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Abstract 

Background: Major depressive disorder (MDD) is a prevalent psychiatric disorder characterized 
by substantial clinical and neurobiological heterogeneity. Conventional studies that solely focus 
on clinical symptoms or neuroimaging metrics often fail to capture the intricate relationship 
between these modalities, limiting their ability to disentangle the complexity in MDD. Moreover, 
patient neuroimaging data typically contains normal sources of variance shared with healthy 
controls, which can obscure disorder-specific variance and complicate the delineation of 
disease heterogeneity. 

Methods: We employed contrastive principal component analysis to extract disorder-specific 
variations in fMRI-based resting-state functional connectivity (RSFC) by contrasting MDD 
patients (N=233) with age-matched healthy controls (N=285). We then applied sparse canonical 
correlation analysis to identify latent dimensions in the disorder variations by linking the 
extracted contrastive connectivity features to clinical symptoms in MDD patients. 

Results: Two significant and generalizable dimensions linking distinct brain circuits and clinical 
profiles were discovered. The first dimension, associated with an apparent “internalizing-
externalizing” symptom dimension, was characterized by self-connections within the visual 
network and also associated with choice reaction times of cognitive tasks. The second 
dimension, associated with personality facets such as extraversion and conscientiousness 
typically inversely associated with depression symptoms, is primarily driven by self-connections 
within the dorsal attention network. This “depression-protective personality” dimension is also 
associated with multiple cognitive task performances related to psychomotor slowing and 
cognitive control. 

Conclusions: Our contrastive RSFC-based dimensional approach offers a new avenue to 
dissect clinical heterogeneity underlying MDD. By identifying two stable, neurophysiology-
informed symptom dimensions in MDD patients, our findings may enhance disease mechanism 
insights and facilitate precision phenotyping, thus advancing the development of targeted 
therapeutics for precision mental health. 
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Introduction 

Major depressive disorder (MDD) is a highly prevalent mental disorder with a lifetime prevalence 
of over 20% in women and 11% in men, impacting a substantial number of individuals globally. 
MDD is diagnosed based on the Diagnostic and Statistical Manual of Mental Disorders 5th 
edition1. Unfortunately, such symptom-based diagnoses include patients with a bewildering 
mixture of symptoms and have resulted in substantial clinical and neurobiological heterogeneity, 
obscuring the underlying mechanisms of the cognitive and behavioral dysfunctions in MDD 
patients. This oversight may contribute to suboptimal treatment efficacy2,3 and hinder the 
development of more effective therapeutics, necessitating the dissection of MDD heterogeneity. 

Prior studies have attempted to examine the clinical heterogeneity within MDD utilizing 
symptom-based dimensional approaches or subtyping analyses4-6. For instance, efforts have 
been made to identify symptom dimensions shared among patients and their associations with 
personality7, treatment outcomes8, or comorbid mental health conditions9. While current clinical 
measures are useful for inexpensively characterizing a patient symptom profile, they fall short in 
capturing underlying neurophysiological variations, limiting the discovery of neurobiological 
basis underlying the clinical heterogeneity. A recent systematic review6 reported that there is 
wide diversity of identified symptom dimensions and subtypes among previous studies, 
indicating the failure of addressing disease heterogeneity and the necessity of a more reliable 
and objective delineation of MDD pathological dimensions. 

Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), have 
demonstrated promise in probing neurobiology of various psychiatric disorders. However, many 
previous neuroimaging studies have followed a case-control design that focuses on the group 
difference in aberrant brain circuits between MDD patients and healthy individuals, either during 
the resting state10-12 or in response to specific tasks13. Such an approach can only extract 
population-level information and has a limited ability to characterize the heterogeneity in MDD14. 
Recent research efforts have shifted to neuroimaging-based dimensional analyses to examine 
variations in brain structure and function beyond the conventional group-level comparison15,16. In 
particular, leveraging functional connectivity that measures neural coupling between brain 
regions, recent studies have revealed novel subtypes among mood and anxiety disorders17,18, 
which are not identifiable via a conventional case-control approach or clinically-defined MDD 
categories. To further enhance the clinical relevance of subtype or dimension discovery, 
increasing research efforts have delved deeper into not only dimensional patterns of brain 
circuits but also their behavioral or cognitive profiles17,19-21. Typically employing machine learning 
techniques such as canonical correlation analysis (CCA) or partial least squares, these studies 
have identified latent dimensions by jointly examining functional connectivity and 
symptom/behavioral measures in a data-driven manner19-21. These approaches revealed 
patterns of association between neurophysiological characteristics and specific symptom 
combinations, offering insights into the underlying mechanisms behind these disorders. 

Neuroimaging data from patients contains both disorder-specific variation and disorder-
irrelevant variation shared with healthy controls22. Given the high variability observed across 
individual-level brain metrics, one challenge in characterizing heterogeneity among clinical 
populations lies in the fact that it is usually muddied by overall normative variability. This has 
substantially decreased the signal-to-noise ratio and leads to suboptimal identification of 
meaningful patterns. In addressing this challenge, contrastive learning emerges as a powerful 
tool for training models to selectively retain group-specific features while filtering out 
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confounding information inherent in the broader population. This process enables a focused 
analysis by isolating and emphasizing the distinctive characteristics pertinent to the target 
group. Encouragingly, some recent works have integrated the contrastive learning technique 
into the exploration of brain biomarkers in psychiatric disorders such as autism22,23, 
demonstrating its unique advantages in uncovering the intricate nuances of brain morphology22 
and functional connectivity23 associated with psychiatric conditions. Contrastive learning holds 
great potential in capturing the inadequately explored pathology-relevant variations for defining 
symptom dimensions more precisely within MDD patients. Hence, we aim to shed light on the 
underlying heterogeneity specific to MDD through the identification of linked dimensions 
between clinical symptoms and MDD-specific neurophysiology components obtained by 
contrastive learning. 

In this study, we applied a contrastive learning-based brain-symptom analytical framework23 to 
identify latent dimensions that link resting-state functional connectivity (RSFC) and clinical 
symptoms in MDD patients. This framework comprises two main steps. First, we conducted the 
contrastive principal component analysis (cPCA) on the fMRI-based RSFC data of MDD 
patients (N=233), with age-matched healthy controls (N=285) as background data, i.e. 
normative sources of variance to be removed from consideration in subtyping analyses. This 
process allowed us to extract contrastive RSFC features that disentangled disorder-specific 
variations from those shared with the healthy population. We then applied sparse CCA between 
these contrastive RSFC features and representative symptoms to reveal informative latent 
dimensions that link MDD-specific brain functional variations and clinical symptoms. Our study 
successfully identified two robust latent dimensions showing distinct neural circuit patterns and 
clinical profiles, primarily involving internalizing-externalizing symptoms and depression-
protective personality. Rigorous stability analysis and cross-validation further confirmed their 
robustness and generalizability. We also examined associations of the identified dimensions 
with performance on various cognitive tasks, offering valuable insights into MDD-related 
cognitive dysfunction. Collectively, our contrastive RSFC-based dimensional approach provides 
a new avenue to examine neurophysiology-informed symptom dimensions for an improved 
understanding of mechanisms underlying MDD symptom heterogeneity. This may lead to a 
more objective classification of psychiatric conditions, thereby advancing targeted therapeutics 
for precision mental health. 

 

Materials and Methods 

Participants 

Patient Population: The patient population used in our study include MDD patients from the 
Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for 
Depression (EMBARC) dataset24. EMBARC is a large, randomized placebo-controlled clinical 
trial for examining biomarkers for MDD and antidepressant treatment response. Written 
informed consent was obtained from each participant under the Institutional Review Board (IRB) 
approved protocols at each of the four study sites, including University of Texas Southwestern 
Medical Center, Columbia University/Stony Brook, Massachusetts General Hospital, University 
of Michigan, University of Pittsburgh, and McLean Hospital. Subjects were required to meet the 
SCID criterion for an MDD episode and have a Quick Inventory of Depressive Symptomatology 
score25 of ≥14 at both screening and randomization visits. This dataset includes 296 MDD 
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patients who were randomly prescribed sertraline or placebo for eight weeks, with the primary 
outcome of treatment response measured by the 17-item Hamilton Depression Rating Scale 
(HAMD17)26. For our brain-symptom linked dimension analysis, we included 25 baseline clinical 
scales and subscales: symptoms of depression (the 17-item HAMD; Quick Inventory of 
Depressive Symptomatology); Childhood Trauma Questionnaire subscales (emotional abuse, 
emotional neglect, physical abuse, physical neglect, sexual abuse)27; suicide-related symptoms 
(Concise Associated Symptoms Tracking28; Concise Health Risk Tracking-Self Report: 
propensity and risk scores29); Mood and Anxiety Symptoms Questionnaire subscales (anxious 
arousal, anhedonic depression, general distress)30; Mood Disorder Questionnaire31; 
personalities (NEO-Five Factor Inventory subscales, including neuroticism, extraversion, 
openness, agreeableness, and conscientiousness32; Standardised Assessment of Personality – 
Abbreviated Scale); Self-Administered Comorbidity Questionnaire33; Snaith-Hamilton Pleasure 
Score34; and Social Adjustment Scale overall mean score. Due to incomplete clinical measures, 
63 subjects were excluded. The remaining 233 subjects (aged 18-65) were used for our 
analyses. Demographics of these subjects are listed in Supplementary Table S1. 

Healthy Population: We compiled and harmonized 285 healthy controls (aged 18-77.5) as a 
background group for cPCA. Demographic information of these subjects is summarized in 
Supplementary Table S2. These subjects were selected by matching the age of the healthy 
population with the patient population (Kolmogorov–Smirnov test p = 0.052, Figure S1). Among 
them, 27 are from the EMBARC dataset and others are from the following three datasets. 
Specifically, we used 83 healthy controls from the University of California Los Angeles  
Consortium for Neuropsychiatric Phenomics (UCLA-CNP)35, which was approved by the IRB at 
University of California, Los Angeles and the Los Angeles County Department of Mental Health. 
72 subjects were selected from the Amsterdam Open MRI Collection - Population Imaging of 
Psychology (AOMIC-PIOP1)36 dataset, which was approved by the faculty’s ethical committee at 
the University of Amsterdam. The remaining 103 subjects were from the Leipzig Study for Mind-
Body-Emotion Interactions (LEMON)37 dataset, which was approved by the ethics committee at 
the medical faculty of the University of Leipzig. 

 

MRI Acquisition and Preprocessing 

EMBARC. MRI data were acquired using 3T MRI systems at four different sites. At each site, 
resting-state fMRI data were scanned via T2* weighted images using a single-shot gradient 
echo-planar pulse sequence lasting for six minutes, with parameter settings: repetition time 
2000 ms, echo time 28 ms, flip angle 90°, matrix size 64 × 64, voxel size 3.2 × 3.2 × 3.1 mm3, 
and 39 axial slices. Each subject underwent one or two runs of fMRI scans within a single day. 

UCLA-CNP. MRI data were acquired on two 3T Siemens Trio scanners at UCLA. Resting-state 
MRI data were scanned using a T2*-weighted echoplanar imaging sequence lasting for 304 
seconds, with the following parameters: repetition time 2000 ms, echo time 30 ms, flip angle 
90°, matrix size 64 × 64, voxel size 3 × 3 × 4 mm3, and 34 slices. 

AOMIC-PIOP1. MRI data were acquired on a Philips 3T scanner. During the resting state scans, 
participants were instructed to keep their gaze fixated on a fixation cross in the middle of the 
screen with a gray background and to let their thoughts run freely. Resting-state fMRI scanning 
lasted six minutes (i.e., 480 volumes with a repetition time 750 ms). 
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LEMON. MRI data were scanned using a 3T Siemens Verio scanner. Resting-state fMRI data 
were scanned using a T2∗-weighted gradient echo planar imaging sequence lasting for 15 
minutes and 30 seconds. The sequence parameters were specified as follows: repetition time 
1400 ms, echo time 30 ms, flip angle 69°, matrix size 88 × 88, voxel size 2.3 × 2.3 × 2.3 mm3, 
and 64 slices. 

All the resting-state fMRI data were preprocessed using the fMRIPrep pipeline38 and aggregated 
into 100 regions-of-interest (ROIs) level time series according to the Schaefer parcellation39. 
RSFC features were then calculated as Pearson’s correlation coefficient in fMRI time series 
between every pair of ROIs. For MDD patients with multiple fMRI runs, we took the average of 
the RSFC across runs to generate the RSFC feature data used for the subsequent analysis. 
Given that the fMRI data from healthy controls were derived from different studies, we applied 
the well-established ComBat harmonization technique40 to their RSFC data to mitigate site 
effects. During the removal of site effects, age and gender were designated as biological 
covariates to be preserved, with EMBARC as the reference batch. 

 

Disentangling MDD-specific RSFC Variations via Contrastive PCA 

In our study, we employed cPCA41 on the RSFC data of MDD patients as the target data and the 
RSFC data of healthy controls as the background data, aiming to pinpoint the disorder-specific 
foreground components by contrasting the healthy population. cPCA operates under the 
assumption that the target data comprises both domain-specific (foreground) information and 
domain-unrelated (background) variance. Utilizing the covariance matrix 𝐶! derived from the 
target data (MDD patients in our case) and the covariance matrix 𝐶"# derived from the 
background data (healthy controls), cPCA identifies the linear components most closely 
associated with the foreground data by subtracting the background covariance matrix from the 
target covariance matrix to obtain the foreground covariance matrix: 𝐶$# = 𝐶! − 𝛼𝐶"#, where 𝛼 
represents a hyperparameter quantifying the degree of contrast. This hyperparameter was 
determined based on the cross-validation results through grid search. The top 200 contrastive 
principal components, which explain more than 70% of the data variance, were used in 
subsequent analyses. This selection was made because the dimensionality of informative 
components is constrained by the sample size of patients. 

 

Identifying Neurophysiology-informed Symptom Dimensions using sCCA 

We first applied PCA to the clinical variables and retained 80% of the total variance to reduce 
dimensionality. We then applied sparse canonical correlation analysis (sCCA)42 to identify latent 
dimensions linking contrastive connectivity features with clinical symptoms. sCCA optimizes the 
correlation between two data matrices, thus yielding symptom dimensions maximally associated 
with neuroimaging features. Specifically, we utilized sCCA to analyze the disorder-specific 
components extracted from cPCA and corresponding clinical measures, aiming to identify 
neurophysiology-informed symptom dimensions. Sparsity constraint is imposed on both 
connectivity features and clinical measures to improve interpretability and alleviate overfitting. 
The overall minimization objective is formulated as −𝐶𝑜𝑣(𝐴𝑢, 𝐵𝑣) + 𝜆%|𝑢|% + 𝜆&|𝑣|%, where 𝐴 and 
𝐵 are data matrices of connectivity features and clinical measures respectively, 𝑢, 𝑣 are the FC 
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and symptom dimension loadings, and 𝜆%, 𝜆& are sparsity hyperparameters on the loadings. We 
performed grid search to find the hyperparameters with best performance.  

 

Cross-Validation and Statistical Significance Verification 

We performed 10 repetitions of 10-fold cross-validation to evaluate the generalizability and 
stability of identified latent dimensions. In each fold, 90% of the patients and all healthy subjects 
were compiled as the training set of cPCA. As the order of identified CCA dimensions might vary 
across folds due to training data variance, we employed the dimensions identified from the 
whole dataset as reference dimensions to align the dimensions acquired from different folds. 
Pearson’s correlation coefficient was then computed to assess the generalizability of the 
identified dimensions on the validation set. Intra-class correlation coefficient was employed to 
confirm the stability of dimension loadings across cross-validation folds.  

Furthermore, to evaluate the significance of the identified dimensions, we conducted 
permutation tests 1000 times. Specifically, we randomly permuted the clinical symptoms for 
each patient to others and followed the same procedures to generate the Pearson correlation R 
values on cross validation test set as described above. Test R values from dimensions with the 
same ranking across different folds were aggregated to generate the null distribution. 

 

Network-level Connectivity Importance 

Network-level connectivity provides a broader view of which neural systems and their 
interactions contribute most to the identified latent dimensions. To measure this, we first 
retained only the top 10% loadings with the highest absolute values, setting the rest to zero to 
exclude the less important and stable connections. Then, we averaged all absolute loadings 
within and between each pair of networks to obtain the network-level connectivity importance. 

 

Post-hoc Examination of Associations between Dimensions and Cognitive Task 
Performance 

We investigated the correlation between the FC scores of identified dimensions and the 
cognitive task performance of MDD patients. This analysis may provide insights into how 
different cognitive abilities, such as psychomotor slowing43, cognitive control44, working 
memory45, reward learning46, and resolution and adjustment behavior in response to emotional 
conflict47, relate to these brain-symptom latent dimensions. These cognitive and emotional 
measurements are selected because they are potential predictors for MDD treatment 
response24, thus having the probability to be correlated with the identified MDD-specific 
dimensions. The specific task item we included can be found in Table S3. 
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Results 

Contrastive RSFC Defines Two Generalizable Brain-Symptom Linked Dimensions in MDD 

We applied the contrastive learning-based brain-symptom association identification framework 
to the 233 MDD patients. Two dimensions with generalizable association between 
neurophysiology and symptom profile have been identified through 10 rounds of 10-fold cross-
validation and permutation test. The composition and essence of the first identified dimension 
was interpreted, based upon loadings, to indicate an axis of internalizing-externalizing 
symptoms (Rtrain = 0.551, Rcv = 0.287, ppermutation < 0.001, Figures 2, S4). A higher internalizing-
externalizing symptoms dimension score indicates a greater tendency towards internalizing 
behavior such as lack of pleasure or energy, and a lower tendency towards externalizing 
behavior such mania and anger attack. The second identified dimension incorporates the 
concept of depression-protective personality (Rtrain = 0.437, Rcv = 0.207, ppermutation = 0.001, 
Figure 2, S4). Individuals with higher scores on this personality dimension score exhibited 
higher scores on personality facets typically negatively associated with depression symptoms, 
such as extraversion and conscientiousness, while a low dimension score indicates higher 
scores on personality facets typically associated with greater depression symptoms, such as 
neuroticism48. Both dimensions significantly outperformed the performance yielded from its non-
contrastive counterpart integrating standard PCA and sCCA (paired t-test: internalizing-
externalizing symptoms dimension: p=5.2×10-4; depression-protective personality dimension: p 
= 0.008), demonstrating the unique advantage of contrastive learning for improving the 
identification of brain-symptom associations. Afterward, we calculated the intra-class correlation 
coefficient (ICC) of dimension composition in each cross-validation fold to assess the stability of 
the dimensions. These two dimensions both showed high stability. For internalizing-externalizing 
symptoms, the ICC value is 0.87 (95% CI: [0.87, 0.88]) for FC loadings, 0.92 (95% CI: [0.88, 
0.96]) for symptom loadings. For depression-protective personality, the ICC value is 0.94 (95% 
CI: [0.94, 0.94]) for FC loadings, 0.94 (95% CI: [0.90, 0.97]) for symptom loadings (Figure S4). 

 

RSFC Signatures Associated with MDD Symptoms  

Next, we investigated the most important ROI-level and network-level connectivity within each 
dimension. (Figure 3). In the internalizing-externalizing symptoms dimension, the correlation 
between the left and right cuneus and other regions, particularly the left fusiform gyrus, the left 
inferior temporal gyrus, and the right fusiform gyrus, contributes the most. In terms of anti-
correlation, the connection between the left and right posterior cingulate cortex and other 
regions, mainly the left superior occipital gyrus and the right middle occipital gyrus, contributes 
the most. On the network level, the dimension is characterized by the self-connection of visual 
network, the connection between limbic network and sensorimotor network, and the connection 
between limbic network and dorsal attention network. In depression-protective personality 
dimension, the correlation between the right middle cingulate cortex and the left superior 
parietal cortex contributes the most. In terms of anti-correlation, the key connections are 
between the left fusiform gyrus, the left inferior temporal gyrus, and the left superior parietal 
cortex, as well as with the left inferior frontal gyrus and the left middle frontal gyrus. On network 
level, this dimension is highly related to self-connections within the dorsal attention network. 
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Dimensions Are Associated with Cognitive Task Performance 

Internalizing-externalizing symptoms score showed a significant correlation with reaction time of 
choice reaction time task (r=0.20, pfdr =0.0084) and reaction time difference in a flanker task 
(r=0.18, pfdr =0.024). This indicates that a higher score on this dimension is associated with 
longer reaction time, suggesting lower performance. Reaction time difference in the flanker task 
measures selective attention and inhibitory function; longer reaction times indicate a greater 
interference effect from incongruent stimuli. Depression-protective personality dimension score 
had significant correlations with multiple cognitive tasks, including the accuracy of A-not-B task 
(r=-0.24, pfdr=0.0016), reaction time of choice reaction time task (r=0.31, pfdr =2.8×10-5), and 
both the accuracy difference (r=-0.15, pfdr =0.046) and reaction time difference (r=0.20, pfdr 
=0.0084) in the flanker task. This suggests that this dimension has a wider range of correlations 
with different cognitive tasks measuring working memory, interference adjustments, and 
cognitive control. No significant correlations were observed between these two dimensions and 
the word fluency task, emotion conflict task, or probabilistic reward task (Figure 4). 

We also examined the capabilities of these dimensions in predicting antidepressant treatment 
response using chi-square test. However, no significant performance was observed for either 
dimension in differentiating remission versus non-remission based on whether the FC 
dimension scores were above or below the median (internalizing-externalizing symptoms 
dimension: p=0.27 for sertraline arm, p=1.00 for placebo arm; depression-protective personality 
dimension: p=0.40 for sertraline arm, p=0.49 for placebo arm) (Supplementary Table S4). 

 

Discussion 

In this study, we implemented a data-driven framework that integrated contrastive machine 
learning with multivariate correlation analysis to uncover MDD-specific brain functional 
variations and their associations with clinical symptoms. We identified two robust and 
generalizable latent dimensions linking neurophysiological and clinical profiles, offering novel 
and objective biomarkers for dissecting heterogeneity in MDD. 

While neuroimaging data conveys important information about circuit dysfunction in MDD 
patients, it also contains undesired variance shared with healthy individuals. Conventional 
dimensional methods obtain and identify behavior or symptom-related biomarkers from clinical 
populations, which may result in suboptimal findings without removing the variance shared by 
healthy populations. Alternatively, contrastive learning-based frameworks can better extract 
disorder-specific neurophysiology components through data distillation. In our results, the 
dimensions derived from contrastive learning show a reduced correlation with age compared to 
those without contrastive learning (Figures S2, S3). This suggests that contrastive learning 
successfully removed some disorder-unrelated components, such as age. Other than the 
undesired variance, MDD itself also exhibits substantial neurobiological and clinical 
heterogeneity. Previous studies based on case-control analysis or dimensional approaches 
considering only clinical symptoms or neuroimaging may therefore inadequately address the 
heterogeneity6,49. Our framework links both modalities, addresses the underlying heterogeneity, 
and provides interpretability. 
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For the two neurophysiology-informed symptom dimensions we have identified, internalizing-
externalizing symptoms dimension is associated with key brain regions such as the cuneus and 
fusiform gyrus, consistent with findings from studies on neurodevelopmental trajectories of 
internalizing-externalizing symptoms50. Our results suggest that these associations likely persist 
into adulthood. Our network-level analysis on this dimension aligns with the literature, which 
identifies the visual network and dorsal attention network as strong predictors of internalizing-
externalizing traits51. Our analysis of the behavioral task is also consistent with findings in the 
literature that associate cuneus activation with facilitating vigilance52. 

The depression-protective personality dimension is marked by personalities such as 
extraversion, conscientiousness and neuroticism. Studies have identified a strong association 
between key brain regions, such as the fusiform gyrus, and personality disorders53,54, which is 
consistent with our findings. A recent study also identified the significant correlations between 
dorsal attention network and personalities including neuroticism and agreeableness55, and 
borderline personality disorder56. Additionally, dorsal attention network has also shown great 
importance in multiple cognitive control tasks57,58. All these results align with our findings to the 
depression-protective personality dimension.  

Despite our contributions, this study has several limitations. First, while cPCA is effective for 
extracting disorder-specific components, it requires fine-tuning of hyperparameters to control the 
degree of contrast with the background data (i.e., healthy population). Future research could 
focus on developing automatic frameworks for extracting contrastive connectivity features. 
Additionally, our study harmonized data from different sources to enlarge the sample size, 
enhancing the robustness of the identified latent dimensions, followed by verifying their 
generalizability through rigorous cross-validation. However, future work should further involve 
independent datasets with comparable clinical measurements to replicate our findings. Lastly, 
given the recognized importance of subcortical regions and cerebellum in depression59,60, 
extending the analysis to these regions may provide a more comprehensive understanding of 
brain dysfunctions associated with MDD psychopathology. 

In summary, this study employed a combination of contrastive learning and sparse canonical 
component analysis on a depression patient dataset, unveiling two generalizable disorder-
specific dimensions linking neurophysiology and symptom profiles. Our findings hold potential 
for advancing the understanding of disease mechanisms, facilitating precise diagnosis, 
formulating individualized treatment plans, and fostering the development of innovative 
treatment methods. 
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Figure 1 Illustration of the proposed framework. MDD patient RSFC data is considered to include both disorder-
specific information (foreground) and shared noise with healthy control data (background). Contrastive learning is 
used for removing the background noise from patient data to generate MDD-specific components. Specifically, the 
covariance matrix of patient RSFC (𝐶!) and healthy control RSFC (𝐶"#) are computed to represent the group 
variances. MDD-specific components are derived from the updated covariance matrix 𝐶! − 𝛼𝐶"#, which represents 
the foreground variance, and 𝛼 represents a hyperparameter quantifying the degree of contrast. These components 
are used as MDD-specific RSFC features in the next step. Subsequently, sparse CCA is performed to identify the 
linked dimensions between neurophysiology and PCA-transformed symptoms, represented by FC and symptom 
loadings. These loadings serve as linear combinations which project the RSFC features and symptoms into a 
common space with high correlations. 
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Figure 2 Identified linked dimensions between fMRI RSFC features and clinical measurements. (A) Top correlations 
between the symptom score of internalizing-externalizing symptoms dimension and 25 clinical measures. Leading 
negative correlations include Mood Disorder Questionnaire, Concise Associated Symptoms Tracking, and Altman 
Self-Rating Mania Scale. Anhedonic depression of Mood and Anxiety Symptoms Questionnaire is the leading positive 
correlation. The text color of the clinical measures represents the direction of the differences between healthy controls 
and MDD patients. Red indicates that healthy controls have higher average scores, while blue indicates that patients 
have higher average scores. (B) Top correlations of depression-protective personality dimension. NEO-Five Factor 
Inventory subscales (extraversion, conscientiousness, neuroticism) contribute the most. (C, D) Correlation between 
FC and symptom scores of the two linked dimensions on all patients. Cross-validation permutation results of 1000 
repeats are shown in the small panels. 
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Figure 3 RSFC loadings and network-level importance of internalizing-externalizing symptoms dimension (A,C) and 
depression-protective personality dimension (B,D). (A, B) Top 15 positive and negative loadings of FC dimensions. 
Node size indicates the involvement of ROI in top loadings. (C, D) Network-level importance within two FC 
dimensions among 7 brain networks: visual network, sensorimotor network, dorsal attention network, salient network, 
limbic network, executive control network and default mode network. The values of network-level importance are 
calculated by first keeping only the top 10% loadings with highest absolute values and setting the rest to 0, and 
averaging all absolute loadings between every pair of networks. 
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Figure 4 Pearson correlation between two FC dimensions and cognitive task performances. Left: internalizing-
externalizing symptoms dimension; Right: depression-protective personality dimension. Cognitive task items include: 
1) the overall accuracy of the A not B task, 2) the overall reaction time of the choice reaction time task, 3) the 
accuracy difference between incongruent and congruent trials in the flanker task, 4) the reaction time difference 
between incongruent and congruent trials in the flanker task, 5) the total valid number of words in the word fluency 
task, 6) the overall response bias in the probabilistic reward task, and 7) the reaction time difference between 
incongruent-following and congruent-following incongruent trials in the emotion conflict task. *** pfdr<0.001, 
**pfdr<0.01, * pfdr<0.05. 
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Supplementary Materials 

Table S1. Distribution of demographic information and clinical measurements of EMBARC MDD 
patients included in our study (N=233). 

Item Sub-scales Mean±Std Range 

Demographics Age 36.3±18.5 18-65 
Gender 67.4% Female 

HAMD (Hamilton Depression Rating Scale) 17-item total score 18.4±4.2 7-32 
ASRM (Altman Self-Rating Mania Scale) / 1.5±1.9 0-11 

AAQ (Anger Attack Questionnaire) / 0.4±0.5 0-1 

CTQ (Childhood Trauma Questionnaire) 

emotional abuse 13.1±5.6 5-25 
emotional neglect 13.5±4.9 5-24 

physical abuse 8.3±4.3 5-25 
physical neglect 8.3±3.5 5-20 

sexual abuse 8.3±5.6 5-25 
CAST (Concise Associated Symptoms 

Tracking) / 30.3±9.2 7-57 

CHRTP (Concise Health Risk Tracking-Self 
Report) 

propensity 26.4±8.1 3-49 
risk 5.2±2.4 0-10 

MASQ (Mood and Anxiety Symptoms 
Questionnaire) 

anxious arousal 17.4±5.4 10-35 
anhedonic 
depression 43.7±5.3 16-50 

general distress 32.1±7.9 13-50 
MDQ (Mood Disorder Questionnaire) / 4.1±3.0 0-13 

NEO-FFI (NEO-Five Factor Inventory) 

agreeableness 32.0±7.0 7-47 
conscientiousness 23.6±8.3 3-44 

extraversion 19.4±7.6 4-43 
neuroticism 35.2±6.3 15-48 
openness 31.8±7.5 14-48 

QIDS (Quick Inventory of Depressive 
Symptomatology) / 16.8±2.8 10-26 

SCQ (Self-Administered Comorbidity 
Questionnaire) / 1.9±2.7 0-17 

SHAPS (Snaith–Hamilton Pleasure Scale) continuous score 33.5±5.4 18-51 
SAS (Social Adjustment Scale) overall mean score 2.6±0.6 1.1-4 

SAPAS (Standardised Assessment of 
Personality – Abbreviated Scale) / 3.9±1.4 1-8 
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Table S2. Demographic information of healthy controls included in our study. 

 UCLA CNP 
(N=83) 

LEMON 
(N=103) 

AOMIC 
(N=72) 

EMBARC 
(N=27) 

Total 
(N=285) 

Age 35.31±8.26 45.22±20.72 21.96±1.86 42.75±12.84 36.73±16.48 
Female % 43.3 33.0 56.9 60.8 46 
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Table S3. Cognitive and emotional tasks included in our study and their measurements. 

Task Item Measurements 
A not B task Overall accuracy Working memory 

Choice reaction 
time task Overall reaction time Interference and post-error 

adjustments 

Flanker task 

Accuracy difference between 
incongruent and congruent trials 

Cognitive control, conflict 
monitoring 

Reaction time difference between 
incongruent and congruent trials 

Cognitive flexibility, conflict 
processing speed 

Word fluency task Total valid number of words  Psychomotor slowing 
Probabilistic 
reward task Overall response bias Reward learning 

Emotion conflict 
task 

Reaction time difference between 
incongruent-following and 

congruent-following incongruent 
trials 

Resolution and adjustment 
behavior in response to 

emotional conflict 
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Table S4. Chi-square test between the population distribution in high/low FC dimension score 
groups and remission rates within different treatment groups (sertraline and placebo). 
Remission is defined as HAM-D score ≤ 7 at week 8. For each dimension, high/low groups are 
divided by the median FC dimension score from all population. All p-values > 0.05, indicating 
that there is no significant relation between high/low dimension scores and remission.  

Internalizing-externalizing symptoms dimension 

Sertraline Observed Expected Statistics 
Remission Non-remission Remission Non-remission χ2 1.20 

High group 14 42 17.19 38.81 p 0.27 
Low group 21 37 17.81 40.19 samples 114 

Placebo Observed Expected Statistics 
Remission Non-remission Remission Non-remission χ2 0.00 

High group 16 45 15.89 45.11 p 1.00 
Low group 15 43 15.11 42.89 samples 119 

Depression-protective personality dimension 

Sertraline Observed Expected Statistics 
Remission Non-remission Remission Non-remission χ2 0.71 

High group 21 39 18.42 41.58 p 0.40 
Low group 14 40 16.58 37.42 samples 114 

Placebo Observed Expected Statistics 
Remission Non-remission Remission Non-remission χ2 0.48 

High group 17 40 14.85 42.15 p 0.49 
Low group 14 48 16.15 45.85 samples 119 
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Figure S1. Demographic information comparison between patient (N=233) and healthy control 
groups (N=285). The age distribution of the patient population and the healthy population was 
matched, with a Kolmogorov-Smirnov test yielding a p-value of 0.052. 
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Figure S2. Comparison of the age-correlation of the best symptom/FC dimensions derived from 
cPCA and regular PCA components. Contrastive learning marginally reduced the age-related 
component in its FC dimension, with a Fisher's z test showing near-significant results (p = 
0.059).  
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Figure S3. Comparison of the age correlation in the second-best symptom/FC dimensions 
derived from cPCA and regular PCA components. Contrastive learning reduced the age-related 
component in both symptom and FC dimensions, but the reduction was not statistically 
significant (p > 0.1). 
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Figure S4. (A) Overall dimension stability for all 13 dimensions given by sCCA, measured by 
the average of the cosine similarity between each pair of FC dimensions and each pair of 
symptom dimensions from 10×10 folds. All dimensions have an overall stability over 0.5. (B) For 
the 13 dimensions, only two dimensions survived FDR correction in permutation test, shown in 
colors. The raw p-values are: p<0.001 for internalizing-externalizing symptoms dimension, and 
p=0.001 for depression-protective personality dimension. 
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