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Abstract: Antibacterial packaging materials can reduce the microbial contamination of food surfaces.
In this study, magnesium oxide (MgO) nanoparticles were synthesized and then coated with cetrimo-
nium bromide (CTAB). CTAB-modified MgO (MgO@CTAB) was characterized by Fourier-transform
infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis. Then, differ-
ent loadings of MgO@CTAB were mixed with poly(butylene adipate-co-terephthalate) (PBAT) by
melt compounding. The results showed that the addition of MgO@CTAB deteriorated the thermal
stability of PBAT due to MgO serving as a catalyst to promote the thermal degradation of PBAT. In
addition, MgO@CTAB could serve as a nucleating agent to improve the crystallinity of PBAT. With
the optimal 3 wt% of MgO@CTAB, the tensile strength of PBAT/MgO@CTAB increased from 26.66 to
29.90 MPa, with a slight enhancement in elongation at break. SEM observations and dynamical rheo-
logical measurements revealed that aggregation occurred when the content of MgO@CTAB exceeded
5 wt%. The presence of MgO@CTAB endowed PBAT with antibacterial properties. The bacterial
inhibition zone increased with the increasing content of MgO@CTAB. In addition, MgO@CTAB had a
better antibacterial efficiency against Gram-positive bacterial S. aureus than Gram-negative bacterial
E. coli.

Keywords: PBAT; MgO; thermal stability; antibacterial; mechanical property

1. Introduction

Biodegradable food packaging polymers have gained considerable interest from both
academia and industry due to the depletion of petroleum resources and the pressure of envi-
ronmental protection. Poly(butylene adipate-co-terephthalate) (PBAT) is a type of aliphatic
aromatic copolyester thermoplastic, which can be synthesized by the copolymerization of
the monomers 1,4-butanediol, adipic acid, and terephthalic acid [1]. PBAT exhibits good
biodegradability, high flexibility, excellent tear resistance, and good processability [2,3].
It has been widely utilized for different packaging applications, such as garbage bags,
solid food containers, and film wraps. To fulfill requirements for the freshness, safety, and
quality of foods, there is growing demand for antibacterial packaging materials in food
packaging sectors [4–6]. Various types of metal oxides, such as zinc oxide (ZnO), silver
oxide (Ag2O), magnesium oxide (MgO), and titanium oxide (TiO2), have been developed
and exhibited different degrees of antibacterial effects on PBAT composites [7–9].

Magnesium oxide (MgO) can be easily synthesized from magnesium-rich minerals. It
has been considered a promising alternative antibacterial agent due to its environmental
friendliness, non-toxicity, low cost, and illumination independence [10,11]. Moreover, MgO
has been listed as a safe material by the U.S. Food and Drug Administration (US-FDA). It
has been proposed that the presence of abundant defects or oxygen vacancy on the surface
of MgO nanoparticles will contribute to the generation of reactive oxygen species (ROS),
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which can destroy bacterial cells and protein peptides [12]. Wang et al. prepared nano–
MgO/carboxymethyl chitosan (CMCS) films using a solution method [13]. The results
revealed that the introduction of MgO contributed to the improvement of thermal stability,
UV shielding performance, and water resistance of CMCS films. The CMCS films increased
elasticity and ductility simultaneously with the addition of 1 wt% of MgO nanoparticles.
Swaroop and his colleague demonstrated that the tensile strength and oxygen barrier
properties of polylactide (PLA) composite films containing 2 wt% of MgO increased by
29% and 25%, respectively, as compared with those of pure PLA films [14]. In addition,
PLA/MgO films also exhibited pronounced inhibition of E. coli bacterial [15].

Cetyltrimethylammonium bromide (CTAB) is a quaternary ammonium surfactant that
has strong inhibitory effects on a variety of bacteria through electrostatic interactions that
disrupt or disturb the cell membrane [16,17]. This inexpensive cationic surfactant is safe at
low concentrations. Chang et al. utilized CTAB to modify Janus silver mesoporous silica
nanoparticles using a one-pot method [17]. The minimum inhibitory concentrations (MIC)
for S. aureus and E. coli were determined to be 20 and 10 µg/mL, respectively. Sasikumar
et al. found that the presence of CTAB could not assist the synthesis of BaTiO3 nanoparti-
cles via a hydrothermal method, but it endowed BaTiO3 nanoparticles with antimicrobial
properties [18]. The CTAB-functionalized BaTiO3 exhibited profound antibacterial behav-
iors against C. albicans bacteria. To date, to the best of our knowledge, the application
of MgO nanoparticles in combination with CTAB as a bactericide for PBAT has not yet
been explored.

In this work, MgO nanoparticles were synthesized using a sol–gel method. Then,
CTAB-functionalized MgO nanoparticles (MgO@CTAB) were incorporated into the PBAT
matrix to prepare antibacterial nanocomposites. The effects of MgO@CTAB loading on the
thermal stability, crystallization behavior, rheological and mechanical properties, as well as
the antibacterial performance of PBAT nanocomposites were investigated.

2. Materials and Methods
2.1. Materials

Poly(butylene adipate-co-terephthalate) (PBAT) with a melt index of 5 (190 ◦C, 2.16 kg)
was supplied by BASF (Shanghai, China). Magnesium chloride hexahydrate (MgCl2·6H2O),
sodium hydroxide (NaOH), and cetyltrimethylammonium bromide (CTAB) were obtained
from J&K (Shanghai, China).

2.2. Preparation of MgO@CTAB

Magnesium oxide (MgO) nanoparticles were prepared using a modified sol–gel
method [19]. First, 0.5 g of CTAB and 1.6 g of MgCl2·6H2O were added to 40 mL of
DI water with vigorous stirring for 2 h to form clear gel. A 20 mL solution of 0.4 M
NaOH was slowly added to the as-obtained gel. Then, the mixture was transformed into
a 100 mL PPL-lined stainless steel autoclave and kept at 120 ◦C overnight. The obtained
precipitate was centrifuged with DI water and ethanol twice and dried at 60 ◦C for 6 h.
The resulting powders were calcinated in a tubular furnace at 400 ◦C for 3 h. Two grams
of the as-prepared MgO nanoparticles and 1.0 g of CTAB were dispersed in 100 mL of
ethanol with ultrasonication for 30 min. Then, the CTAB-modified MgO nanoparticles
(MgO@CTAB) were centrifuged and rinsed by ethanol twice to remove the excess CTAB.

2.3. Preparation of PBAT/MgO@CTAB Nanocomposites

PBAT nanocomposites containing MgO@CTAB nanoparticles were prepared using the
melt compounding method. The desired amount of MgO@CTAB was mixed with PBAT in
a Brabender internal mixer (Brabender GmbH & Co. KG, Duisburg, Germany) at a fixed
speed of 60 rpm at 160 ◦C for 8 min. Then, the samples were hot-compressed into speci-
mens with different dimensions for characterization. The as-prepared PBAT/MgO@CTAB
nanocomposites were abbreviated as MgO@CTAB-X, where X stands for the weight per-
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centage of MgO@CTAB in the nanocomposite. For comparison, pristine MgO nanoparticles
were also mixed with PBAT using the same procedures.

2.4. Characterization

The morphology and structure of MgO@CTAB were investigated by transmission elec-
tron microscopy (TEM, JEOL JEM-2100F, Tokyo, Japan) and scanning electron microscopy
(SEM, FEI 250, FEI Company, Hillsboro, OR, USA) with energy-dispersive X-ray (EDX)
spectroscopy. The MgO@CTAB and cryo-fracture surfaces of PBAT/MgO@CTAB nanocom-
posites were sputtered with a thin layer of gold before SEM observation. Fourier-transform
infrared spectroscopy (FT-IR) spectra were collected on a Nicolet NEXUS670 spectrometer
(Thermo Fisher Scientific Inc., Dreieich, Germany). The samples were scanned 16 times in
the range of 400–4000 cm−1. The thermal stability was measured by a Netzsch TGA-209F1
thermogravimetric analyzer (TGA, NETZSCH GmbH & Co.Holding KG, Selb, Germany)
under a nitrogen atmosphere. The specimens were heated from 30 to 700 ◦C at a ramping
rate of 10 ◦C min−1. The X-ray diffraction (XRD) patterns were collected from 10 to 60◦

by using a Bruker D8 diffractometer (Bruker Daltonik GmbH, Bremen, Germany) with a
fixed step of 0.02◦. The crystallization and melting behavior of the PBAT composites were
investigated using a Netzsch DSC-214 differential scanning calorimeter (DSC, NETZSCH-
Gerätebau GmbH, Selb, Germany) in the range of 30–160 ◦C. The dynamical rheological
performance was analyzed on an Anton Paar MCR302 rheometer (Anton Paar Australia Pty.
Ltd., Sydney, Australia). The frequency sweep was conducted at 150 ◦C at a fixed strain
of 1%. The tensile properties were measured on an Instron 5566 electron universal testing
machine (Instron, Norwood, MA, USA). The tensile speed was fixed at 50 mm min−1. The
reported results are the mean values of five successful specimens.

2.5. Antibacterial Properties

The antibacterial activity of the PBAT nanocomposites was investigated using the
zone inhibition method [20]. In brief, a specific amount of bacterial culture (i.e., 0.1 mL)
was transferred to nutrient agar plates. Then, 5 mm diameter circular films were put
over the bacteria colonies and then incubated at 37 ◦C for 24 h to measure the bacterial
inhibition zone.

3. Results and Discussions

The morphology of the MgO nanoparticles is shown in Figure 1a. The obtained
MgO exhibits a roughly spherical structure. The diameter distribution calculated from
TEM images is shown in Figure 1b. The average diameter of the MgO calculated using
ImageJ software is 40.1 nm. The SEM image of MgO@CTAB is shown in Figure 1c, and the
corresponding EDX result in Figure 1d confirms the chemical composition of MgO@CTAB,
which has two sharp signal peaks that are attributed to magnesium and oxygen elements.
The strong carbon signal is mainly due to carbon conductive paste. In addition, the signal
peaks for nitrogen are observed, which may result from the presence of grafted CTAB. The
EDX mapping images in Figure 1e–h indicate that the CTAB was coated on the surface of
MgO@CTAB uniformly.

The FT-IR spectra of MgO and MgO@CTAB are shown in Figure 2a. The broad peaks
at 3000–3700 cm−1 correspond to the stretching vibration of –OH groups, while the peaks
at 1636 cm−1 represent the bending vibration of –OH groups due to the absorbed water
molecules on the surfaces of the nanoparticles [21]. The detected peaks located at around
500 cm−1 are attributed to the stretching vibration of Mg-O bonds [22]. In addition, it
is observed that two new peaks appear in MgO@CTAB at 2850 and 2922 cm−1, which
are related to the asymmetric and symmetric stretching vibration of -CH2 bonds of the
coated CTAB chains, respectively [23,24]. The above results indicate that the CTAB was
coated on the surface of MgO successfully. The structures of MgO and MgO@CTAB are
further confirmed by XRD patterns, as shown in Figure 2b. It is observed that the pure
MgO nanoparticles have strong peaks located at 37.0◦ and 42.9◦, which correspond to
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the (002) and (200) planes of JCPDS PDF-87-0652, respectively. After the decoration of
CTAB, the MgO@CTAB exhibits similar absorption peaks as pure MgO, indicating that
the addition of CTAB has no effect on the crystal structure of MgO. Figure 2c shows the
thermal degradation behaviors of MgO and MgO@CTAB. It is observed that the pure MgO
nanoparticles show 2.4 wt% loss in the temperature range of 250–340 ◦C, while a significant
weight loss for MgO@CTAB occurs at temperatures from 200 to 350 ◦C. In addition, the
char yields at 700 ◦C for MgO and MgO@CTAB are 95.8 wt% and 93.1 wt%, respectively,
indicating that the coated CTAB in MgO@CTAB is around 2.7 wt%.
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of MgO and MgO@CTAB.

The fracture surface morphology of the PBAT nanocomposite was evaluated by using
SEM, as shown in Figure 3. It is observed that MgO@CTAB-0 in Figure 3a exhibits a smooth
surface due to its brittle fracture of PBAT. In addition, the fracture surfaces of the PBAT
nanocomposites become rougher (Figure 3b–e) with the increasing MgO@CTAB loading,
indicating that the presence of rigid MgO@CTAB nanoparticles contributes to the stress
transformation [25]. Some aggregations (red circles) are observed on the fracture surface in
the high-resolution SEM images when the content of MgO@CTAB is increased to 5 wt%.

The melting and crystallization behaviors of pure PBAT and its nanocomposites are
shown in Figure 4. The peak crystallization temperature (Tc), crystallization enthalpy (∆Hc),
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the peak melting temperature (Tp), the melting enthalpy (∆Hm), and the crystallinity (χ) are
summarized in Table 1. The degree of crystallinity was calculated by the following equation:

χ =
∆Hm(

1−W f

)
∆H0

(1)

where ∆Hm represents to the melting enthalpy, Wf is the weight ratio of MgO@CTAB, and
∆H0 stands for the 100% melting enthalpy of PBAT (114 J g−1) [26].
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Table 1. DSC thermograms of PBAT and its nanocomposites.

Samples Tc (◦C) ∆Hc (J/g) Tp (°C) ∆Hm (J/g) χ (%)

MgO@CTAB-0 97.0 8.1 125.3 9.2 8.1
MgO@CTAB-1 87.3 10.3 125.1 10.5 9.3
MgO@CTAB-3 89.0 11.1 124.5 11.0 9.9
MgO@CTAB-5 89.2 10.8 123.6 10.5 9.7
MgO@CTAB-7 90.8 9.9 122.5 10.0 9.4

In Figure 4a, it is observed that the initial crystallization temperatures and Tc of PBAT
nanocomposites shift to lower values. Meanwhile, the ∆Hc values of PBAT nanocomposites
increase slightly as compared with those of pure PBAT. These results indicate that the
presence of MgO@CTAB contributes to the inhibition of crystal nucleation during the
crystallization process. The Tp of PBAT nanocomposites in Figure 4b exhibits a decreasing
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trend with the increasing content of MgO@CTAB. Moreover, the crystallinity values of
PBAT nanocomposite are all higher than those of pure PBAT.

The XRD patterns of PBAT nanocomposites are shown in Figure 5. Four diffraction
peaks at 17.4◦, 20.4◦, 23.3◦, and 25.1◦ are observed in MgO@CTAB-0, which correspond
to the (010) (110) (100) and (111) planes of PBAT, respectively [27]. Furthermore, the
intensity of the characteristic peaks at 37.3◦ and 43.2◦ gradually increases as the content of
MgO@CTAB increases from 1 to 7 wt%, which are related to the (002) and (200) planes of
MgO. In addition, it is noted that there is no significant shift or change in the diffraction
peaks between pure PBAT and its nanocomposites.
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The effects of MgO@CTAB on the thermal stability of PBAT were investigated through
TGA, and the results are shown in Figure 6. The initial decomposition temperatures (T10),
peak decomposition temperatures (Tp), and char yields at 700 ◦C are listed in Table 2. In
Figure 6, it is observed that the decomposition curves shift to lower temperatures with
the increasing loading of MgO@CTAB. The T10 of MgO@CTAB-7 decreases from 375.2 to
313.7 ◦C as compared with that of MgO@CTAB-0. In addition, the values of Tp exhibit
a similar decreasing trend. The decrease in thermal stability is mainly attributed to the
catalytic effects of MgO, which is consistent with other reports [28]. Furthermore, the
thermal decomposition of coated CTAB also resulted in weight loss. As expected, the char
yields of PBAT nanocomposites at 700 ◦C increase gradually with the increasing content of
MgO@CTAB.
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Table 2. Thermal stability of PBAT and its nanocomposites.

Sample T10 (◦C) Tp (◦C) Char Yield at 700 ◦C
(wt%)

MgO@CTAB-0 375.2 400.7 6.67
MgO@CTAB-1 340.8 402.3 7.48
MgO@CTAB-3 328.3 399.9 10.32
MgO@CTAB-5 319.1 382.9 12.71
MgO@CTAB-7 313.7 381.2 14.02

The effects of MgO@CTAB on the rheological properties of PBAT were evaluated by
taking dynamic rheological measurements. The complex viscosity (η*), storage modulus
(G′), and loss modulus (G”) as a function of frequency at 150 ◦C are shown in Figure 7.
In Figure 7a, the η* of all samples exhibits a typical shear thinning behavior. It is worth
noting that the values of η* and G′ of MgO@CTAB-1 decrease significantly as compared
with those of pure PBAT, which is consistent with the reported PBAT composite [29]. This
may be ascribed to the presence of CTAB because it is a small molecule that improves
the flowability of PBAT. The storage modulus of the PBAT nanocomposite in Figure 7b
increases with the increasing content of MgO@CTAB. However, the enhancement of the
storage modulus is not proportional to the content of MgO@CTAB. Enhancement of the
storage modulus reaches its maximum value at 5 wt% of MgO@CTAB and then decreases
with further loadings. This is due to the fact that the enhancement of MgO@CTAB is
more profound than the inverse effect of the aggregation of MgO@CTAB in the PBAT
matrix at the loading of 5 wt% MgO@CTAB. Figure 7c shows that the values of G” decrease
concomitantly with G′, indicating that the structure of the PBAT nanocomposites is most
affected by filler content.
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The typical strain versus stress curves of PBAT and its nanocomposites are presented
in Figure 8. The tensile stress, Young’s modulus, and elongation at break are summarized
in Table 3. It can be observed that the strain–stress curves of all samples in Figure 8 can
be divided into three regions, namely, elastic, plastic deformation, and strain hardening
regions. The elastic region exhibits a linear change with recoverable deformation, followed
by the plastic deformation region, in which neck forming would occur. The strain hardening
region undergoes a strain hardening phenomenon with the continuous increase in the stress.
It is clear that the Young’s modulus of the PBAT/MgO@CTAB nanocomposite increases
with the increasing content of MgO@CTAB because MgO@CTAB particles serve as rigid
fillers to transform the stress [30]. The tensile stress of PBAT nanocomposite achieves a
maximum value of 29.90 MPa with the addition of 3 wt% MgO@CTAB, followed by a
decreasing tendency due to the aggregation of MgO@CTAB, as revealed by SEM images.
In addition, the elongation at break of PBAT nanocomposites increases slightly with the
addition of a low content of MgO@CTAB. With the further increasing of nanofiller content,
the elongation at break of PBAT decreases significantly. This is because the aggregation of
MgO@CTAB causes stress concentration, which decreases the ductility.
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Table 3. Tensile properties of PBAT nanocomposites.

Sample Tensile Stress (MPa) Young’s Modulus (MPa) Elongation at Break (%)

MgO@CTAB-0 26.66 ± 2.27 43.37 ± 3.85 1590.73 ± 169.68
MgO@CTAB-1 27.06 ± 2.45 46.06 ± 2.49 1620.17 ± 107.53
MgO@CTAB-3 29.90 ± 2.01 48.81 ± 3.15 1773.95 ± 111.32
MgO@CTAB-5 25.03 ± 3.45 50.94 ± 2.15 1473.63 ± 116.27
MgO@CTAB-7 24.14 ± 1.33 54.93 ± 5.24 1398.33 ± 85.53

The antimicrobial activity of the PBAT nanocomposite films against S. aureus and E. coli is
shown in Figure 9, and the bacterial inhibition zone data are listed in Table 4. It is clear that no
inhibition zone is observed for MgO@CTAB-0 film, indicating that pure PBAT film has no
antibacterial activity against S. aureus and E. coli. The addition of MgO@CTAB endows the
PBAT nanocomposite with antibacterial activity [10,14]. Moreover, the bacterial inhibition
zone increases gradually with the increasing content of MgO@CTAB. These results can be
ascribed to the superior antibacterial properties of MgO. However, PBAT/MgO@CTAB
exhibits better antibacterial efficiency against S. aureus than against E. coli, which is similar
to other studies in the literature [31–34]. This phenomenon is ascribed to the fact that the
peptidoglycan membrane of the Gram-positive bacteria S. aureus is much thicker than
that of the Gram-negative bacteria E. coli, and as a result, the released Mg ions do not
easily penetrate the peptidoglycan membrane and disrupt the essential enzyme systems in
the bacteria.

Table 4. Antimicrobial activity of PBAT nanocomposite films against S. aureus and E. coli.

Sample
Bacterial Inhibition Zone (mm)

S. aureus E. coli

MgO@CTAB-0 5 5
MgO@CTAB-1 9.6 ± 0.6 5.9 ± 0.3
MgO@CTAB-3 10.3 ± 0.3 6.8 ± 0.5
MgO@CTAB-5 10.5 ± 0.3 7.1 ± 0.2
MgO@CTAB-7 10.7 ± 0.4 7.3 ± 0.2
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4. Conclusions

In this work, MgO@CTAB nanoparticles were synthesized and then mixed with a
PBAT matrix using the melt compounding method. SEM observation and dynamical rheo-
logical measurement revealed that aggregation of MgO@CTAB occurred when the content
of MgO@CTAB exceeded 5 wt%. PBAT nanocomposites containing 3 wt% MgO@CTAB
exhibited the highest tensile strength of 27.90 MPa and a maximum elongation at break
of 1773.95%. The presence of MgO@CTAB resulted in the poor thermal stability of PBAT
due to its catalytic effect. In addition, MgO@CTAB enhanced the crystallinity of PBAT.
The incorporation of MgO@CTAB endowed PBAT with antibacterial activity against both
the Gram-positive bacteria S. aureus and the Gram-negative bacteria E. coli. The bacterial
inhibition zone showed that PBAT/MgO@CTAB nanocomposites had better antibacterial
performance against S. aureus than E. coli.
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