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Abstract: Nanomechanical sensors have gained significant attention as powerful tools for detecting,
distinguishing, and identifying target analytes, especially odors that are composed of a complex
mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform
for artificial olfaction in combination with data processing technologies, including machine learning
techniques. This paper reviews the background of nanomechanical sensors, especially conventional
cantilever-type sensors. Then, we focus on one of the optimized structures for static mode operation,
a nanomechanical Membrane-type Surface stress Sensor (MSS), and discuss recent advances in MSS
and their applications towards artificial olfaction.

Keywords: Membrane-type Surface stress Sensor (MSS); nanomechanical sensors; static mode operation;
artificial olfaction; machine learning

1. Introduction

In nature, it is full of various odors and humans as well as other organisms tend
to recognize their surroundings by odors [1]. Each odor is usually composed of dozens
to thousands of different molecules out of more than 400,000 types of odorous/odorless
molecules [2]. In most cases, we detect such a complex odor as a simultaneous interaction
of various types of molecules with our olfactory receptors and recognize the odor by
comprehensively analyzing the signals mediated by various receptors in the brain (Figure 1).
In contrast to other senses that perceive physical stimuli (i.e., light for eye, sound for ear,
and pressure for skin), olfactory sensors have not been practically commercialized because
of such complexity of the sense of smell and lack of a comprehensive understanding of the
chemical interactions between the receptors and the analytes.

The concept of an “artificial olfaction” was first proposed in 1982 by Persaud et al. as
a model of a nose using an array of different types of sensors and resultant unique signal
patterns to discriminate specific odors [3]. The system of the artificial olfaction is inspired
by the olfactory perception pathway (Figure 1). Specifically, receptor materials coated on
sensing elements correspond to olfactory receptors, sensing elements and transducers work
as olfactory cells and bulbs, and pattern recognition analysis plays a role of neural activity
in the brain. The constructed system is called an electronic nose (e-nose) [4,5]. The recent
achievements in size reduction of sensing elements by nanotechnologies have accelerated
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olfactory sensor technologies. In the last decade, the olfactory sensor technology has
evolved significantly along with the evolution of data processing technologies, including
artificial intelligence (AI) and machine learning algorithms [6–10]. There are lots of studies
applying current olfactory sensor technology to various fields, such as food, agricultural,
environmental, medical, and healthcare fields [6,11–18]. Moreover, the olfactory sensor
technology covers the detection of odors that cannot be sensed by humans, such as carbon
monoxide [19] and hydrogen [20,21]. In such developments of the olfactory sensors, gas
(chemical) sensors have gained significant attention as they play a critical role in detecting
odors [11,14–17].

Figure 1. Schematic illustrations of olfactory sensory system in human and artificial olfaction system.
Part of images are reprinted with permission from Ref. [22], Copyright 2007, European Molecular
Biology Organization; and from Ref. [23], the authors licensed under CC-BY 4.0.
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Among a wide variety of chemical sensors, nanomechanical sensors have received
significant attention, as they find plenty of applications in many different research fields
(Figure 2) [11,24–33]. In human olfactory perception, it is known that there are approx-
imately 400 different kinds of olfactory receptors [34], which express wide varieties of
chemical selectivity, providing unique patterns of odors. To develop artificial olfaction,
it is important to construct certain numbers of receptor materials, which have chemical
selectivity, to apply multivariate analyses, including pattern recognition. In this context,
nanomechanical sensors are one of the ideal sensing platforms for olfactory sensors be-
cause of its intrinsic versatility. According to their working principle, nanomechanical
sensors detect volume- and/or mass-induced mechanical changes of a sensing element [32].
Since it has been observed that almost all kinds of solid materials, including organic
small molecules, polymers, self-assembled nanomaterials, inorganic nanoparticles, and
biomolecules, exhibit mechanical deformation upon gas sorption, various types of solid
materials can be utilized as a receptor material, providing a wide range of chemical selec-
tivity and sensitivity. Lang et al. reported the first applicability of nanomechanical sensor
arrays to the artificial olfaction [35–37]. In this review, we aim to summarize the recent
studies in the field of olfactory sensing by focusing on nanomechanical sensors. We first
address the fundamental research on nanomechanical sensors, including their background
theories. We then focus on a specific geometry of nanomechanical sensors with superior
performance: a Membrane-type Surface stress Sensor (MSS) [38,39]. Finally, we summarize
the recent advances of MSS and their applications as an artificial olfaction.

Figure 2. Possible applications of nanomechanical sensors.

2. Nanomechanical Sensors

As we emphasized, nanomechanical sensors can provide a promising sensing platform
for artificial olfaction. In 1994, Gimzewski et al. reported the first chemical sensing applica-
tion using a nanomechanical microcantilever-type sensor [40]. They used the static bending
of a cantilever to detect the catalytic reaction proceeding on the surface of the cantilever.
In the same year, Thundat et al. demonstrated a mass detection with picogram resolution
using the dynamic behavior of a nanomechanical cantilever-type sensor [41]. They focused
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on the cantilever resonance frequency shifts induced by the exposure of a metal-coated can-
tilever to humidity or mercury vapor. Then, many research groups have demonstrated that
nanomechanical sensors can detect not only a variety of targets, such as moisture [41–43]
and mercury vapor [41,44], but also various chemical/physical phenomena, including
the formation of a self-assembled monolayer [45], DNA hybridization [46–48], a single
spin [49,50], and quantum state [51,52]. Regarding the working principle of nanomechani-
cal sensors whose flexible structures deform at the nanoscale, they are following two major
types of operation modes: the static mode and dynamic mode [32,53–58]. In this section, we
will briefly review these two operation modes. Then, we focus on the static mode operation
with their theoretical models for the effects of surface stress as well as the effects of the
sorption of analytes. At the end of this section, among various types of nanomechanical
sensors [59–61], we will introduce a specific geometry of nanomechanical sensors with
electrical readout having improved sensitivity: MSS [38].

2.1. Static and Dynamic Mode

One of the typical geometries of nanomechanical sensors is a cantilever. The cantilever-
type sensors can detect two physical parameters: volume and/or mass of target molecules.
To measure the volume and mass of target molecules, there are two different operation
modes as mentioned above: dynamic and static modes (Figure 3) [32,53–58]. While the
static mode detects changes in the deformation state of a nanomechanical sensor, the
dynamic mode detects changes in the mechanical resonances.

Figure 3. Schematic illustrations of two different operation modes of cantilever-type nanomechanical
sensors simulated by finite element analysis (FEA) through COMSOL Multiphysics. (a) Dynamic
mode operation, in which a nanomechanical sensor detects sorption-induced changes in the resonance
frequencies with mass effect, stiffness effect, and effect of surface stress. (b) Static mode operation, in
which a nanomechanical sensor detects changes in the deflection caused by the sorption-induced
surface stress. It is important to note that the bending of a cantilever plate is not caused by the
gravity effect.

The concept of dynamic mode operation is the same with those as it is for various
resonators, such as quartz crystal microbalance (QCM). In this mode, the shift in resonance
frequency is measured. This shift is due to the changes in effective mass induced by the
adsorption of analytes on a cantilever. Since signals can be directly correlated with the basic
property of adsorbates, i.e., mass, the dynamic mode is a useful and powerful technique
to derive quantitative information. As the sensitivity generally depends on the resonance
frequency determined by the size of a cantilever, a nanometer-scale cantilever operates
at very high frequency bands (ca. 30–300 MHz) and marks several milestones, such as
ca. 7 zeptogram (10−21 g) resolution by a cryogenically cooled apparatus in an ultrahigh
vacuum (below 10−10 torr) [62], and the mass resolution being less than 1 attogram (10−18 g)
in the air at room temperature [63]. Because of its high sensitivity, nanomechanical sensors
in dynamic mode can be utilized for a new type of mass spectrometry known as nanome-
chanical mass spectrometry [26,28,61,64–69]. To improve the sensitivity further for the
dynamic mode operation, various studies have reported, such as the use of other functional
structures [32,43,70–72].
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In contrast to the dynamic mode operation, the static mode is known as one of the
representative operation modes of cantilever-type nanomechanical sensors. It measures
surface stress, which is generally not easy to be measured with other sensing techniques.
One of the major advantages of the static mode is that a cantilever does not suffer from
damping because the bending motion caused by the sorption-induced surface stress is slow
enough, minimizing the damping in most cases. Moreover, the static mode operation does
not require an actuator for mechanical vibration, enabling the miniaturization of the entire
measurement system.

2.2. Effects of Surface Stress in Static Mode

Theories and models for the static mode operation date far back to 1909, when Stoney
published his equation to relate the surface stress σsurf with the bending curvature κ of a
free-standing plate [73], which is known as Stoney’s equation. Stoney derived the curvature–
stress relation using plate theory composed of stress bearing a thin film of thickness t f
deposited on a substrate of thickness ts as follows:

κ =
6(1− νs)t f

Est2
s

σf , (1)

where Es and νs are Young’s modulus and Poisson’s ratio of a substrate of a cantilever,
respectively (Figure 4). The Stoney’s equation is widely utilized to estimate the deflection
of a cantilever beam. According to the Stoney’s equation with the relations of constant
curvature κ = 2∆∆z/l2

s [73,74], where ls is the length of the cantilever plate, as well as the
conversion of three-dimensional internal stress σf to two-dimensional surface stress σsurf as

σsurf = σf t f , (2)

the deflection of a free end of a cantilever ∆z caused by surface stress can be rewritten as

∆z =
3(1− νs)l2

s
Est2

s
σsurf. (3)

Figure 4. Schematic illustration of conventional cantilever-type nanomechanical sensors in the
Cartesian coordinates. Reprinted with permission from Ref. [75]. Copyrights 2012, Elsevier.

Although Equation (3) has been widely utilized in various fields not only for nanome-
chanical sensors but also for the fabrication of micro electromechanical systems (MEMS)
to estimate the internal stress by the curvature of a silicon wafer, the Stoney’s equation
does not account for the clamping effect of a cantilever, resulting in the loss of accuracy to
describe the curvature, especially near the clamping region.
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To estimate surface stress from the bending of the cantilever plate, the relation between
the bending and the surface stress has been proposed. The differential equation governing
the bending of a rectangular plate is the so-called biharmonic equation, which is given
by ∇4w = 0 in Cartesian coordinates, where w is the out-of-plane displacement of the
plate along the z coordinate direction. This analytical solution with cantilever boundary
conditions was attempted by Zeng et al. [76]. They proposed a solution in terms of Fourier
cosine series. By imposing the appropriate boundary conditions, a simultaneous linear
equation can be obtained with the coefficients of the cosine series as unknown. However,
to calculate their coefficients, it is necessary to solve unconditional infinite equations with
slow convergence, suggesting that the boundary conditions of the clamped and free end of
the plate are inconsistent at the common corners. Sader derived approximated solutions to
the problem in the asymptotic limits of high and very low aspect ratios. In the case of a
very low aspect ratio (i.e., L� b), the solution is the following equation as [77]

w(x, y) =
κ

2

[(
x2 + y2

)
+ f (x) + y2g(x)

]
, (4)

where the functions f (x) and g(x) are given by

f (x) = −b2
{

1
12 + 2νs

[
1

τ2
1
+ 1

τ2
2
+ 1

τ1τ2
−
(

1
τ1
+ 1

τ2

)
x
b

]
−

2
∑

i=1
di

(
1

12 + 2νs
τ2

i

)
e−τi

x
b

}
,

g(x) = −
2
∑

i=1
die−τi

x
b ,

(5)

with the coefficients di and τi as
di =

τ3−i
τ3−i − τi

, (6)

τi = 2
√

3
{

5(1− νs) + (−1)i[10(1− νs)(2− 3νs)]
1
2
} 1

2
, (7)

where L and b denote the length and width of a rectangular plate. Note that the constant
curvature κ is given by [77]

κ =
6(1− νs)

Est2
s

σsurf. (8)

In the case of long aspect ratio L� b, the analytical solution states that the curvature
of the cantilever follows the Stoney’s equation in Equation (3) far from the clamped edge
and then decays exponentially with a characteristic length of the order of b. A different
approach was also reported by Tamayo et al. for a cantilever with a relatively small aspect
ratio with L > b [78]. They obtained a simple formula for the averaged transversal and
longitudinal curvatures with Poisson’s ratio-dependent coefficient.

To consider the effect of the property of a receptor layer, the Timoshenko beam the-
ory, which was originally developed to analyze a bimetal strip, can be used [79]. The
Timoshenko beam theory includes all relevant physical properties of both the cantilever
substrate and coating film. On the basis of the Timoshenko beam theory, an analytical
model for the static deflection of a nanomechanical cantilever-type sensor coated with a
solid layer, was derived by Yoshikawa [80]. A simple cantilever covered by a coating film,
in which isotropic internal strain ε f is applied, is assumed as shown in Figure 5a. The
deflection of the cantilever ∆z is described as [80]

∆z =
3
(

ts + t f

)
l2
s

(A + 4)t2
f + (A−1 + 4)t2

s + 6t f ts
ε f , (9)

with

A =
Eswsls
1− νs

/
E f w f l f

1− ν f
, (10)
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where E f and ν f are the Young’s modulus and Poisson’s ratio of a coating film, respectively;
ws and w f correspond to the widths of a cantilever and a coating film, respectively. By
substituting the relation between the internal strain ε f and the internal stress σf , which is
given by

ε f =
E f

1− ν f
σf , (11)

and Equation (2) into Equation (9), the deflection of a cantilever ∆z can be described as a
function of surface stress σsurf. In the case of ts � t f , Equation (9) reduces to the Stoney’s
equation in Equation (3). As clearly seen in Figure 5b, the derived equation well expresses
the dependence of the thickness and the coating film properties, while the Stoney’s equation
only covers the case of ts � t f .

Figure 5. An analytical solution of cantilever-type nanomechanical sensor. (a) Schematic illustration
of a cantilever coated with a film. (b) Dependence of a cantilever deflection on the thickness of
coating films t f with various Young’s moduli of coating films E f ranging from 0.1 to 100 GPa
calculated by Equation (9). The values calculated by FEA are represented with solid squares. Black
and gray dashed lines correspond to the cantilever deflection calculated by the Stoney’s equation in
Equation (3) and Sader’s model in Equation (4) with Equation (8), respectively. l f = ls = 500 [µm];
w f = ws = 100 [µm]; ts = 1 [µm]; Es = 170 [GPa]; νs = 0.28; ν f = 0.30; and σsurf = 0.1 [N m−1].
Reprinted with permission from Ref. [80]. Copyrights 2012, American Institute of Physics.

Various analytical solutions for understanding the relations between the bending
and the surface stress [81–83] as well as the extended Stoney’s equations with complex
systems [84–88] have been proposed; however, these models are still limited to simple and
specific models. Alternatively, finite element analyses (FEA) can numerically simulate large
varieties of complicated systems, including various cantilever-type nanomechanical sensors
and any other type of nanomechanical sensors [38,39,75,77,78,80,81,89–92], providing some
guidelines of the effect of the surface stress for the static mode nanomechanical sensing.

2.3. Sorption Kinetics and Viscoelastic Behaviors of Receptor Materials in Static Mode

Signal response in the static mode operation of nanomechanical sensing is derived
from the surface stresses exerted on the surface of a substrate. This surface stress is induced
by the sorption of the analyte on the coating film. While the effect of the surface stresses
has been well investigated, as described above, the difference in signal response for each
analyte is governed by the physicochemical interaction between an analyte and a coating
film. Therefore, an understanding of the relationship between such physicochemical
interactions and the sorption-induced stress/strain is important in identifying the analyte
as practical applications for artificial olfaction. Here, we present related theoretical studies
of physicochemical interactions in nanomechanical sensing based on sorption kinetics.

In the case of the sorption-induced nanomechanical sensing, there are several in-
vestigations using nanomechanical cantilever-type sensors [93–95]. In the models, the
sorption-induced internal strain in a coating film ε f is approximated as follows [95]:

ε f =
3
√

1 + Cva − 1, (12)
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which has the linear approximation given by

ε f =
1
3

Cva, (13)

for small volume expansion (i.e., ε f � 1), where C is the concentration of absorbed analyte
in the coating film; va is the specific volume of the absorbed analyte. The absorption-
induced strain can, therefore, be assumed to be directly proportional to the concentration of
absorbed analyte in the coating film C. From Equation (9) with Equation (13), the deflection
at the free end of the cantilever ∆z can be approximated to be directly proportional to the
concentration of an analyte in the coating film.

The absorption process of an analyte into the bulk of a coating is generally rate limited
by the diffusion of the analyte across the surface barrier and into a coating film [93]. If
the diffusion is Fickian, then the rate of absorption will be proportional to the difference
between the equilibrium concentration in the coating film KpCg(t) and the concentration
already absorbed analyte into the coating C(t) as [93,95,96]

d
dt

C(t) =
1
τs

[
KpCg(t)− C(t)

]
, (14)

where Kp is the partition coefficient and Cg(t) is the concentration of the analyte in the gas
phase; τs or 1/τs is the diffusion time constant or a single decay rate, respectively.

In the case of gas sensing using nanomechanical sensors, a gas line introducing sample
gas by carrier gas and a purge gas line to desorb the sample gas molecules absorbed in the
coating film are switched. Since the sample gas is generally introduced by the continuous
flow of headspace gas or vapors generated by bubbling liquid samples, the concentration of
analyte in sample gas can be assumed to be homogeneous in time (i.e., Cg(t) = Cg). Thus,
a rectangular injection of analyte with a constant rate can be considered (see also Figure 3a
in Ref. [96] and Equation (10) in Ref. [96]). The differential equation in Equation (14) can be
solved as a step function:

C(t) =


0, t < t0

KpCg

(
1− e−

t−t0
τs

)
, t0 ≤ t < t1

KpCg

(
1− e−

t1−t0
τs

)
e−

t−t1
τs , t1 ≤ t

, (15)

where t0 and t1 are the times when sampling and purging starts, respectively (see also
Figure 3 in Ref. [32]).

The analytical solution of the absorption process can be expressed as a typical first-
order response; however, most of the signal responses from the nanomechanical sensing
do not follow the above derived equation because a large number of receptor materials
exhibit viscoelastic behavior. The viscoelastic properties arise from dynamic differences
on molecular rearrangements [97]. To overcome this problem, Wenzel et al. proposed a
theoretical model for a cantilever-type nanomechanical sensor coated with a viscoelastic
material [95]. The theoretical models are derived from the simplest three-parameter solid
model [95,98]:

τrEU
d
dt

ε(t) + ERε(t) = τr
d
dt

σ(t) + σ(t), (16)

where EU and ER denote the unrelaxed (instantaneous) and relaxed (asymptotic) moduli,
respectively, and τr is the time constant of stress relaxation. The three-parameter solid
model describes the stress/strain relationship in a viscoelastic solid that exhibits both
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viscous and elastic properties. As proposed by Wenzel et al. [95], the derived general
differential equations from Equation (16) can be greatly simplified as

d
dt

σ(t) = −σ(t)
τr

+
ERλ

τr

(
EU
ER
− τs

τr

)
C(t)−

EUKpλ

τs
Cg(t), (17)

when the coating film is significantly soft (i.e., E f � Es) or thin (i.e., h f � hs), where
λ = 1

3 va. By substituting Equation (15) into Equation (17), the general differential equa-
tion that governs the stress with a rectangular injection can be solved. As presented in
Figure 6, the derived equation clearly fits well with viscoelastic polymer-coated signals
that respond upon exposure to an analyte. Importantly, nanomechanical sensing signals
often exhibit overshoot trends in the injection process and undershoot trends in the purge
process (Figure 6b). The derived equation based on Wenzel’s model clearly simulates these
overshoot/undershoot trends. The derived condition for which the response exhibits the
overshoot/undershoot trends is

EU
ER
− τs

τr
> 0, (18)

only if EU > ER with a long enough duration, as shown in Figure 6c.

Figure 6. Comparison of experimentally measured signal responses of cantilever-type nanome-
chanical sensors and calculated bending responses based on Wenzel’s model. (a,b) Compar-
ison of experimentally measured signal responses for (a) a cyclodextrin-coated cantilever ex-
posed to trichloroethylene and (b) a poly(diphenoxyphosphazene)-coated cantilever exposed to
di-isopropylmethylphsphonate. (c) Typical calculated bending response for a cantilever-type nanome-
chanical sensor during absorption of analytes for various sorption times but same steady-state
sorption-induced elongation. Reprinted with permission from Ref. [95]. Copyright 2008, American
Institute of Physics.

It should be noted that the derived equation based on Wenzel’s model can be utilized
for extracting fitting parameters by using a signal response, which reaches the steady state or
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equilibrium state. However, when the measured signal response does not reach the steady
state, the parameters extracted from the experimental results cannot predict the entire
signal responses (Figure 7a). Recently, Minami et al. extended the analytical solution based
on Wenzel’s model to the multistep injection–purge cycle system, which can be effectively
utilized to predict and/or analyze the signal responses of a nanomechanical sensor without
measuring the signal until it reaches the steady state [96]. In nanomechanical sensing,
the multistep injection–purge cycles are often used to obtain repetitive signal patterns
(Figure 7b). For the derivation of the multistep injection–purge cycles, they considered a
rectangular pulse wave-like sequence, in which the concentration of an analyte in the gas
phase Cg(t) can be described as a step function:

Cg(t) =


0, t < t0
Cg, t2(n−1) ≤ t < t2n−1
0, t2n−1 ≤ t < t2n

(n = 1, 2, . . .) , (19)

where n indicates the number of the n-th injection and the n-th purge process [96]. Then,
from Equation (14) with Equation (19), the general differential equation that governs the
concentration of the analyte in the coating film in time can be solved. By substituting
the derived equation into the three-parameter solid model in Equation (16), the general
differential equation that governs the stress–strain relationship of viscoelastic behavior can
be solved, resulting that the recurrence relation between at the n-th and the (n + 1)-th purge
processes and the relation between the n-th purge and the (n + 1)-th injection are found.
Then, the recurrence formula can be solved, and hence the stresses at the n-th injection and
purge processes are derived as [96]

σ(t) =



0, t < t0

−σsat. + σsat.α
2(n−1)

∑
i=0

(−1)ie−
t−ti
τs + σsat.(1− α)

2(n−1)
∑

i=0
(−1)ie−

t−ti
τr , t2(n−1) ≤ t < t2n−1

σsat.α
2n−1

∑
i=0

(−1)ie−
t−ti
τs + σsat.(1− α)

2n−1
∑

i=0
(−1)ie−

t−ti
τr , t2n−1 ≤ t < t2n

, (20)

with
σsat. =

1
3 ERKpCgva,

α = 1
τs

(
EU
ER
− τs

τr

)(
1
τs
− 1

τr

)−1
.

(21)

The analytical solution in Equation (20) based on the derived model shows good
agreement with the trends observed in the experimental results measured by MSS coated
with different viscoelastic materials, including polymers and inorganic nanoparticles [96].
Furthermore, as described above, the analytical solution based on Wenzel’s model does not
predict an entire shape of a signal response when the measured signal responses do not
reach a steady state (Figure 7a). Conversely, in the case of the multistep injection purge
model in Equation (20), the curves predicted by the extracted parameters fit well with the
experimental results, as shown in Figure 5b.

As described above, the understanding of the interactions between a receptor layer
and an analyte provides a guideline to design and develop an effective receptor material.
The models based on the sorption-induced nanomechanical sensing can effectively extract
the indices related to the viscoelastic properties of the receptor materials as well as the
interactions with the analytes. Moreover, the analysis of the transient response using the
above-derived models will be beneficial for the improvement in the recognition accuracy of
target analytes based on scientific interpretation. The optimized parameters can be extracted
based on the sorption kinetics, and the optimized parameters can be directly used as
effective indices for the identification of gas species, as proposed by Imamura et al. [99,100].
Therefore, the analytical solutions derived above can be utilized for the analyses of the
static mode nanomechanical sensing signals, contributing to the development of practical
artificial olfaction.
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Figure 7. Fitting accuracy between a single injection signal response and multistep injection–purge
cycles. (a,b) Comparison of experimentally measured signal responses of polycaprolactone-coated
MSS exposed to 1,2-Dichlorobenzeneat the concentration of Pa/Po = 30% and calculated signal
responses based on a single injection signal response model (a) and a multistep injection–purge cycles
model (b). Red colored signal responses are used for optimizing each fitting curve. Black dashed lines
are the corresponding fitting curves. Reprinted from Ref. [96], the authors licensed under CC-BY 4.0.

2.4. Membrane-Type Surface Stress Sensor (MSS)

A microcantilever is the most fundamental geometry of nanomechanical sensors.
Most studies employ optical laser-based detection of the cantilever deflection in both
modes [36,40,41,45,46,101–107]. In this optical readout system, laser light emitted from, e.g.,
a vertical cavity surface emitting laser (VCSEL) and reflected on the surface of cantilevers is
measured by a position-sensitive detector (PSD) (Figure 8). This optical readout, however,
causes several practical problems for actual applications, including artificial olfaction, e.g.,
a bulky laser system, time-consuming laser alignment, and less applicability for large one-
or two-dimensional arrays.

Figure 8. A typical setup for the optical (laser) readout system. VCSEL is usually used as a source of
multiple laser light. Each laser light reflected on the surface of each cantilever is measured by PSD.
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To overcome these problems, the electrical readout of cantilever-type sensors has
been investigated. One of the promising solutions is the use of lever-integrated piezore-
sistive sensing [108–119]. Several studies have been reported to improve the sensitivity
of piezoresistive cantilever-type sensors for surface stress sensing applications by struc-
tural modification [57], such as making a through hole [120], the patterning of a cantilever
surface [121], or the variation of geometrical parameters (e.g., length, width, and overall
shapes) [122–124]. All these approaches rely on suppressing one of the isotropic stress
components, and thus have yet to yield stress large enough to make piezoresistive detection
comparable to the optical readout approach.

To realize the appropriate scheme for the enhancement of sensitivity, it is important
to note the basic properties of a piezoresistive cantilever-type nanomechanical sensor for
surface stress sensing, i.e., piezocoefficient [38]. Because of its high piezocoefficient, p-type
piezoresistors created by boron diffusion onto a single crystal silicon with (100) surface
can be effectively utilized [125–127]. Assuming plain stress (i.e., σz = 0) owing to the
intrinsically two-dimensional feature of surface stress, the relative resistance change can be
described as follows [127,128]:

∆R
R
≈ 1

2
π44
(
σx − σy

)
, (22)

where π44 (ca. 138.1 × 10–11 Pa−1) is one of the fundamental piezoresistance coefficients of
the silicon crystal; σx, σy, and σz are stresses induced on the piezoresistor in [110], [1–10],
and [001] directions of the crystal, respectively. Note that the positive/negative signs of σx
and σy are related to the longitudinal/transversal piezoresistive effect in the <110> crystal
directions of p-type (001) silicon. According to Equation (22), both enhancement of σx (σy)
and suppression of σy (σx) are required to yield a substantial amount of ∆R/R. In the case
of surface stress sensing, however, the stress is basically isotropic, that is, σx is almost equal
to σy, resulting in ∆R/R ≈ 0. Therefore, the resultant signal is virtually zero on the whole
surface. Because of this intrinsic material property, it is difficult to significantly improve
sensitivity as long as simple cantilever-type structures are considered.

Taking account of this intrinsic problem, Yoshikawa et al. have comprehensively
analyzed strain amplification schemes for sensing applications based on the strategies
of the constriction and double lever geometries, leading to a development of a specific
geometry: MSS [38,39]. Figure 9 shows the basic configuration of the MSS consisting of
an adsorbate membrane supported with four sensing beams, in which piezoresistors are
embedded, comprising a full Wheatstone bridge. The membrane is coated with a receptor
layer, which generates the surface stress induced by mechanical deformation. The surface
stress on the membrane is transduced to the four sensing beams as amplified uniaxial stress,
resulting in the changes in the electrical resistance of the piezoresistors [38,39]. The signal
output of MSS (Vout) is provided by the change in total output resistance obtained from the
built-in Wheatstone bridge circuit expressed as [38,39]

Vout =
VB
4

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
, (23)

where VB is the bridge voltage applied to the Wheatstone bridge circuit and ∆Ri/Ri is the
relative resistance change in each sensing beam (Figure 9). In the case of MSS structure,
the dominant stresses induced on the membrane are σx for R1 and R3 and σy for R2 and R4,
resulting in opposite signals for the relative resistance changes in each set of resistors (see
Equation (22)) [39]. Therefore, the entire induced surface stress can be efficiently utilized,
resulting in high sensitivity, a self-compensated low-drift operation with a full Wheatstone
bridge, and a stable and robust operation without a free end.

On the basis of MSS geometry, other types of MSS have been reported. For example,
Seena and her group have reported the MSS deposited with indium tin oxide (ITO) [129],
which have been reported to exhibit strong piezoresitance behavior [130,131]. They also
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applied the ITO piezoresistors further to the polymer-based MSS [132]. For another example,
Yen and Chiu have designed an MSS with square holes in the membrane for the structure
releasing process and achieved two-fold higher sensitivity than that of cantilever-type
nanomechanical sensors [133].

Figure 9. Schematic illustration of MSS with p-type piezoresistors on n-type single crystal Si(100). In
this configuration with current flowing in x-direction, blue (R1 and R3) and red (R2 and R4) colored
piezoresistors give opposite signs in ∆Ri/Ri in response to the surface stress induced on the adsorbate
membrane. Reprinted with permission from Ref. [38]. Copyright 2012, American Chemical Society.

3. Design of Receptor Materials for Nanomechanical Sensors

One of the great advantages of using nanomechanical sensors, including MSS, is the
utility of wide varieties of receptor materials [55,57,58]. Unlike other types of chemical
sensors, nanomechanical sensors can obtain signal responses by mechanical deformation of
receptor materials derived from the sorption of target analytes. Since it has been observed
that almost all kinds of solid materials, including polymers, metals, and nanomaterials,
exhibit the mechanical deformation upon gas sorption, large varieties of solid materials
can be utilized as a receptor material to achieve a wide range of chemical selectivity and
sensitivity [55,57,58]. The variety of the receptor materials used for nanomechanical sensors
in both static and dynamic mode operations are listed in Table 1. In this section, we will
review some of the effective receptor designs for nanomechanical sensors, especially for
MSS [134–137].One type of the receptor materials is a bulk metal. The original applications
of nanomechanical sensors reported by Gimzewski et al. [40] and Thundat et al. [41] in
1994 used bulk metal film coatings as receptor layers. Gimzewski et al. used a 40 nm-thick
Pt polycrystalline layer coated by vacuum deposition to monitor the catalytic reaction
of hydrogen and oxygen to form water over a Pt surface in the static mode operation
of cantilever-type nanomechanical sensors [40]. Thundat et al. reported the use of a 40
nm-thick Au film coated for detecting mercury vapor in the dynamic mode operation of
cantilever-type nanomechanical sensors [41]. Recently, Yakabe et al. reported the effective
detection of hydrogen using a 20 nm-thick Pd film coated on MSS [20,21]. They clearly
demonstrated that the Pd-coated MSS detects hydrogen concentrations ranging from 5 to
40,000 ppm in a nitrogen mixture. On the basis of their sorption kinetic investigation [20,21],
hydrogen molecules are dissociated on the Pd surface, and then each atom of hydrogen
penetrates the bulk Pd film, resulting in the expansion of the bulk metal coating film.

Another important material as a receptor layer of nanomechanical sensors is inorganic
nanoparticles. Recent advances in nanotechnology have made it possible to synthesize a
wide variety of nanoparticles with controlled sizes, shapes, and compositions. Compared
to the bulk metal coating described above, inorganic nanoparticles have unique properties,
such as surface functionalities and a high surface area, resulting in high chemical selectivity
and sensitivity. For example, Shiba et al. developed a multistep nucleation-controlled



Biosensors 2022, 12, 762 14 of 34

growth method for synthesizing silica-titania hybrid nanoparticles (STNPs) with various
surface functionalities including aliphatic, aromatic, and hydrophilic groups [138]. Various
STNPs were coated onto each channel of MSS membranes and then the resulting MSS
chip was exposed to various types of chemical analytes [8]. They obtained the different
response trends by tuning the surface functionalities of the nanoparticles (Figure 10a). It
was also demonstrated that the target chemical analytes can be clearly discriminated with
MSS coated with the nanoparticles having different surface functionalities as presented in
principal component analysis (PCA) (Figure 10b).

Figure 10. Wide varieties of chemical selectivity obtained from the surface functionalized silica-titania
hybrid nanoparticles (STNPs). (a) Affinity trend of four different types of STNPs. (b) PCA scatter
plot of 15 different chemicals shown in (a) by using the extracted features from four STNPs bearing
different surface functionalities. Reprinted from Ref. [8], the authors licensed under CC-BY 4.0.

In contrast to the surface functionality of the nanoparticles, surface area is also an
important feature of nanoparticles. By changing the sizes as well as the shapes of nanopar-
ticles, it is possible to tune their surface area. Osica et al. synthesized silica nanoparticles
whose diameters are 29, 376, and 556 nm, and coated them on MSS membranes [139]. The
resulting silica nanoparticles with a larger diameter give lower signal responses because of
the lower surface area, while the nanoparticles with 29 nm in diameter yielded high signal
responses upon exposure to 50 ppm acetone vapor (Figure 11). Interestingly, Oscia et al.
also synthesized surface nanostructured silica nanoparticles [139], i.e., a so-called silica
flake–shell, which is reported by Ji et al. [140,141]. Although the size of the silica flake–shell
nanoparticles is similar to that of 556 nm-sized solid silica nanoparticles, the flake–shell
nanoparticles-coated MSS obtains the highest signal response to 50 ppm acetone, owing to
the high surface area of the flake–shell nanoparticles [139].

Although we focused on inorganic material-based receptor layers in this section,
organic molecules and polymers are also frequently utilized as an effective receptor material,
as summarized in Table 1, because the chemical properties can be diversely tuned by
changing their chemical structures and their functionalities. To realize practical artificial
olfactory sensors, it is important to design a wide variety of receptor materials that have
different chemical selectivity and prepare an array of sensors coated with those materials
for pattern recognition-based analyses.
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Figure 11. Signal response of MSS coated with Zn porphyrin-functionalized solid silica particles
with diameters of 29 nm (SNP29P4Zn; blue line), 376 nm (SNP376P4Zn; light blue), and 556 nm
(SNP556P4Zn; pink), or with Silica Flake–Shell bearing Zn porphyrin (SFS4Zn; green line) to 50 ppm
acetone in nitrogen. Corresponding SEM micrographs are shown; the white scale bars are 250 nm.
Reprinted with permission from Ref. [139]. Copyright 2017, American Chemical Society.

4. Applications for Artificial Olfaction Using MSS

As we discussed above, MSS offers one of the promising platforms for practical
artificial olfaction owing to its multiple advantages. Various practical applications of MSS
as artificial olfaction have been reported, especially in combination with AI and machine
learning approaches; for example, the ripening stages of European pears are quantitatively
predicted through their odors [135,142]. In this section, we will discuss some of the practical
applications of MSS as artificial olfactory sensors.

4.1. Smell Identification

One of the key applications of artificial olfaction is to identify smells similarly to a
human nose. As mentioned earlier, people identify smells through pattern recognition
derived from c.a. 400 different types of olfactory receptors (Figure 1). By using this pattern
recognition analysis with an array of MSS, various target analytes can be identified [8,143].
As an example of a practical application, Imamura et al. demonstrated the identification of
spices and herbs [144]. They used commercially available polymers, i.e., PMMA, PAH, and
PVP (see also Table 1) as receptor layers of MSS and the resulting MSS array was exposed
to various vapors of spices and herbs (i.e., cinnamon, parsley, nutmeg, peppers, Yuzukosho
(citrus-flavored pepper; one of the Japanese spices), oregano, garlic, and rosemary). By
applying PCA, they distinguished each spice and herb as well as classified them into three
major groups related to their major components, such as their terpenes and terpenoids,
organosulfurs, and aromatic aldehydes (Figure 12) [144].
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Figure 12. PCA scatter plot for smell identification of spices and herbs by the MSS array. The spices
and herbs are categorized into three groups reflecting their major components (i.e., organosulfur,
terpenoids, and aromatic aldehydes). Green dotted circle indicates the pinene-containing spices and
herbs. Reprinted and modified with permission from Ref. [144]. Copyright 2016, the Japan Society of
Applied Physics.

Recently, Shiba et al. also demonstrated the identification of fuel oils including gaso-
line contaminated with kerosene [145]. Fuel oils such as gasoline, kerosene, and diesel
are composed mainly of aliphatic hydrocarbons and have similar chemical properties.
Furthermore, the illegal adulteration of fuel oils with a certain amount of impurities to
increase their volume has become a frequent and serious problem worldwide [146,147].
They not only distinguished aliphatic hydrocarbons with different chain length but also
differentiated the fuel oils, such as regular gasoline, premium gasoline, kerosene, and diesel
with 10% kerosene-contaminated gasoline by PCA (Figure 13) [145]. The demonstration of
such practical discrimination performance in a sensing device with practical specifications
such as palm-top size, room temperature operation, a low power consumption, mechanical
and electrical stability, and a quick response is expected to serve as a sensing platform to
solve the serious problem of the fuel adulteration in the real environments.

As mentioned earlier, pattern recognition analysis using nanomechanical sensors can
classify odors of spices and herbs based on their major components. However, unlike
sight (primary colors known as red, green, and blue) or taste (primary tastes known as
sweet, sour, salty, bitter, and umami) composed of a rather limited number of receptors,
the determination of primary odors is still challenging because there are ca. 400 different
olfactory receptors with their complex cross selectivity among them [34,148]. Therefore,
scientists have still been exploring and trying to alternatively define primary odors [148,149].
Recently, Xu et al. proposed an effective approach for determining “quasi” primary odors in
combination with an MSS array and machine learning (Figure 14) [10]. They demonstrated
this approach of determining “quasi-primary” odors out of a limited number of odor
samples rather than determining true primary odors out of a full range of odors. As
an example, 12 liquid samples (pure water and 11 different seasonings) were analyzed
and three odor sources (fish sauce, cooking sake, and pure water) were selected as quasi-
primary odors by endpoint detection (Figure 15) [10]. The flow of endpoint detection is as
follows. First, from the signal responses of MSS to each odor sample, the d-dimensional
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features of the i-th odor sample are extracted as xi ∈ Red. The feature matrix X is defined as
X = (x1, x2, . . . , xN) when the number of samples is N. This matrix is standardized so that
a mean and a variance of each column are zero and one, respectively. Next, they set K as a
large real number and generate K random d-dimensional unit vectors {sk} (k = 1, . . . , K).
All data X are projected onto sk, i.e., calculate y = XTsk, which are the coordinates of each
sample in the sk direction. Then, the indices of the maximum and minimum values of
y are obtained as I− = arg mini y and I+ = arg maxi y, respectively. These samples are
considered as the endpoint in the sk direction. Thus, the endpoint ranking can be estimated
by counting the number of times (endpoint scores) when each sample is considered as an
endpoint in various directions, i.e., {sk} (k = 1, . . . , K). This ranking for 12 liquid samples
is shown in Figure 15a.

Figure 13. Identification of fuel oils by MSS through PCA. (a) PCA scatter plot of the identification
of linear aliphatic hydrocarbons. (b) PCA scatter plot of the identification of fuel oils through their
vapors. Reprinted from [145], the authors licensed under CC-BY-NC-ND 4.0.

Figure 14. Overview of the determination of quasi-primary odor by combining machine learning and
nanomechanical sensing. In the first step, the odor samples are converted to response signals with
the MSS. From MSS signal responses, characteristic features are extracted. By performing machine
learning-based endpoint detection, selected numbers of quasi-primary odors are determined (in
this case, three). They are placed at the vertices on a chromaticity triangle and the other odors are
expressed as a mixture ratio of the three quasi-primary odors, resulting in the color representation of
each sample. Reprinted from Ref. [10], the authors licensed under CC-BY 4.0.

As the quasi-primary odors are determined, all the other seasonings can be quantified
in terms of the mixture ratios of these quasi-primary odors as a linear combination by
performing quadratic programming (Figure 15) [10]. In addition, using the obtained
mixture ratio, each odor sample can be expressed by “color” when the primary colors
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(red, green, and blue) are assigned to of the quasi-primary odors. Accordingly, the color
map of seasonings is obtained as Figure 15b. To find “real” primary odors, it is required
to examine all the combinations of odors and designated sensors, which is unrealistic.
In contrast to the “real” primary odors, the proposed approach can determine a certain
number of quasi-primary odors and represent any other odor in a given dataset. Thus, this
approach may possess various applications to decompose, synthesize, and visualize smells
in the wide range of fields, including food and cosmetic fields, where people are usually
interested in a certain set of odors rather than comparing with random odors.

Figure 15. Determination of quasi-primary odors by endpoint detection. (a) Endpoint (EP) scores,
mixture ratio (w1, w2, w3), and difference ∆ between original and composed signals. (b) Color map
of pure water and 11 seasonings. Fish sauce (red), cooking sake (green), and pure water (blue) are
selected as quasi-primary odors. (c,d) Original MSS signals and the composed signals for grilled
meat sauce (c) and soy sauce (d). Reprinted from Ref. [10], the author licensed under CC-BY 4.0.
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4.2. Quantification of Gas Components

One of the representative applications of artificial olfaction is the quantification of a
target analyte in a certain smell composed of a complex mixture of gaseous molecules. A
chromatographic approach is a straightforward way to quantitatively analyze smells; how-
ever, it is time consuming and requires trained operators. A pattern recognition approach
is useful for distinguishing a sample from others, as described above. In addition to the
discrimination, the possibilities of the quantification through the pattern recognition anal-
ysis were investigated on the basis of the multiple sensor responses [150], whereas it has
been experimentally demonstrated that it is practically impossible to extract specific values
directly and quantitatively from a complex sample with three or more components by a
conventional approach. Shiba et al. demonstrated that an array of MSS combined with a
machine learning regression technique can derive quantitative information from the smells;
in this case, alcohol contents in various liquors (Figure 16) as an example [8]. The surfaces of
MSS membranes were coated with four different receptor materials and 35 liquid samples,
including water, teas, liquors, and water/ethanol mixtures, were exposed to the MSS array
to obtain the signal responses. The MSS signals were then processed by using kernel ridge
regression. From the prediction accuracies of machine learning, it is found that the hy-
drophobic receptor materials are useful for the prediction of an alcohol content. Using four
types of hydrophobic materials, they succeeded in quantifying the alcohol contents of not
only known liquors, which is used for constructing a machine learning model as a training
dataset (represented as blue open circles in Figure 17), but also unknown liquors including
red wine, Imo-shochu (spirits distilled from sweet potatoes), and whisky, that were not used
to train the prediction model (represented as red solid circles in Figure 17). Very recently,
the Asahi Kasei Corporation in collaboration with Japanese Sake Brewery, Yoshinogawa
Co., Ltd. has demonstrated the quantification of alcohol content through the odors of
Japanese sake during the sake brewing process [151] and is accelerating its efforts toward a
social implementation of MSS-based artificial olfaction. Moreover, Shiba et al. also reported
another quantitative analysis using MSS based on the machine learning approach [9]. They
measured vapors of a ternary mixture consisting of water, methanol, and ethanol. From
the obtained MSS signals, they constructed prediction models based on Gaussian process
regression, resulting in the successful estimation of the concentration of each component. In
addition, this research was started with six types of surface functionality-bearing nanopar-
ticles as receptor materials. From the machine learning results, it was found that receptors
with a mixture of alkyl (C18) and amine (NH2) functionalities are important, and by devel-
oping new nanoparticles with varying the mixture of these functionalities, high prediction
accuracy was achieved. In other words, data-driven analysis has provided a guideline for
material development. This ternary mixture is one of the model systems that simulate a
practical situation; a target is coexisting with a structurally similar species (i.e., methanol
and ethanol) under humidified conditions. These successful quantification approaches are
potentially applied to deriving a variety of information from any complicated samples, and
hence can be adopted as a quantitative odor analysis method in a practical situation in
various fields, such as food, agriculture, cosmetics, environment, healthcare, and medicine.

4.3. Exhaled Breath Diagnosis

One of the most advanced and challenging applications of olfactory sensors is the mon-
itoring of health conditions and medical diagnosis. Health check and medical diagnosis by
analyzing exhaled breath samples are based on the physiological phenomenon of gas ex-
change occurring in the alveoli. Human blood contains chemicals that reflect physiological
phenomena and metabolic conditions in the human body [5,6]. Volatile organic compounds
(VOCs) are contained in the human exhaled breath through the lung during the respiratory
process and are released out of the body [152]. Breath diagnosis is considered to be an
innovative non-invasive approach, that allows the development of a user-friendly, simple,
and intuitive diagnostic platform [153]. Thus, the applications of artificial olfaction based
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on various types of chemical sensors have been investigated [6]. With its high sensitivity
and robustness, MSS would be a promising option for breath diagnosis.

Figure 16. Overview of the quantification of alcohol content from the smell of liquors by combining
machine learning and nanomechanical sensing. In the first step, the odor sample is converted to
response signals with the MSS. From the signals, characteristic features are extracted. By performing
machine learning-based regression, alcohol content is determined. Reprinted from Ref. [8], the author
licensed under CC-BY 4.0.

Figure 17. Parity plot of predicted alcohol content versus real alcohol content under an ambient
condition. The blue open circles represent the known liquors which are used to train the machine
learning model. The red solid circles are the unknown liquors: red wine (12%), Imo-shochu (25%), and
whisky (40%). Reprinted from Ref. [8], the author licensed under CC-BY 4.0.

Cancer is one of the most sever diseases in the world with the highest mortality. As
a preliminary study, Loizeau et al. demonstrated the cancer diagnosis through breath
analysis using an MSS array [154,155]. They used 16 different polymers as a receptor
material, which have different chemical and physical properties to express a wide range
of chemical selectivity. Breath samples collected from both healthy persons and head and
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neck cancer patients were analyzed in a double-blind trial. The MSS signals were analyzed
by PCA. They achieved a successful discrimination of head and neck cancers from healthy
persons through the analysis of the exhaled breath samples. In addition, if a cancer patient
undergoes surgery to remove a tumor, the patient’s breath is expected to have a similar
expiratory pattern to that of a healthy person. To demonstrate this concept, Lang et al.
measured the breath samples from three head and neck squamous cell carcinoma patients
before and after surgery with four healthy persons [156]. By analyzing the MSS signals
by PCA, the breath samples from a post-surgery person are clearly distinguished from
the breath samples from a pre-surgery person and are classified as the exhaled breath
from the healthy persons (Figure 18). Although the number of samples examined in these
investigations was still limited, the differentiation accuracy is expected to be improved by
increasing the number of breath samples in combination with the integration of advanced
machine learning algorithms.

Figure 18. PCA scatter plot showing three distinct clusters representing healthy control persons, head
and neck squamous cell carcinoma patients before and after surgery. Reprinted from Ref. [156], the
author licensed under CC-BY 4.0.

Although the above-mentioned studies have demonstrated a certain sensitivity and
specificity of MSS in breath diagnostics, it is known that the signals measured by olfactory
sensors based on chemical sensor arrays including MSS are affected by the sample condi-
tions such as temperature, humidity, and interfering gases. To evaluate the reproducibility
and applicability of MSS-based olfactory sensors to the practical breath analysis, a statistical
evaluation of a large number of breath samples collected over a long period of time is
required. Recently, Inada et al. have conducted a statistical evaluation of total expiratory
breath samples collected throughout more than a year under controlled measurement con-
ditions [157]. They demonstrated that the key to achieving a reasonable reproducibility is to
reduce the undesired effects, such as interfering exogenous gases and humidity, stemming
from the differences between the sample and the purge gases. They proposed a protocol
that compensates for each of the two typical inconsistencies between the sample and the
purge gases by combining total expiratory breath sampling and room air purging and by
reducing the contributions of the humidity in a purge gas, respectively. Following this
protocol, they confirmed that a test substance in the exhaled breath can be detected. Using
this protocol with the optimized MSS array, we are collaborating with Ibaraki Prefectural
Central Hospital and Faculty of Medicine, University of Tsukuba to conduct studies on
the exhaled breath diagnosis of cancer and are increasing the number of exhaled breath
samples to improve the differentiation accuracy for the practical medical diagnosis.
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4.4. Olfactory Sensors without Any Flow Controls

Almost all systems for the artificial olfaction and e-nose applications require devices to
control gas flow, such as pumps and MFCs to obtain comparable sensing signals. Needless
to say, the above-described examples used such devices. More importantly, to obtain
accurate pattern recognition analysis for artificial olfaction, effective features such as slope,
area, and decay time must be extracted in the same manner. However, the features strongly
depend on the gas input patterns (e.g., gas flow control). Thus, the gas input patterns
must be strictly fixed by using the device to control gas flow for every measurement. To
resolve this intrinsic problem, data analysis methods in system identification have been
developed [158]. Nakamura et al. demonstrated that the signal responses of QCM-based
sensors can be analyzed by an autoregressive model [159]. They also derived a method
based on a transfer function for extracting time constant from the dynamic behavior of
signal responses with varying gas concentrations [160]. Furthermore, pioneering works
were done by Marco, Pardo, and coworkers to adapt non-linear models, including artificial
neural networks (ANN) and Wiener kernel analysis, for describing the complex response
of sensing systems using QCM [161–163]. Most of the models well describe the change in
the flow system; however, the studies still used such devices to demonstrate the models by
changing the input patterns of the gas flow.

The most challenging measurement system is an open sampling condition, in which
sensors are directly exposed to sample gases without any gas flow control. In this case, the
gas input pattern is neither controlled nor monitored. Several research groups reported the
gas identification in the open sampling conditions [164–172]. While gas identification proto-
cols without any gas flow control are used in these studies on gas identification under open
sampling conditions, the signal features used in the studies depend on gas input patterns,
giving rise to limited measurement conditions. To realize a gas identification that is highly
robust to gas input patterns, it requires analytical methods based on signal features that
are intrinsically independent of the gas input patterns, that is, features that are determined
solely by the combination of sensors and gas species. Thus, further breakthroughs have
been demanded to improve the usability of the measurement system, such as robustness
and portability, towards the practical application of artificial olfaction.

Imamura et al. recently developed a gas identification protocol under the open
sampling condition using the transfer function ratio, which is intrinsic to gas species and is
independent of the gas input patterns [173]. A transfer function is one of the mathematical
representations to describe an input–output relationship. When a gas sensing system
exhibits a linear response, in which an output sensing signal y(t) is linear in the gas
injection pattern x(t), y(t) can be obtained as a convolution of x(t) and the time-domain
transfer function (of the impulse response function) hg(t) [173]:

y(t) =
∫ t

0
hg(τ)x(t− τ)dτ, (24)

where t and g denote the time and gas species, respectively. As hg(t) is considered an in-
trinsic function of the gas, gas species can be identified by hg(t). Since hg(t) is independent
of x(t), one of the biggest advantages of the use of hg(t) as a feature is that measurement
data obtained through different gas input patterns become comparable. By applying the
Fourier transform, the frequency-domain expression for Equation (24) can be obtained as

Y( f ) = Hg( f )X( f ), (25)

where X( f ), Y( f ), and Hg( f ) are the frequency-domain expressions for the gas input,
output signal, and the transfer function, respectively. Gas species can be identified by
the transfer function Hg( f ) directly calculated from the gas input pattern X( f ) (e.g., gas
flow rate or gas concentration) and sensing signal Y( f ); however, it is required to measure
X( f ) by controlling and/or monitoring gas injections. To overcome this problem, they
further demonstrated gas identification using an array of MSS with different sensing
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characteristics [173]. Considering that a gas g is introduced into a gas sensor array according
to gas input X( f ), the output signal of the i-th channel of the sensor array Yi( f ) can be
written as

Yi( f ) = Hg,i( f )Xi( f ), (26)

where Hg,i( f ) is the transfer function of the i-th channel for the gas g [173]. If each channel
of the sensor array can be considered spatially equivalent to the gas input, it is possi-
ble to assume that Xi( f ) is the same for all the channels, i.e., Xi( f ) = X( f ). Thus, for
any combination of two channels m and n, from Equation (26), the following equation
holds [173]

X( f ) =
Ym( f )

Hg,m( f )
=

Yn( f )
Hg,n( f )

. (27)

Then, Equation (27) can be rewritten as

Km,n( f ) =
Hg,m( f )
Hg,n( f )

=
Ym( f )
Yn( f )

, (28)

where Km,n( f ) is the transfer function ratio. As can be seen in Equation (28), Km,n( f ) can
be obtained from the output signal ratio of the m-th and n-th channels of the array in the
frequency domain with any gas input pattern. Therefore, it is possible to identify a gas
species without controlling or monitoring the gas input pattern by calculating Km,n( f )
from an arbitrary combination of two channels of a sensor array. They demonstrated the
identification of spices and herbs through their smells (i.e., rosemary, red chili pepper, and
garlic) [173]. The odors of the spices and herbs were measured with MSS coated with
four different inorganic nanoparticles bearing different functional groups. By applying
the transfer function ratio obtained from the ratio of the signals in Equation (28) with
machine learning algorithms, they achieved the gas identification of the spices and herbs
up to 89% accuracy. This novel type of gas identification protocol realizes a compact mea-
surement system in which gas species can be identified through a free-hand measurement
(Figure 19) [173,174].

Figure 19. Free-hand measurement setup. Note that this approach requires only a sensor array and a
readout device. (a) Picture of the free-hand measurement setup. (b) Picture of a wireless free-hand
measurement device. Reprinted from [173,174], the author licensed under CC-BY 4.0.

5. Conclusions and Perspective

Nanomechanical sensors are attracting more and more attention as a potential plat-
form for the artificial olfaction in combination with data processing technologies, including
machine learning techniques. The theories briefly described in this review have promoted
the advances and developments in the nanomechanical sensing systems, allowing for inter-
pretations and understandings of the experimental results. We summarized a wide variety
of coating films that can be used for nanomechanical sensors. Those receptor materials have
helped realize various practical applications of nanomechanical sensors for the artificial
olfaction. In addition, machine learning approaches have enabled nanomechanical sensors
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to make significant advances as olfactory sensors, achieving the quantification of target
components and the determination of quasi primary odors. Thereby, nanomechanical
sensors have proven their applicability to artificial olfaction and are expected to contribute
to many fields.

In this review, we featured a specific geometry of a nanomechanical sensor, MSS,
which possesses multiple advantages for practical applications including high sensitivity,
compactness, room temperature operation, mechanical/electrical stability, low power
consumption, and quick response. Although MSS can be utilized for various applications as
olfactory sensors, practical artificial olfaction devices are not ready yet as several challenges
still need to be overcome, such as the development and optimization of the receptor
materials to improve chemical sensitivity and selectivity, precise calibration of signals with
standard gases, mass production of sensor chips and devices, efficient connections with
edge computing and cloud systems, and so forth. These challenges require the integration
of science and technologies through a collaboration with academics and the industry. To
integrate all the required cutting-edge technologies, MSS Alliance, an industry–academia–
government joint research framework, was launched in 2015 by the National Institute
for Materials Science (NIMS), Kyocera Corporation, Osaka University, NEC Corporation,
Sumitomo Seika Chemicals Co., Ltd., Asahi Kasei Corporation (from April 2017), and
NanoWorld AG. [175,176]. Each member of the MSS Alliance, with their own expertise,
contributed to the development of various technologies, which are required for practical
artificial olfaction. To encourage interested companies and research institutes to conduct
demonstration experiments, the MSS Forum was launched in 2017 [142,177]. From 2020,
the MSS Forum has been an open platform for sharing the latest information on MSS,
artificial olfaction, and its social implementation. To effectively integrate the state-of-the-art
technologies accumulated through the MSS Alliance and MSS Forum towards the social
implementation of MSS-based olfactory sensors, we are developing related science and
technologies. We hope that these efforts will eventually lead to the actual contributions of
olfactory sensors in various fields, including the food, environment, agriculture, healthcare,
and medicine fields.

Table 1. List of receptor materials used for nanomechanical sensors including cantilever-type sensors
and MSS in both static and dynamic mode operations.

Receptor Materials MSS (Static) Cantilever (Static) Cantilever (Dynamic)

Small molecules
Calix[n]arene — [178] —
Cu complex [179] — —
Cyclodextrin — [178] —
Metallo-phthalocyanine — [178] —
Metallo-porphyrins [139,180] — —
Porphyrins [139,180] — —
Squalene — [178]

Polymers 1

CAB [42,154] — —
CMC [154,156] — [181]
Dextran [154,182] [182] —
Gelatin — — [183,184]
HPC [156] — —
Tenax [157] — —
P4MS [96,157,173,185] — —
PAA-AA [156] — —
PAH [144,145] [118] [181]
PCL [8,96,173,185,186] — —
PDPP — [178] —



Biosensors 2022, 12, 762 25 of 34

Table 1. Cont.

Receptor Materials MSS (Static) Cantilever (Static) Cantilever (Dynamic)

PECh [174] [178] —
PEG/PEO [99,156] [187] [181]
PEG-MEMA [156] — —
PEI [38,156] [118] [181]
PEMA — [188] —
PHEMA — [189] [189]
PIB [156] [178] —
PLL — [190] —
PMMA [10,92,99,144,145] [35–37,188,191] [36,157,174,181,192]
PS [37,96,185,186] [189] [189]
PS-AA [174] — —
PSS [39,89,154] — [181]
PSU [8,173] — —
PU — [37] —
PVA — [118] [181]
PVC [99] — —
PVF [173,185] — —
PVP [89,144,193] [118] —
PVPh [174] — —
PVPy [154,156] [37] [181]

Inorganic nanomaterials
Copper nanorods — — [194]
Gold NPs [195] [196] [197–199]
Silica NPs [9,10,139,173] — [200,201]
Nanostructured silica NPs [139,202] — —
Silica-Titania hybrid NPs [8–10,96,143,145,173,203] — —
TiO2@MnO2 nanorods — — [204]
ZnO@Si nanorods — — [205,206]

2D materials
Graphenes [207–209] [190,210] [43,197,198]
MoS2 [208] — —
WS2 [208] — —

Self-assembled monolayer
Alkanethiols — [45,181,211] [212–214]
Carboxylated thiols [133] [35,36,181,215,216] —
Aminated silane — [217] [206]
DNA — [46–48,102,117,218,219] [220]
Proteins — [103,133,215,216,221–226] [223]

Metal films
Au — [35,36] [41,44,63]
Cr — [227] —
SiN — — [192]
Pd [20] — —
PdCuSi [21] — —
Pt — [36,40] —

Other materials
Carbon nanotubes — [190] —
MOFs 2 [228] — [229]
Zeolites [193] — —

1 Abbreviations for polymers: CAB, cellulose acetate butyrate; CMC, carboxymethylcellulose; HPC, hy-
droxypropyl cellulose; P4MS, poly(4-methylstyrene); PAA, poly(acrylic acid); PAA-AA, poly(acrylic acid)-
acetic acid; PAH, poly(allylamine hydrochloride); PCL, polycaprolactone; PDPP, poly(diphenoxyphosphazene);
PECh, polyepichlorohydrin; PEG, poly(ethylene glycol); PEG-MEMA, poly(ethylene glycol methyl ether)-
methylmethacrylate; PEI, poly(ethylene imine); PEMA, poly(ethyl methacrylate); PEO, poly(ethylene oxide);
PHEMA, poly(hydroxy ethyl methacrylate); PIB, polyisobutylene (butyl rubber); PLL, poly-L-lysine; PMMA,
poly(methylmethacrylate); PS, polystyrene; PS-AA, poly(styrene-co-allyl alcohol); PSS, poly(sodium 4-styrene
sulfonate); PU, polyurethane; PVA, poly(vinyl alcohol); PVC, poly(vinyl chloride); PVF, poly(vinylidene fluo-
ride); PVP, poly(vinyl pyrrolidone); PVPh, poly(4-vinylphenol); PVPy, poly(vinylpyridine). 2 Metal–Organic
Frameworks.
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