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Introduction
At its core, cardiology is a data-driven specialty with routine
practice relying heavily on insights from both clinical trials
and individual patient-level data. Rapid innovation in cardiac
digital health is inevitable when one considers the vast
amounts of standardized, high-quality digital data collected
during routine clinical practice and, increasingly, from
consumer-facing sensors in nonclinical settings. These vast
amounts of data present the field with several opportunities
and challenges. The additional information offers the
potential to improve remote monitoring, provide point-of-
care diagnoses, guide treatment, and facilitate screening
efforts. Conversely, the volume can overwhelm cardiology
teams. Machine learning (ML) and extended reality (ER)
are being embraced to bridge these 2 divergent positions.
In this perspective, we explore the growing role of these 2
technologies in cardiology with an emphasis on electrophys-
iology (EP). We also provide a window into cardiovascular
innovation at Mayo Clinic, including its response to the
COVID-19 pandemic.
Artificial intelligence in cardiology
Broadly speaking, artificial intelligence (AI) refers to the
ability of machines to autonomously learn, reason, and act
using a variety of tools. It is a nontechnical term that
typically refers to ML—computer algorithms that are able
to independently find patterns in large amounts of data.1

Deep learning, a subfield of ML, uses neural networks to
find these patterns and learn the relationships between
provided input and desired outcomes. ML is already being
employed in all cardiology subspecialties, with applications
ranging from workflow optimization to disease diagnosis
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and prognostication, therapeutic intervention decision sup-
port, and research.1 Its uptake has been directed at 2 general
goals: (1) providing human-like capabilities at scale and (2)
developing new insights by analyzing existing data sets indi-
vidually or in novel combinations (essentially moving
beyond current human capacity).

ML application to output of clinical-grade ambulatorymon-
itors (eg, implantable loop recorders, Holter monitors, pace-
makers/defibrillators, etc) and commercial heart rate
monitoring devices can scale the cardiologist’s reach by
analyzing data from prolonged monitoring and flagging only
critical results for human review.When combinedwith natural
language processing, it can also optimize workflows by gener-
ating reports (eg, electrocardiogram [ECG] interpretation) that
are indistinguishable from the cardiologist’s. In the EP labora-
tory, ML is being deployed to remove noise from intracardiac
tracings, thereby simplifying their interpretation.

The application of ML to ECGs provides one of the most
compelling examples of generating novel insights from
existing data. It can estimate serum potassium and dofetilide
levels, identify patients with atrial fibrillation by analyzing si-
nus rhythm ECGs, predict patients’ left ventricular ejection
fraction, detect hypertrophic cardiomyopathy, and identify
patients’ sex and age.2–9 The left ventricular ejection
fraction algorithm has been modified to work using a
single-lead ECG produced by devices such as the Eko
Duo,10 AliveCor Kardia, and Apple Watch (unpublished).
Although these novel ECG insights are exciting, there is
limited information on how they will perform in real-world
settings. The ECG AI-Guided Screening for Low Ejection
Fraction study (NCT04000087), a pragmatic 2-arm cluster
randomized trial, should provide initial answers. It will
evaluate the use of the aforementioned AI enabled, 12-lead
ECG–based tool to screen for low ejection fraction across
multiple primary care settings.11,12 The Batch Enrollment
for AI-Guided Intervention to Lower Neurologic Events in
Unrecognized AF study (NCT04208971) will similarly test
the performance of the AI-enabled, 12-lead ECG–based
tool to improve the diagnosis of unrecognized atrial fibrilla-
tion and stroke prevention. Finally, screening for contractile
dysfunction via 12-lead ECG using AI has recently received
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emergency use authorization from the FDA for deployment
during the COVID-19 pandemic. In the future, it is possible
that ML will be used to cost-effectively diagnose a range of
other cardiovascular conditions from the ECG, thereby
improving population health. Eventually, ML (eg, using
synergistic networks) will be able to incorporate inputs
from varied data sources (eg, ECGs, imaging, phonocardio-
grams, etc) into a single output.
Extended reality
ER refers to the spectrum of immersive technologies ranging
from fully immersive digital environments to projections of
digital structures onto the physical environment. It currently
includes virtual, merged, mixed, and augmented realities.13

Its uptake within cardiology is being driven by rapid
advances in computing and display technologies, which
have improved their real-time responsiveness while simulta-
neously decreasing their costs and physical profiles.

ER can facilitate cardiology education, procedure
planning, and execution by bringing mentally constructed
3D cardiac images closer to the physical realm. It has
been deployed for procedural planning (eg, lead extraction)
and execution (eg, cardiac ablation). Holograms of prior
cardiac imaging, high-resolution scar architecture, real-
time electroanatomic maps, catheter positions, local activa-
tion timing maps, and ablation lesion markers can be
projected above the patient during EP procedures.13,14

The proceduralist and other team members are able to
interact with these 3D images in a touchless manner to
facilitate the procedure.
Mayo Clinic cardiovascular innovation
Organizational structure
Like other large academic medical centers, Mayo Clinic has
distinct structures to execute its clinical, research, and educa-
tion missions. While innovation is critical to each of these, it
may be lost among the many competing priorities within
these structures. A unique organizational structure was
therefore created to ensure that innovation is central to and
coordinated across all activities within the Department of
Cardiovascular Medicine. Key elements to this structure
include the following:

� An administrative partner with deep understanding of
business, financial, regulatory, and operational impacts
of innovation is paired with the physician leading innova-
tion to facilitate sound decision-making.

� Nonclinical team members are embedded within the
clinical team. For example, AI engineers accompany phy-
sicians on daily activities and co-locate with them while
device prototype development engineers participate in
experiments. AI engineers are also hired using the same
process as cardiologists.
Mayo Clinic cardiovascular innovation and
COVID-19
Our response has focused on using ML to prognosticate
SARS-CoV-2 infections while developing a novel technol-
ogy to facilitate rapid, consistent, and safe point-of-care
decontamination of personal protective equipment (PPE).
We have also developed ECG lab infrastructure leveraging
AI-ECG to monitor the QT interval in patients undergoing
experimental treatments within prospective clinical trials
using the AliveCor Kardia platforms.

Leveraging machine learning to diagnose COVID
infections using ECGs
SARS-CoV-2 infection is known to involve the cardiovascu-
lar system, with accompanying nonspecific ECG changes
seen very early during the infection. We are currently leading
a global effort exploring the use ofML interrogation of ECGs
to prognosticate COVID-19 infections. The ability to stratify
COVID-19 infection severity could inform where patients
may be safely treated and when they can be safely
discharged. This could have profound implications on opti-
mizing resource use by already stressed healthcare systems.

Developing a point-of-care sterilization tool to
facilitate PPE reuse
Pulsed electric fields (PEF) refer to the application of
intermittent, high-intensity electric fields for short periods of
time. Depending on several factors, this results in reversible or
irreversible disruption of cellular membranes. PEF has been
shown to inactivate both enveloped and nonenveloped viruses
and our preliminary data suggest that viruses similar to SARS-
CoV-2 are inactivated when exposed to PEF. This insight is be-
ing used to develop a PEF-based sterilization tool that may be
combined with more established sterilization modalities (eg, ul-
traviolet germicidal irradiation) tomore efficiently sterilize PPE.
Conclusion
Cardiology is fertile ground for digital innovation, given its
data-driven foundation and rapidly expanding digital
footprint. ML and ER are 2 technologies at the forefront of
these innovative efforts. Although their use in cardiology is
still in its early stages, each is showing early promise. It is
easy to envision a future state in which these 2 technologies
are combined to yield exponential dividends to patients,
physicians, and their teams.
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