)-5b: X =N (58%)

Scheme 5: Synthesis of acyclic nucleoside-like compounds.

the aliphatic chain, they resemble acyclic nucleosides (3a,b)

and ribonucleosides (5a,b).

Reaction of Bt-OTs and At-OTs with 1,3-propanediol gave
products 3a and 3b, arising from reaction at one hydroxy group,
in good yields. In these reactions minor amounts of products
arising by reaction at both hydroxy groups were observed. Simi-
larly, reactions of 3-butenol gave products 4a and 4b in good to
high yields, which were converted to the acyclic ribonucleo-
side-like diols (+)-5a and (£)-5Sb, respectively.

We next assessed the leaving group ability of the benzotri-
azolyloxy group. Although carboxylic acid esters of benzotri-
azole react efficiently with nucleophiles, this is mechanistically
distinct from direct displacement. Thus, four of the 1-alkoxy-
1H-benzotriazoles (three 1° and one 2°) were utilized in substi-
tution reactions with cyanide, azide, phenoxide, and benzotri-
azole. These reactions were conducted in DMSO at 100 °C and
the results are shown in Figure 3. In the presence of Cs,COs3,
reactions with benzotriazole as nucleophile yielded the N1- and
N2-alkyl products in variable ratios, but in good overall yields
(>75%). Whereas the 1-alkoxy-1H-benzotriazoles used in these
reactions were benzylic, and therefore more reactive, we also
assessed the reactivity of 1-phenethoxy-1H-benzotriazole (1f).

Reaction of compound 1f with NaN3 in DMSO at 100 °C for
28 h led to the formation of (2-azidoethyl)benzene, as assessed
by "H NMR. However, this reaction was incomplete and about
12% of 1f remained unreacted. Nevertheless, these results indi-
cate the leaving group ability of BtO™ from benzylic sp> carbon
centers and are interesting in the context of the previously
unknown reactivity of this class of compounds. Whether the
At-OR derivatives are more reactive in such reactions will be

interesting to evaluate in the future.

On the basis of the leaving group ability of BtO™ in the substitu-
tion reactions shown above, our final question was about the re-
activity of an allylic benzotriazolyl derivative under palladium-
catalyzed conditions. The benzoyl ester of BtOH has been eval-
uated in a decarboxylative Pd-mediated Heck reaction, leading
to a modest product yield [36]. However, this appears to be the
only example of a BtOH derivative in Pd-mediated reactions. In
principle, formation of n—allyl complexes from allylic benzotri-
azolyloxy products described herein should be feasible. In this
context, N-allylbenzotriazole derivatives undergo reaction with
preformed enamines, in the presence of Pd(OAc), and PPh;j
[37]. Super-stoichiometric ZnBr, was necessary for these reac-
tions, in the absence of which no reaction was observed [37].

With these data in mind, we decided to evaluate a few reactions
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Figure 3: Products from the nucleophilic substitution reactions.

of cinnamyloxy benzotriazolyl derivative 1g. However, instead
of using preformed enamines, we chose to utilize a combina-
tion of metal- and organocatalysis, wherein the enamine is
formed in situ [38]. Exposure of 1.5 molar equiv each of cyclo-
hexanone, N-benzylpiperidone, and 4-tert-butylcyclohexanone
to compound 1g, Pd(PPh3)4 (5 mol %), and pyrrolidine
(30 mol %) in DMSO at room temperature, led to the corres-
ponding y,8-unsaturated cycloalkanones (Figure 4).

Good yields of products 18 and 19 were obtained (literature
yields are superior, ca. 90% [37,38]) and the yield of com-
pound 20 was excellent. Although the present conditions are not
optimized, these results appear to indicate that the yields may
be dependent upon the nature of the cycloalkanone and not
solely upon the reactivity of the allylic benzotriazolyl deriva-
tive. However, there are some notable factors. ZnBr; is essen-
tial to the formation of m—allyl complexes from N-allylbenzotri-
azole derivatives, by assisting in the departure of the benzotria-
zolyl anion [37]. In the current cases, no additive is necessary
for the departure of BtO™. Furthermore, the enamine was
formed in situ in this study, with catalytic pyrrolidine. These

CimCim

18 (59%) (66%)

Figure 4: y,5-Unsaturated cycloalkanones obtained from 1g.
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results appear to indicate that the easily synthesized allylic
benzotriazolyl derivatives described herein may be promising
reagents for the a-allylation of carbonyl compounds.

As a final note, while this work was in progress, synthesis of
pyridopyrazine-1,6-diones was reported, beginning from
6-hydroxypicolinic acids and amino ethanols [39]. Here, HATU
(Figure 1) not only functioned in the conventional role of
carboxylic acid activating agent for amide formation, but it was
serendipitously discovered that HATU also caused an unusual
activation of the alcohol moiety, leading to N-alkylation. In the
presence of iPr,NEt, reaction of HATU with benzyl-, n-butyl-,
and p-nitrobenzyl alcohol led to the formation of the corres-
ponding 1-alkoxy-1H-7-azabenzotriazoles [39]. The regiochem-
istry in these reactions was identical to that reported here. What
is notable about reagents such as HBTU and HATU is that they
are commonly encountered in the guanidinium (N form) rather
than the uronium (O form). Although the uronium form can be
synthesized and is a more reactive species, it undergoes rapid
isomerization to the guanidinium form in the presence of bases

[40]. Thus, it can be reasonably anticipated that formation of

oy AN Ph
20b|

(84%) ~4:1 syn/anti
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Bt-OR and At-OR from the reactions of alcohols with HBTU
and HATU would proceed via the intermediacy of a uronium
salt of the alcohol, leading to a regiochemical outcome with

unsymmetrical reagents as shown in Scheme 6.

+ !
—N

/
N
N

N N
| _ , \ + -~ | P +/,N
XN N— x> N
o o-
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N |
XN +
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Scheme 6: Formation of Bt-OR and At-OR from HBTU and HATU type
of compounds.

Because the guanidinum forms of HBTU and HATU have
lower reactivity than the uronium forms [40] slightly more
forcing conditions may be needed to obtain satisfactory reactiv-
ity. Consistent with this, compound 2¢ was obtained in 83%
yield from a reaction of benzyl alcohol, HATU, and iPr,NEt, in
refluxing CH,Cl, for 16-20 h [39]. By contrast, compound 2¢
was obtained in a comparable 80% yield in a 24 h reaction with
At-OTs and DBU at room temperature. In our hands however,
reaction of HATU with some other alcohols of interest have not
been successful so far.

Conclusion

In this study we have investigated a one-step alkylation
1-hydroxy-1H-benzotriazole (BtOH) and its 7-aza analogue
(AtOH), via a previously unknown reaction of alcohols with
benzotriazole-based peptide-coupling agents. Although reac-
tions of alcohols proceeded with (benzotriazol-1-yloxy)tris(di-
methylamino)phosphonium hexafluorophosphate (BOP) and
DBU, Bt-OTs was a more effective reagent. Correspondingly,
the 7-aza derivatives were synthesized from At-OTs. Method-
ologically, this one-step process allows for the direct conver-
sion of alcohols to N-alkoxy benzo- and azabenzotriazoles,
eliminating the necessity for alkyl halides or more cumbersome
methods. Mechanistic studies indicate that reactions of alcohols
with these peptide-coupling reagents, in the presence of a base,
appear to proceed by formation of alcohol phosphonium deriva-
tives (with BOP), or alcohol tosylates (with Bt-OTs), and not
through direct displacement of the leaving group by attack at
the N1 or by a SN2’-type of process by reaction at the N3 of the
triazolyl moiety. The mechanistic analyses were conducted by a
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combination of 31P{IH}, [180]-1abeling, and other chemical
experiments. The reaction of phenol with Bt-OTs yielded only
the phenyl tosylate, which is consistent with this mechanism.
This reaction also shows that Bt-OTs (and At-OTs) could serve
as tosylating agents for phenols as well. Further, the utilities of
this reaction, as well as some of the products have been
explored. In this vein, acyclic nucleoside-like compounds
containing benzo- and azabenzotriazole as a nucleobase surro-
gate have been synthesized. Because benzotriazole derivatives
have potentially important pharmacological applications, we
anticipate expansion of this chemistry in the future to a broader
range of nucleoside-like entities for biological assays. The
ability of BtO™ to function as a nucleofuge, led us to explore its
displacement. In this context, several 1-alkoxy-1H-benzotria-
zoles obtained from benzylic alcohols underwent substitution
reaction with a range of nucleophiles, and a simple alkyl deriva-
tive also underwent reaction although the reaction was slightly
incomplete. Finally, we have evaluated the departure of BtO™
from an allylic position leading to a putative Pd n—allyl com-
plex. In unoptimized preliminary results, Pd-catalyzed a-allyla-
tion of three cyclic ketones was accomplished with a cinnamyl-
oxy benzotriazolyl derivative, through in situ formed pyrroli-
dine enamines. Overall, the potential scope of this new chem-
istry appears promising, ranging from the development of novel
molecules with new applications, to synthetic methodology. We
anticipate reporting additional developments in this area in the

future.

Experimental

General experimental considerations

Thin-layer chromatography was performed on 200 pm
aluminum-foil-backed silica gel plates. Column chromato-
graphic purifications were performed on 200-300 mesh silica
gel. THF was distilled from LAH and then redistilled from Na
prior to use. Ethyl acetate (EtOAc) and hexanes were distilled
from CaSOy4, commercial CH,Cl, was redistilled. Other
commercially available compounds were used without further
purification. 'H NMR spectra were recorded at 500 MHz and
are referenced to the residual protonated solvent resonance.
I3C NMR spectra were recorded at 125 MHz and are refer-
enced to the solvent resonance. Chemical shifts () are reported
in parts per million (ppm) and coupling constants (J) are in
hertz (Hz). Standard abbreviations are used to designate reso-

nance multiplicities.

General procedure for the reactions of alcohols with
BOP

In a dry vial equipped with a stirring bar was placed BOP
(0.486 mg, 1.1 mmol) in anhydrous THF (5 mL). The alcohol
(1.36 mmol) was added, followed by the dropwise addition of
DBU (1.36 mmol). The reaction mixture was stirred at room
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temperature for the duration indicated in Table 1. The mixture
was diluted with EtOAc, washed with brine, and then with
water. The organic layer was separated, dried over anhydrous
Na,SQy, and evaporated under reduced pressure. Products were
purified by chromatography on a silica gel column using a
gradient of EtOAc in hexanes. The products from these reac-
tions were identical to those produced from the reactions of
Bt-OTs for which full characterization is provided.

General procedure for the reactions of alcohols with
Bt-OTs

In a dry vial equipped with a stirring bar was placed Bt-OTs in
anhydrous THF. The alcohol was added, followed by the drop-
wise addition of DBU. The reaction mixture was stirred either
at room temperature or at 60 °C for the duration indicated in
Table 2 and then worked up. The stoichiometry of reactants was
dependent upon the volatility of the alcohol. Generally, with
lower boiling alcohols, Bt-OTs was the limiting reagent,
whereas Bt-OTs was used in excess with higher boiling ones.
Also, if initial experiments gave poorer results with a lower
amount of an alcohol, then reactions were conducted with
higher excesses of the alcohol. Specific experimental and work-
up details are provided under the individual compound head-
ings.

Representative examples
1-(1-Phenylethoxy)-1H-benzo[d][1,2,3]triazole (1e)
The compound was synthesized from Bt-OTs (1.16 g,
4.0 mmol), 1-phenylethanol (580 pL, 4.8 mmol), and DBU
(720 pL, 4.8 mmol) in anhydrous THF (20 mL) over 24 h at
room temperature. The volatiles were evaporated and the crude
material was purified on a silica gel column using 6% EtOAc in
hexanes as eluting solvent. Compound le was obtained as a
white solid (0.282 g, 77% yield). R¢ 0.38 (Si0,/30% EtOAc in
hexanes); '"H NMR (500 MHz, CDCl3) § 7.91 (d, J = 8.3 Hz,
1H, Ar-H), 7.36 (m, 2H, Ar-H), 7.29-7.27 (m, 5H, Ar-H), 7.13
(d, J=8.3 Hz, 1H, Ar-H), 5.76 (q, J = 6.6 Hz, 1H, OCH), 1.86
(d, J = 6.3 Hz, 3H, CH3); 13C NMR (125 MHz, CDCl3) §
143.1, 138.1, 129.4, 128.7, 128.2, 127.6, 127.4, 124.2, 119.8,
108.9, 88.9, 19.9; HRMS—ESI TOF (m/z): [M + H]" caled for
C14H4N30, 240.1131; found, 240.1121.

3-(Prop-2-yn-1yloxy)-3H-[1,2,3]triazolo[4,5,b]pyri-
dine (2j)

The compound was synthesized from At-OTs (0.159 g,
0.55 mmol), propargyl alcohol (60 pL, 0.5 mmol), and DBU
(89 puL, 0.6 mmol) in anhydrous THF (2.5 mL) over 2 h at room
temperature. The reaction mixture was partitioned between
EtOAc and water. The organic layer was separated, dried over
anhydrous Na,;SOy, and evaporated under reduced pressure.

The crude product was chromatographed on a silica gel column
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by sequential elution with 50% and 60% EtOAc in hexanes.
Compound 2j was obtained as colorless solid (63.5 mg, 73%
yield). Ry 0.24 (Si0,/30% EtOAc in hexanes); 'H NMR
(500 MHz, CDCl3) 6 8.72 (dd, J = 1.5, 4.4 Hz, 1H, Ar-H), 7.37
(dd, J=1.4, 8.4 Hz, 1H, Ar-H), 7.41 (dd, /= 4.4, 8.4 Hz, 1H,
Ar-H), 5.27 (d, J= 2.6 Hz, 2H, OCHy), 2.60 (t, /= 2.4 Hz, 1H,
=C-H); 13C NMR (125 MHz, CDCls) 5 151.6, 140.2, 135.1,
129.5, 121.0, 79.9, 75.4, 67.9; HRMS—-ESI TOF (m/z): [M +
H]* caled for CgH7N40, 175.0614; found, 175.0621.

1-Benzyl-3-cinnamylpiperidin-4-one (19)

To a solution of cinnamyloxybenzotriazole (1g, 125.6 mg,
0.50 mmol) in DMSO (2 mL), Pd(PPh3)4 (28.8 mg, 25 umol,
5 mol %) was added, and the mixture was stirred at room
temperature for 5 min. Then N-benzylpiperidone (278 pL,
1.50 mmol) and pyrrolidine (12 pL, 0.15 mmol, 30 mol %)
were added. The reaction vial was flushed with nitrogen gas and
the mixture was stirred at room temperature for 2 h. The mix-
ture was then diluted with EtOAc and was washed with water
followed by brine. The organic layer was dried over anhydrous
Na;SOy4 and evaporated. The crude material was chro-
matographed on a silica gel column using 18% EtOAc in
hexanes as eluting solvent. Compound 19 was obtained as a
pale yellow solid (100.9 mg, 66% yield). R¢ 0.26 (Si0,/30%
EtOAc in hexanes); 'H NMR (500 MHz, CDCl3) & 7.34-7.27
(m, 9H, Ar-H), 7.22-7.18 (m, 1H, Ar-H), 6.37 (d, /= 15.8 Hz,
1H, =CH), 6.14 (dt, J= 7.5, 15.4 Hz, 1H, =CH), 3.70 and 3.53
(two d, Jo g = 12.7 Hz, 2H, CH3), 3.09 and 3.00 (two AB m,
2H, CHy), 2.69-2.22 (m, 7H, CH,, CH,, CH,, CH); 13C NMR
(125 MHz, CDCl3) 6 210.4, 138.4, 137.5, 132.1, 129.1, 128.7,
127.7, 127.3, 126.3, 62.0, 58.6, 53.5, 49.9, 41.1, 31.2;
HRMS-ESI TOF (m/z): [M + H]* caled for Cp1Hp4NO,
306.1852; found, 306.1833.
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