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Abstract

Adapting pathways consist of negative feedback loops (NFLs) or incoherent feedforward loops 

(IFFLs), which we show can be differentiated using oscillatory stimulation: NFLs but not IFFLs 

generically show ‘refractory period stabilization’ or ‘period skipping’. Using these signatures and 

genetic rewiring we identified the circuit dominating cell cycle timing in yeast. In C. elegans AWA 

neurons we uncovered a Ca2+-NFL, diffcult to find by other means, especially in wild-type, intact 

animals. (70 words)

Introduction

A complementary approach to the gene-by-gene approach of molecular biology is to test for 

response signatures (i.e., characteristic input-output features) that are associated with 

specific circuit motifs. A confirmed signature establishes the outlines of a biological network 

before the components are known. The requirements for measuring response signatures are 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding author (sjrahi@rockefeller.edu). 

Author Contributions
Conceptualization and writing: all authors. Experiments and data analysis: SJR, JL, KP. Mathematical proofs: SJR and EDS.

Competing Financial Interests Statement
I declare that the authors have no competing interests as defined by Springer Nature, or other interests that might be perceived to 
influence the results and/or discussion reported in this paper.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2018 February 28.

Published in final edited form as:
Nat Methods. 2017 October ; 14(10): 1010–1016. doi:10.1038/nmeth.4408.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minimal: an experimentally controlled stimulus and a measurable output; biochemical or 

genetic manipulations are not inherently necessary. This makes the approach attractive for 

many biological systems that are difficult to manipulate or have many possible genes to 

pursue. For example, bistability, hysteresis, or irreversibility are signatures of positive 

feedback loops and their detection has supported specific mechanisms(1–3).

Adaptation is a dynamic feature of biological systems, in which the output returns to (near) 

baseline after stimulation onset. For circuit motifs capable of adaptation, generic response 

signatures are currently unknown, even though adaptation is ubiquitous and serves important 

biological functions(4).

Only two basic types of circuits can exhibit adaptation: incoherent feedforward loops 

(IFFLs) and negative feedback loops (NFLs)(5–7) (Fig. 1A–D). In adapting pathways, the 

stimulus S (e.g., an odor) causes the temporary build-up of the response element R (e.g., 

intracellular Ca2+), and the subsequent decrease in R, which is the hallmark of adaptation, is 

either independent of R/direct (IFFL) or dependent on R/indirect (NFL): In IFFLs, S also 

generates an inhibitor I independently of R, and I interrupts the build-up of R or depletes R 

(Fig. 1A). Alternatively, a factor X, which contributes to the build-up of R, is depleted 

independently of R (Fig. 1B). In an NFL, the generation of the inhibitor I (or depletion of X) 

depends on the response R itself, i.e., I (or X) is downstream of R (Fig. 1C, D). (The output 

O of the pathway can be R itself or downstream of R (Fig. 1A–D).) These 2×2 fundamental 

options for adaptation (inhibition by I or depletion of X; dependence on R (NFL) or 

independence (IFFL)) are logically exhaustive, which is supported by computational 

exploration(6) and rigorous mathematical proofs(7). (Ours and previous definitions(6,7) of 

IFFLs and NFLs agree.) Thus, all models describing individual adaptation mechanisms, 

including integral control(5,8) and state-dependent inactivation(9,10) models, can be 

subsumed in these two categories; rewriting the models in mathematically equivalent forms 

can help expose their topologies, see Results and Supplementary Notes. (In real pathways, 

we expect and find that different circuits with different topologies dominate at different 

timescales.)

Response signatures for IFFLs and NFLs would help elucidate a wide spectrum of poorly 

understood biological systems; for example, such measurements ought to resolve contrasting 

mechanisms which have been proposed for the same systems, e.g., the gonadotropin-

releasing hormone pathway(11,12). The distinction between IFFLs and NFLs is itself 

biologically important because each can lead to different system behavior, e.g., steady state 

or oscillations.(13)

Dynamical stimuli have been used to explore biological pathways(14) and to uncover 

interesting new biology(15–18). Specifically, step-like and ramp-like inputs were applied to 

distinguish specific models(8,19–23). In an attempt to explore the general applicability of 

these approaches, we simulated simple adapting models and found various counterexamples, 

which show that it is at least unclear how previous discriminants can be used generally (Fig. 

S1 A–H). Also, varying stimulus strengths, e.g., ramps, can be problematic: many inducible 

promoters are all-or-nothing and thus threshold the stimuli; furthermore, at different 
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concentrations or strengths, stimuli may activate different subnetworks(24), confounding the 

analysis.

Results

We found that a single on-off stimulus pulse does not suffice for discriminating adapting 

circuit types since IFFL and NFL models fit the same experimental adaptation time course 

equally well (Fig. S1 I, J).

Refractory period stabilization

The next more complicated on-off stimulation pattern consists of two or more pulses. 

Considering two simple representations of IFFLs and NFLs (Fig. 1E, F, also see Fig. S1 K, 

L), we noticed a fundamental difference in their responses to a second stimulus pulse: In an 

IFFL, the inhibitor I grows (activator X decreases) independently of the response (up to 

saturation) (Fig. 1A, B), and, therefore, the response to a second stimulus pulse should be 

smaller, the longer the first stimulus pulse was (Fig. 1E). Considering NFLs (Fig. 1F), on the 

other hand, we see that if the first stimulus was long enough for adaptation to ‘kick in,’ the 

entire circuit can be effectively shut off and the inhibition mechanism (I or X) can begin to 

reset; lengthening the first stimulus pulse further matters little for the second response (Fig. 

1F). So, the recovery time or the “refractory period” should always be increasing with the 

stimulus duration in IFFLs, and should be stabilized (robust) in NFLs.

We needed a general, rigorous definition for the refractory period, and thus considered 

repeated on-off stimuli of duration d and period T; we defined the refractory period Tmax(d) 

as the period at which the time-averaged output <O(t, d, T)> =: O(d, T) is maximal for fixed 

d (Fig. 1G, H). At the refractory period, the stimuli produce maximal output. This 

generalizes the common understanding of the refractory period, where for T below Tmax, 

stimulus pulses are too fast for the system to recover due to adaptation (O(d, T) decreases 

with decreasing T<Tmax), and above Tmax, the responses recover but their time average 

decreases (O(d, T)~1/T for T≫Tmax).

For the IFFL and NFL models in Fig. 1E, F, we calculated Tmax(d) analytically and found 

that the slope of Tmax(d) is >1 everywhere for the IFFL model while the NFL model’s 

Tmax(d) is flat (slope=0) for intermediate d (Fig. 1I, J), which describes refractory period 

stabilization in Fig. 1E, F quantitatively. To check more complicated models numerically, we 

set 1/2 as a practical threshold for the slope ∂Tmax/∂d, in-between the minimum slopes in 

Fig. 1I, J. We consider the refractory period ‘stabilized,’ if its slope is below 1/2 in an 

appropriate range of pulse durations d (to be determined by numerical exploration, see 

below).

There are a number of inherent advantages to defining the refractory period by way of 

periodic stimuli and the maximum of the time-averaged output (see Supplementary Notes), 

including for the mathematical analysis and for the experimental data analysis. Crucially, 

this paradigm allows us to only explicitly analyze the refractory periods of small circuits; the 

same results hold (Tmax(d) is invariant) for an infinite number of additions to these circuits 

(Fig. 1K and Supplementary Notes).
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Period skipping

Another response signature can be deduced by considering that when an NFL adapts to a 

stimulus, the entire circuit can be shut off from the stimulus until the inhibition resets and 

the system recovers (Fig. 1L). Any stimuli administered while the circuit is insulated ought 

to have little effect. This would result in responses ‘skipping’ stimulus pulses (a simple 

response pattern being 0-1-0-1-0-… (Fig. 1L), although more complicated patterns are 

possible (Fig. S1 M, N)).

IFFLs cannot exhibit such dynamics because of the following properties (mathematical 

proofs in Supplementary Notes): (1) Period skipping cannot occur in purely feedforward 

systems (such as the IFFLs modeled in this work including Fig. 1E, I) because these systems 

entrain to the stimulus period T. (2) Adding positive feedback loops (PFLs) to a (purely 

feedforward) IFFL does not produce period skipping because a PFL system of two species 

cannot show period skipping, and (3) general PFL systems cannot access period skipping 

solutions with on-off stimuli. These results rule out period skipping in biologically realistic 

IFFL circuits, leaving that possibility generically to NFLs.

Generality and uniqueness of discriminants

To explore how generic or unique these response signatures are (uniqueness of period 

skipping in NFLs is guaranteed), we systematically analyzed nonlinear IFFL and NFL 

models numerically. (Linear systems entrain and their O(d, T) are monotonic.)

First, we ruled out that the observed differences between IFFLs and NFLs were particular to 

the abrupt nature of the inhibition function or to the output functions in Fig. 1I, J. So, we 

replaced the step function θ(I0-I) by Michaelis-Menten terms with Hill coefficients ≥1 and 

varied parameters and output functions (see Table S1). None of the IFFL models showed 

refractory period stabilization or period skipping, while 71% of the NFL models, which 

showed sufficient adaptation (see Methods), did. Thus, the two NFL signatures were robust 

to such variations.

For a more comprehensive exploration of model space, we generated >6*105 

implementations of IFFLs and NFLs with 86 differing wiring diagrams, interaction types, 

and numbers of nodes. Specifically, we analyzed systems with i) inhibitors I or activators X 

(Fig. 1A–D), ii) inhibitors that block the increase of a target or degrade the target, iii) 

nonzero baseline activities, iv) saturation due to Michaelis-Menten kinetics, v) nonlinearities 

due to cooperativity, and vi) additional dynamical nodes (Fig. S2). We varied parameters in 

an unbiased manner (0.1,1,10 for most parameters). We focused particularly on finding false 

positives (IFFL loops showing refractory period buffering) rather than minimizing false 

negatives (NFL loops failing to show signatures), which underestimates the generality of 

period skipping in NFLs (see Methods). For this reason also, we limited ourselves to 4 

subtypes of NFLs with 3+1 nodes (+1 for output node) but covered all 82 possible IFFLs 

with 3+1 or 4+1 nodes. As expected, none of the IFFL circuits exhibited period skipping. A 

small number of IFFL circuits showed refractory period stabilization when the stimulus 

duration d was small, where our previous argument based on intermediate pulse durations d 

(Fig. 1E, F) does not apply. Requiring that refractory period stabilization occurs when d is 
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large enough (1.5× adaptation time, i.e., time to peak when a step stimulus is turned on), left 

few false positives, and the likelihood of assigning an NFL circuit correctly would be 150:1 

(Table 1). (See Fig. S3 for examples of Tmax(d) plots.)

Surprisingly, both signatures occurred with or without cooperativity. Also, refractory period 

stabilization was detected about as often as period skipping in our computational searches 

(0.8:1 in the data underlying Table 1, see Methods), suggesting that neither is rare.

Published models

We also analyzed two classes of models from the literature that are thought to describe a 

wide spectrum of different biological systems (see Supplementary Notes for details): 1) The 

state-dependent inactivation model(9,10) is essentially an IFFL and neither showed period 

skipping nor refractory period stabilization, as expected. 2) Fold-change detection 

models(25) can be either IFFLs or NFLs. Using the models in ref.(26), we detected period 

skipping in the NFLs, but neither NFL signature in the IFFLs, as expected.

Application to experimental systems

Experimentally, we began with trial runs to establish the pulse widths and periods that were 

appropriate for the biological system at hand. We chose the smallest and the largest 

appropriate pulse durations to find Tmax at those pulse durations. (By the mean value 

theorem, it suffices to determine the slope of a straight line through two data points to infer 

the slope of any smooth interpolation at a point in-between, which suffices to show 

refractory period stabilization.) In that process, we also detected period skipping around the 

smallest pulse periods we applied, which an analysis of the simple NFL models in Fig. 1F, J 

suggested (Fig. S4).

Circuits dominating cell cycle timing in S. cerevisae

The cell cycle control system in budding yeast involves dozens of interacting genes and 

consists at its core of at least the CDK-APC/C oscillator(27) (Fig. 2A, subcircuits in B–F) 

and a proposed ‘global transcriptional oscillator’ (GTO)(28–31), a cyclical chain of 

transcription factors (Fig. 2G). Given the many different subsystems, it is unclear which 

one(s) predominantly set(s) cell cycle dynamics, i.e., timing and robustness, if any.

By deleting CLN1–3 cyclins and introducing a MET-CLN2 construct (Start cyclin CLN2 
expressed during methionine withdrawal (−Met)), we eliminated the PFL and the early NFL 

1 (Fig. 2B, D) and placed cell cycle Start under exogenous control in clnΔ*(=cln1–3Δ MET-
CLN2) cells(32) (Fig. 2H–K). With a long MET-CLN2 pulse which stops short of initiating 

a second cell cycle, transcription of cell-cycle periodic genes rises and falls once(32), 

demonstrating that the system adapts to Cln2, which rules out the simplest version of the 

GTO lacking IFFLs or NFLs. We also introduced a CLN2pr-YFP construct to report Start 

(SBF) cluster gene activity, which turns on roughly with budding (Fig. 2H).

We administered five −Met (Cln2 on) pulses of varying durations d and periods T (Fig. 2I, 

J). For long periods, cells responded to all five pulses (≈60% (n=102) at d=50′, T=65′) (Fig. 

2I). In contrast, with short periods, cells commonly skipped stimulus pulses (14% (n=126) 
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performed 5 cell cycles with d=50′, T=55′) (Fig. 2J). Given our mathematical results, we 

concluded that the overall dynamic was governed by NFLs, e.g., the early (2), late, or GTO 

NFLs (Fig. 2E–G); the IFFLs (Fig. 2C, G) played a minor role, if any. (For skipping in a 

related context, see ref.(33))

In this system, the refractory period describes the time it takes for the cell cycle to reset, 

potentially correlated with cell cycle completion. Which subcircuits, if any, make this timing 

robust is unknown. We defined the output O(d, T) as the fraction of consistently responding 

(non-skipping) cells, multiplied by their CLN2pr-YFP signal (see Methods and Fig. S5). The 

peak in O(d, T), defining the refractory period, was due to fast pulses lowering the fraction 

of cells that responded to MET-CLN2 pulses and large periods decreasing the time-averaged 

CLN2pr-YFP signal. Tmax was remarkably stable (73′-74′, ≈cell cycle period for mother 

cells in SC glucose) as we changed d (=30′,50′) (Fig. 2L–N, slope Tmax(d) <1/2 with 

>99.9% confidence). So, in addition to period skipping, refractory period stabilization also 

indicated that cell cycle dynamics was set by NFLs (e.g., early (2), late, or GTO), not the 

IFFLs.

We wondered whether refractory period robustness was a consequence of the interlocking 

NFLs in the system (Fig. 2A, K). So, we deleted CLB1–6 cyclins and induced mitotic cyclin 

CLB2 constitutively in clnΔ*clbΔ*(=clnΔ*clb1–6Δ GALL-CLB2) cells in galactose, which 

eliminated the early NFL 2 (Fig. 2E) as well as any transcriptional control of mitotic cyclins 

(Fig. 2O). Again, the refractory period turned out to be well-stabilized (128′-135′, ≈cell 

cycle period in SC galactose) when d (=50′,90′) changed (Fig. 2P–R, slope Tmax(d) < 1/2 

with >98% confidence). Thus, the early NFL 2, in addition to the early NFL 1 and the 

IFFLs, was unnecessary for normal overall timing and robustness in the cell cycle control 

system.

To investigate whether the late NFL (Fig. 2F) between B-type cyclins and APC was 

responsible for refractory period stabilization, we constructed a clnΔ* GAL1-CLB2kd 
strain, in which a pulse of galactose/-Met simultaneously induced cell cycle entry, Start 

transcription, and a pulse of undegradable Clb2kd, which blocks mitotic exit (plausibly 

ultimately overcome by autonomous Cdc14 pulses)(34,35). This system constituted an 

artificial IFFL (Fig. 2S). Now, Tmax(d) changed markedly between 132′ at d=40′ and 

>167′ at d=75′ (Fig. 2T–V, slope Tmax(d)>1/2 with > 99.9% confidence). This was due to 

longer Clb2kd induction blocking Start transcription for longer periods, as expected for an 

IFFL (Fig. 1E). So, this artificial IFFL revealed the predicted Tmax(d) signature for IFFLs; 

thus, our procedure was effective at detecting IFFLs, if they existed. Furthermore, breaking 

or overriding all three CDK-APC/C NFLs, including the late Clb1,2-CDK-APC/C loop, 

finally eliminated refractory period stabilization; the late Clb1,2-CDK-APC/C NFL 

dominated the dynamics; the other circuits, including the GTO adaptation loops, played a 

minor role in the overall cell cycle dynamics.

Circuit for adaptation in C. elegans AWA neurons

Response adaptation is a core feature of most neurons and plays a key role in behavior.(4) 

We turned to sensory neurons in C. elegans, several of which, e.g., AWA, ADL, and ASH, 

show a spike and subsequent adaptation in intracellular Ca2+ upon step-like odor 
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stimulation. Ca2+ adaptation, specifically, is thought to play a key role in C. elegans 

behavior(24,36). We focused on the AWA neuron pair, which is one of two main 

chemoattractive olfactory sensory neuron pairs in C. elegans(37). Although many genes 

involved in C. elegans sensory processing have been discovered, a molecular circuit-level 

understanding of adaptation, a key neuronal computation, is currently lacking.

We analyzed odor-evoked Ca2+ responses in intact, wild-type animals (Fig. 3A). We 

stimulated worms expressing an AWA-specific Ca2+ sensor (GCaMP)(24,38), with periodic 

on-off pulses of diacetyl, a known AWA odor(38) (Fig. S6 A–G and Methods for details). 

We measured total AWA Ca2+ output for seven different pulse periods T at two pulse 

durations d (=10″,20″) (Fig. 3B–D, see E for a sample trace). (We first administered a series 

of 10 preparatory odor pulses allowing responses to stabilize(24,38) and for calibration 

across recordings (Methods).) The output peaked at refractory period Tmax=37″-38″ at both 

pulse durations (Fig. 3B–D); thus, the slope of Tmax(d) was close to zero in-between (<1/2 

with confidence 0.96) and was therefore stabilized, indicating an NFL.

Also, with fast odor pulses (T=15″ or 20″), many of the worms showed clearly noticeable 

period skipping (Fig. 3F). We devised a statistical test (posc) for detecting low-frequency 

modulations(32) (Methods) and observed a significant jump in the number of worms with 

low-frequency response modulations in our T=15″ or T=20″ recordings compared to other 

periods (Fig. 3G). According to our mathematical analysis, this was another indicator of an 

NFL.

We wondered whether Ca2+ forms an NFL onto itself. In the absence of our measurements, 

we had no particular reason to pursue this hypothesis given that previous results, if anything, 

suggested an IFFL(39,40). We tested for a Ca2+-NFL in AWA by dynamically manipulating 

Ca2+ levels using thapsigargin, a widely-used inhibitor of SERCA Ca2+-pumps, which 

remove Ca2+ from the cytosol(41). We added thapsigargin to the media for ten odor pulses 

(Fig. 3H). The odor-induced Ca2+ responses surged initially, as expected for thapsigargin; 

however, the responses adapted again within 5–7 odor pulses, consistent with Ca2+ boosting 

its own inhibition mechanism. Removal of thapsigargin caused a depression of Ca2+ levels 

(hyper-adaptation) compared to the no-drug control (Fig. 3I, J), which is consistent with the 

inhibition mechanism decaying slowly, reflecting a memory of elevated Ca2+ levels. (In 

contrast, elevated Ca2+ would not increase inhibition in an IFFL, and after thapsigargin 

removal, odor responses would be at normal levels.) Subsequent recovery showed that over-

adaptation was not due to (permanent) damage. Furthermore, longer thapsigargin treatment 

excluded Ca2+ depletion or non-specific cell exhaustion for causing adaptation (Fig. S6 H). 

Thapsigargin itself did not act noticeably as an odor itself (Fig. S6 I). Since the changes in 

Ca2+ were at biologically relevant time scales and magnitudes, these results provide 

evidence for a physiological Ca2+-NFL causing adaptation in AWA neurons in intact C. 

elegans worms.
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Discussion

The refractory period is a natural way of characterizing adapting systems, in part, because it 

involves quantities with intuitive units (d, Tmax: time, ∂Tmax/∂d: unitless). It is also germane 

to biology and not derived from other fields of science or engineering.

Our approach has inherent limitations: not all IFFLs and NFLs can be distinguished by 

dynamical measurements(42), and the detection of circuit motifs does not, for example, 

specify biochemical species. However, our response signatures were reliable and useful in 

practice, and the same limitations apply to bistability, hysteresis, and irreversibility, which 

do not identify all PFLs(43), but have proven their usefulness nevertheless.

A stabilized refractory period implies that NFLs have robust timing, which may be an 

advantageous feature, e.g., rendering cell cycle timing robust to noise. We speculate that this 

leads to NFLs predominating in nature, which may also be why the dependence of the 

refractory period on stimulus duration has been overlooked. Skipping in NFLs represents a 

strong high-frequency filter, which ignores fast pulses. For the cell cycle, this may be 

advantageous but for other systems, the failure to track inputs might represent a trade-off in 

exchange for other NFL properties, e.g., a stable refractory period.

Online Methods

1 Computational exploration of model circuits

The following algorithm was implemented in Matlab R2010b (code available upon request):

1. Ordinary differential equations (ODEs) with parameters and interactions 

described in Fig. S2 or Table S1 were generated.

2. Steady-state levels were calculated for the dynamic variables at S=0 and S=1 

(only S=0 for NFLs) by plugging the model parameters into formulas for the 

steady-state solutions, which had been derived for each model by hand. If the 

steady-state levels were not defined (i.e., =±∞), the model was not analyzed 

further.

3. To quantify how well the model adapted, the ODEs were solved numerically for 

a step stimulus (S=0 to S=1). Nine output nonlinearities (O=R, O=R2, O=R3, …) 

corresponding to the output functions in Fig. S2 and Table S1 were tested. Only 

those models and output functions were pursued further, in which adaptation was 

sufficiently strong (after a transient peak, the output declined by more than 80%).

4. The ODEs were then solved with repeated on (S=1) and off (S=0) stimuli of 

duration d and period T using Matlab’s ode45 function. We employed various 

means to speed up the calculations, such as interpolating initial conditions based 

on neighboring solutions and extrapolating exponential convergence. The 

computations were stopped if the solution vector x(t) converged ||x(ti)−x(ti−T)||/||

x(ti)||<10−12, where ti is the time point right after the i’th S=1 stimulus, before 

20000/T repetitions. If the solutions did not converge, a test for period skipping 

was performed and, if positive, the model was counted toward the number of 

Rahi et al. Page 8

Nat Methods. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adapting models in Tables 1 and S1, but otherwise not analyzed further. For 

period skipping, the solutions to the last n={1,…,5} stimulus pulses were simply 

checked for convergence to the n prior solutions (fractional error < 10−12). We 

focused particularly on finding false positives (IFFL loops showing refractory 

period buffering) rather than minimizing false negatives (NFL loops failing to 

show signatures) by gearing our computer code primarily to calculating Tmax(d) 

and detecting period skipping only if it occurs in that process. Since the search 

algorithm stopped when period skipping was detected, the number of models 

with period skipping includes models which may also stabilize refractory 

periods, see main text.

5. Initially, a fixed set of pulse durations d={0.05,0.15,…,0.55,0.75,…,2.15,2.65} 

and a set of periods T ranging from d+0.005 to 10 or 30 (depending on d) were 

studied. If O(d, T) was increasing for the largest values of T in this set, T was 

increased incrementally (up to a maximum value of 1000) until O(d, T) 

decreased. If O(d, T) had a maximum as a function of T, the intervals around the 

maximum were bisected to identify the maximum more accurately. If O(d, T) 

had multiple maxima as a function of T, the largest period corresponding to a 

maximum was taken for Tmax(d). Only those models were pursued further, in 

which O(d, T) showed a maximum for T>d, i.e., where Tmax>d, for some d in the 

initial set. The number of these models was added to the number of adapting 

models from step 4., and the sums are indicated in Tables 1 and S1. (Thus, we 

counted as the number of adapting models those that adapted sufficiently to a 

step function and showed either a nontrivial Tmax refractory period or period 

skipping.)

6. If O(d, T) had a maximum for T>d for any of the initial d values (5.), d was 

increased and Tmax(d) calculated until the slope of Tmax(d) (∂Tmax(d)/∂d) 

approached 1 or until Tmax exceeded the maximum allowed T. Then, Tmax(d) 

was smoothed everywhere by calculating additional Tmax(d) points on a denser 

set of d where the slope of Tmax(d) changed rapidly.

2 Strains

2.1 S. cerevisae strains

Standard methods were used throughout. All strains were W303-congenic. Strains SJR14a4d 

and SJR12a5a were used previously(32). The CLB2kd mutation and the GAL1-CLB2kd 
construct have been used in ref.(34) and ref.(35), respectively.

Genotypes:

SJR14a4d: cln1Δ cln2Δ:CLN2pr-Venus:TRP1 cln3Δ:LEU2 trp1Δ:TRP1:MET3-
CLN2 HTB2-mCherry:HIS5

SJR12a5a: SJR14a4d background, clb1Δ-clb6Δ:KanMX clb2Δ:GALL-CLB2:URA3-
clb5Δ:KanMX clb3Δ:TRP1 clb4Δ:his3:KanMX

SJR82c10b: SJR14a4d background, ura3Δ:GAL1-CLB2kd:URA3
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2.2 C. elegans strains

We used the N2-based CX14887 strain with integrated gpa-6::GCaMP2.2b which has been 

described in ref.(24). Animals were raised at 20C on nematode growth medium (NGM) 

plates, seeded with Escherichia coli OP50 bacteria as a food source. All experiments were 

performed with young adults, age-synchronized by picking L4 stage animals to fresh food 

plates 12–24 h before the experiment.

3 Experimental set-up

3.1 S. cerevisae experiments

Cells were grown overnight and diluted to OD≈0.02 about 6 hrs before the experiment to 

ensure return to log-phase. Fluorescence microscopy was performed on cells trapped in a 

microfluidic device (CellASIC) while the media were changed. Initially, cells were 

synchronized by arresting in off (S=0) medium for 120′. Then, the media were switched 

periodically between on (S=1) and off (S=0) pulse media.

SJR14a4d: Overnight medium: D-Met; On (S=1) pulse medium: D-Met; Off (S=0) pulse 

medium: D+Met

SJR12a5a: Overnight medium: G-Met; On (S=1) pulse medium: G-Met; Off (S=0) pulse 

medium: G+Met

SJR82c10b: Overnight medium: R-Met; On (S=1) pulse medium: RG-Met; Off (S=0) pulse 

medium: R+Met

Abbreviations: D=Glucose, G=galactose, R=raffinose, −Met=absence of methionine, 

+Met=presence of methionine. The sugars complemented synthetic complete medium.

Images were taken every 5′.

3.2 C. elegans experiments

The experimental set-up was basically as described in ref.(38) for paralyzed worms. In all 

pulsing experiments, we switched between S basal medium with 1 mM (−)-tetrasimole 

hydrochloride (Sigma-Aldrich) with (odor on) or without (odor off) 1.15 μM diacetyl 

(Sigma-Aldrich).

The time interval between images was 0.1″. In every experiment, 10 preparatory odor pulses 

were administered (10″ duration, 60″ period) before switching to the main measurement 

pulses of duration d and period T. (The 11′th pulse followed 60″ after the beginning of the 

10′th pulse.)

For the thapsigargin experiments, we dissolved the drug (Santa Cruz Biotech) at 10 mg/ml in 

DMSO and then dissolved the solution at 0.3% by volume in S basal. The final 

concentration of thapsigargin was about 46 μM. We spun the thapsigargin-S basal solution 

down in Eppendorf tubes at 13200 rpm for 1 min and saw no precipitation. For the DMSO-

only controls, we added DMSO at 0.3% by volume to S basal.
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4 Image and data analysis

4.1 S. cerevisae experiments

Automated image segmentation and fluorescence quantification of yeast grown under time-

lapse conditions were performed as previously described.(3)

To find Tmax(d) for each yeast mutant, we needed to measure the time-averaged output O(d, 

T) for fixed pulse duration d as the pulse period T was varied. In brief (details below), we 

defined the system output O(d, T) as the fraction of cells p(d, T) that underwent normal cell 

cycles at least until some time point t, multiplied by their time-averaged CLN2pr-YFP 
fluorescence y(d, T) just before t. We estimated Tmax(d) by fitting a spline through the 

means of the O(d, T) data points, and calculated the uncertainty based on the standard errors 

in O(d, T). (All times are relative to the onset of the first stimulus pulse at 0′.)

In all experiments, we applied 5 on-off pulses, which allowed us to follow and quantify 

about 100–200 cells for each d and T. (More than 5 pulses generally led to overgrowth in the 

imaging arena since each stimulus pulse about doubled the number of cells.) The exact 

number of cells analyzed for each data point were (left to right): Fig. 2 L: 201, 136, 194, 

125; M: 126, 102, 100, 70; P: 130, 150, 123, 174, 67; Q: 110, 123, 97, 162, 62; T: 69, 273, 

287, 129, 61; U: 389, 346, 212, 95. The number of cells was determined by the noise in each 

data point: additional cell colonies were analyzed when the SEM was too large compared to 

the mean to allow a reasonable comparison with other data points.

To define and compare the output O(d, T) for different T, we needed a specific, fixed time 

point t in our recordings, which was late so that sufficiently many pulses had been 

administered but which also occurred in all of the recordings with the same strain. (With the 

number of pulses fixed, the experiments with shorter periods are overall shorter.) We chose 

the onset of the last stimulus pulse t = 4 T2 of the second-shortest stimulus period T2 for 

each strain (T2=65′ for clnΔ*, T2=105′ for clnΔ*clbΔ*, T2=120′ for clnΔ* GAL1-
CLB2kd) because it was a late time point, contained in all related recordings, and allowed 

the following quantification: We counted the number of cells n(d, T) that replicated in 

response to every stimulus pulse prior to t and at least budded in response to the first 

stimulus pulse starting after t, if any. (These cells skipped no stimulus pulses at least until t 

and the following stimulus pulse.) For example, cells pulsed with period T had to undergo 

four normal, on-time cell cycles and at least bud a fifth time to be counted. Cells pulsed with 

period 2T had to undergo two normal, on-time cell cycles and at least bud in response to the 

third stimulus pulse. The ratio of these cells compared to the initial number of cells N(d, t) 

defined p(d, T)=n(d, T)/N(d, T), and the standard error was Δp=(P(1−P)/N)1/2, where P=(n 

+ 2)/(N + 4) takes into account the Agresti-Coull correction. (We suppress the dependence 

on d and T, i.e., P=P(d, T), when the notation becomes too cumbersome otherwise.)

The CLN2pr-YFP fluorescence time courses of these (non-skipping) cells (Fi(t)) were 

averaged (<Fi(t)>i) and the height of the first peak in <Fi(t)>i was computed (=Fnorm) to 

normalize each recording. (Fnorm was obviously independent of T). The running average of 

Fi(t)/Fnorm was computed over a time window of size T (average from t-T/2 to t+T/2 

assigned to t). The running average was again averaged from 3T2 to 3.5T2 for the clnΔ* and 
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clnΔ*clbΔ* experiments and from 2T2 to 3T2 for the clnΔ* GAL1-CLB2kd experiment to 

yield yi. (Using these running averages ensured that mostly only fluorescence measurements 

from before t were taken into consideration, which ensures that these cells are not skipping 

and performing on-time and normal cell cycles.) The mean (y) and standard error (Δy) of the 

yi’s were computed.

The mean of the output was defined as O(d, T)=p(d, T)y(d, T) with standard error ΔO(d, 

T)=[Δp(d, T)2y(d, T)2 + p(d, T)2Δy(d, T)2]1/2, where we neglected the small Δp(d, T)2Δy(d, 

t)2 term. We approximated the distribution of O(d, T)’s by a Gaussian with standard 

deviation ΔO(d, T) and generated 104 random configurations of different outputs at each T. 

Using matlab, we fit smoothing splines through each one of the configurations. The 

maximum of the spline was taken as the Tmax for each sampled configuration. The whole 

distributions of Tmax(d) generated for the two pulse durations d for each strain were 

compared to each other. The confidence values that we report are the fraction of Tmax slopes 

smaller than 0.5. (We varied the smoothing parameter for the smoothing spline over a wide 

range (0.001, 0.01, 0.1, 0.3) but the confidences for the slope of Tmax(d) hardly changed.) 

For the plots, we used smoothing parameters 0.1, 0.01, 0.001 for clnΔ*, clnΔ*clbΔ*, clnΔ* 
GAL1-CLB2kd, respectively, reflecting the different distances between data points in T.

4.2 C. elegans experiments

4.2.1 Tracking AWA neurons—The images were processed basically as described in ref.

(38). Occasionally, the worms moved despite general paralysis due to tetramisole in the 

media. To determine the coordinates of the AWA neurons in time, we tracked GCaMP 

fluorescence in each frame computationally (residual fluorescence, sufficient to identify 

AWA, was detectable even when the odor was off); the previously described NeuroTracker 

software suite ref.(38) was used (see Fig. S6 A for a sample frame). We tried to track the 

AWA neurons of every worm in the arena, for which, in some instances, repeated manual 

readjustments of the brightness threshold to identify the AWA neurons were necessary. We 

gave up tracking individual worms if the AWA detection could not be stabilized despite 

repeated manual interventions. This was the case for about 1 in 15 worms in each 

experiment, where, usually, another close-by worm interfered with and diverted the tracker.

4.2.2 Background and baseline subtraction—For each worm i, the average raw 

intensity FR,i(t) was read out of a 13×13 pixel square window (4 μm/pixel) centered on the 

tracked AWA neurons’ coordinates (Fig. S6 A). In order to correct for background, the 

median intensity FBG,i(t) in a ring around worm i’s AWA neurons (ring inner radius: 10 

pixels, outer radius: 19 pixels) was also read out and subtracted to yield FnoBG,i(t)=FR,i(t)-

FBG,i(t) (Fig. S6 B).

Next, we corrected for baseline fluorescence, which can drift during the course of the 

recordings; so, we constructed a time-dependent baseline function (Fig. S6 C). Here and 

elsewhere, we used a 5″ time window from −7.5″ to −2.5″ before odor pulses reached the 

microfluidic chamber to define the baseline fluorescence preceding each odor pulse and we 

defined the center of the window (at −5″) as the beginning of each output pulse. We 

calculated the average of FnoBG,i(t) over each such time window preceding each odor pulse. 
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A piecewise linear function FBL,i(t) was fit through these baseline averages, which were 

assigned to the beginning of each odor pulse. Between these points, FBL,i(t) interpolated 

linearly. Thus, FBL,i(t) reflected shifts in the baseline fluorescence in time. Using this time-

dependent baseline function, we normalized the signal, Fi(t) = (FnoBG,i(t)−FBL,i(t))/FBL,i(t) 

(Fig. S6 D).

4.2.3 Exclusion of poorly responding worms—We tried to record and compute the 

responses of every worm in our experiments but we excluded 10% of the worms from 

further analysis because their responses were obviously problematic. To filter worms in an 

objective fashion, we set up quantitative criteria. We applied these tests to FnoBG,i(t), that is, 

after background correction but before baseline correction (Fig. S6 B). The first 10 

preparatory odor pulses (of 10″ duration and 60″ period), which preceded the main 

measurement pulses in every experiment, allowed the worms to be evaluated before and 

independently of their responses to the main odor pulses and in a consistent manner across 

all experiments. The responses to prep pulses 9 and 10 were especially important because 

we used them to calibrate the rest of the responses, as explained in section 4.2.4.

We filtered out worms whose output pulses 9 and 10 varied too much from one another; we 

eliminated 8 (of 463 total) worms because the baseline FBL,i(t) changed by more than 6% 

before and after pulse 9 (or before and after pulse 10) with respect to the average of FBL,i(t) 

before and after pulse 9 (or 10). (Exclusion if |FBL,i(tj)−FBL,i(tj+1)|/(FBL,i(tj)/2+FBL,i(tj+1)/

2)>0.06 where tj is the start of pulse j, and j is either 9 or 10.) One such trace is plotted in red 

in Fig. S6 B.

Of the remaining, we filtered out 40 worms because the signal-to-noise ratio was too low; 

we defined the signal-to-noise ratio as the height of pulse 9 or 10 divided by the standard 

deviation of the baseline (FnoBG,i(t) over the preceding 5″ time window) before or after 

pulses 9 or 10. (Exclusion if σ(FnoBG,i(t))t={tj−2.5″,…,tj+2.5″}/(FnoBG,i(tk)−FBL,i(tj))>0.11 for 

at least two of the four possible combinations where tj is the start of pulse 9, 10, or 11 and tk 

is the time of the peak of the closest output pulse 9 or 10.) One such trace is plotted in 

orange in Fig. S6 B.

These thresholds are, of course, ultimately arbitrary, however, i) since they were used in a 

consistent manner across all experiments, ii) since we applied them to preparatory pulses 

before and independently of the responses to the main odor pulses, iii) since we only 

excluded the ‘worst’ 10% of all of the worms in our experiments, iv) since we included all of 

the worms that we could track initially, e.g., despite weak AWA responses, and v) since all 

of the response traces that were discarded were visibly problematic and unusual, we believe 

that these criteria were reasonable.

4.2.4 Calculation of average responses—For the worms that passed the two filters, 

we calculated Fnorm,i, the average of Fi(t) over the responses to pulses 9 and 10, i.e., over a 

time window starting at the beginning of odor pulse 9 and extending to the start of odor 

pulse 11. Fnorm,i serves to normalize the AWA responses for each worm (Fig. S6 E). (Again, 

odor pulses 9 and 10 are the last prep pulses; beginning with pulse 11, we switched to odor 

pulse duration d and period T.) Next, we computed the running average of Fi(t) from pulse 
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11 onward over a time window of size T (Fig. S6 E). We normalized the running average of 

each worm by Fnorm,i (Fig. S6 F). We fit a linear least-squares regression through the 

normalized running average, starting 100″ after the start of odor pulse 11 and ending 700″ 
thereafter (Fig. S6 F). (For T=39″ pulses, about three full odor pulses had been 

administered (2 × 39″+10″ or 2 × 39″+20″) before the start of the linear fit. The span of 

700″ is fairly long (about 18 × 39″ period pulses, for example) and it allowed us to include 

all of our recordings, including some experiments that aborted early.) For each worm, we 

took as the output Oi(d, T) the estimated response at 100″ by calculating the value of the 

linear fit at 100″ (Fig. S6 G). The mean and the SEM over Oi(d, T) are shown in Figs. 3 and 

S6 G. Taking points later than 100″ from the same linear fit as the output Oi(d, T) yielded 

similar results: The confidence that the slope of Tmax between d=10″ and d=20″ is less 

than 0.5 is 0.96 at 100″, 0.96 at 200″, 0.94 at 300″, 0.87 at 400′. The gradual loss of 

confidence at later times can be due to experimental artifacts, accumulation of random noise 

with time, loss of correlation to the prep pulses, or, potentially and more interestingly, the 

activation of pathways with slower time scales, etc. (As shown in Fig. S5 A, it is important 

to compare the output at a specific time after the onset of stimulation.) Given the high 

confidence of our results up to about 300″ after the onset of the main odor pulses, we did 

not investigate these issues further.

4.2.5 Calculation of Tmax, slopes, and confidence intervals—Based on the mean 

and SEM of the output Oi(d, T) over all worms i for each T for any fixed d, we 

approximated the distribution by a Gaussian and generated 104 random configurations of 

different outputs at each T. Using matlab, we fit a smoothing spline with smoothing 

parameter 0.1 through each one of the configurations. With noticeably smoother (smoothing 

parameter: 0.01, resulting confidence: 0.94) or more flexible (smoothing parameter 0.3, 

resulting confidence: 0.96) splines, we arrived at essentially the same results (confidences in 

the slope of Tmax). The maximum of the spline was taken as the Tmax for each configuration. 

The whole distribution of Tmax thus generated for pulse duration d=10″ was compared to 

the distribution of Tmax for pulse duration d=20″. The confidence values that we report are 

the fraction of Tmax slopes smaller than 0.5.

4.2.6 Statistical test for period skipping—The test for period skipping used here was 

developed from a related statistical oscillation test in ref.(32). The basic idea is to 1) find the 

best fit of an enveloping sinusoidal function of period T′>T for each recording, and 2) 

compare the goodness of the fit to best fits for random reshufflings of the same recording. 

The fraction of random reshufflings that produce better fits than the original recording 

defines the p value posc. Specifically, for each recording, we calculated Fourier-type 

coefficients ci(T′)=Σ′t Fi(t) ei2πt/T′, where the Σ′t only includes time points t beginning with 

the first odor pulse at least 100″ after the beginning of odor pulse 11. (As before (4.2.4), 

ignoring the first 100″ of the main odor responses served as a rough way to allow some of 

the initial transients to dissipate.) c(T′) was calculated for skipping periods T′ ranging from 

0″ to 600″ by 1″ increments. The largest possible skipping period 600″ was chosen so as 

to allow at least two full skipping periods to fit into most of our recordings. As the best fit, 

we chose the largest |c(T′)|2 peak after the peak at T′=T. Then, we created 103 reshufflings 

of the original recording by cutting up each recording in intervals of length T beginning with 

Rahi et al. Page 14

Nat Methods. Author manuscript; available in PMC 2018 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the first odor pulse after 100″ after the beginning of pulse 11 and permuting them. For each 

reshuffled recording we computed the largest |c(T′)|2, as before. We finally ranked the 

largest |c(T′)|2 for the original recording against the reshuffled data to obtain posc.

Note that because there is no noise in the numerical analysis of circuit models and because 

we were willing to accept false negatives (missing period skipping in some NFLs) for faster 

computations, the periodicity test that we applied in our computational search of model 

space was much simpler.

5 Data availability

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Discriminating IFFLs and NFLs
A–D: Four fundamental wiring diagrams for adaptation. Here, arrows can represent multiple 

intermediate nodes. E, F: Stimuli always turn on at the same times 0 and t1. Red arrows 

indicate when the inhibitor I begins to decay. E: An IFFL system (same model as in panel I) 

receives two consecutive stimulus pulses of different widths but with the same onset times. 

F: Same as E except NFL instead of IFFL (same model as in panel J). G: Periodic stimulus 

pulses of duration d and period T produce output O(t)=O(t, d, T). H: The time average of 

O(t) is denoted by O(d, T). O(d, T) has a maximum at Tmax(d). Periodic solutions shown for 

stimuli that are faster, exactly at, or slower than Tmax (left to right). I, J: θ(x) is the step 

function which is 0 for x < 0 and 1 otherwise. I: IFFL model as in panel A (IFFL 1 in Fig. 

S2 with n→∞). Model parameters: λI0 = 0.01, 0.1, 0.5, 0.75 (dark → light). J: NFL model 

as in panel C (NFL 1 in Fig. S2 with n→∞). NFL parameters: (λ, λI0) = (0.1,0.3), 

(0.1,0.1), (0.4,0.1), (0.1,0.01) (dark → light). Tmax(d) plot is terminated when the pulse 

duration d exceeds the absolute refractory time, above which the circuit would be activated 

twice for each stimulus pulse. K: Schematic showing equivalent classes of circuits with the 

same Tmax(d). The asterisk denotes the specific nature of the nonlinear transformations 

analyzed (see Supplementary Notes). L: Period skipping in an NFL circuit (mathematical 

model in panels F, J).
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Figure 2. Signatures identify dynamically important NFLs in yeast cell cycle control mutants and 
can be abolished by an artificial IFFL
All cells have the same CLN2pr-YFP construct by crossing. Abbreviations: clnΔ*=cln1–3Δ 
MET-CLN2, clbΔ*=clb1–6Δ GALL-CLB2, −Met/+Met = absence/presence of methionine 

in the media, Gal = galactose. A: Schematic of the wild-type CDK-APC/C cell cycle control 

system. B–F: Subcircuits from panel A with blue arrows indicating the intermediate steps 

which the black arrows summarize. G: Schematic of global transcriptional oscillator (GTO) 

model adapted from ref.(30,31). H: A clnΔ* cell undergoes one cell cycle after MET-CLN2 
is induced from 0′ to 30′ in −Met medium. Nuclei marked by Htb2-mCherry. Scale bar 

(white): 5 μm. I: Sample time course of CLN2pr-YFP in a clnΔ* cell subjected to five −Met 

pulses of duration d=30′ and period T=85′ (black bars) inducing five complete cell cycles. 

J: A clnΔ* cell showing period skipping (−Met pulses d=30′, T=65′ (black bars)). The cell 

cycle starts (and completes) only in response to pulses 1, 3, 5, as determined by budding, 

nuclear division, and cytokinesis. K, O, S: Schematic of CDK-APC/C cell cycle control 

system in indicated strains, with stimulus (S), inhibitor (I), and output (O) indicated. 

Crossed-out, dashed arrows indicate the circuits and interactions that have been eliminated 

or crippled. L,M,P,Q,T,U: Output (fluorescence from fraction of consistently responding 

(non-skipping) cells) mean +/− SEM vs. stimulus period T for fixed pulse duration d, shown 

together with smooth spline fit used for estimating the peaks. Number of cells (about 100–

200) underlying each data point specified in Methods. N,R,V: Best fit Tmax(d) (diamond), 

central 90% confidence interval (box), and linear interpolation (dashed line).
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Figure 3. A Ca2+-NFL leads to adaptation in C. elegans AWA neurons
A: C. elegans worms expressing GCaMP in the AWA olfactory sensory neurons pulsed with 

diacetyl. ‘?’ indicates that the detailed molecular mechanism of Ca2+ adaptation, including 

circuit type and the adapting node R, were unknown. Scale bar: 100 μm. B, C: Output mean 

+/− SEM vs. stimulus period T for fixed pulse duration d, shown together with smooth 

spline fit used for estimating the peaks. Number of worms underlying each data point: 

28,15,28,28,35,24,11 (B), 29,49,62,37,31,27,11 (C) (left to right). Experiments repeated to 

ensure sufficiently small SEM/mean ratio. D: Mean Tmax(d) (circle), central 90% confidence 

interval (box), and linear interpolation (dashed line). For d=10″: mean=38″, 

interval=36″-40″; for d=20″: mean=37″, interval=35″-42″. E, F: Recordings without (E) 

or with (F) detectable period skipping at relatively low or high stimulus frequencies, 

respectively. The first ten preparatory pulses have the same period and duration across all 

trials. G: Fraction of worms +/− SEM showing significant period skipping (posc<0.05) at 

d=10″. (≥*): Differences between fractions are at least significant with respect to p=0.05 

threshold -- or lower. H, I: Pulses under brackets compared in panel J. H: Ca2+ levels 

before, during, and after thapsigargin application (magenta bar). The last preparatory pulse 

is the first pulse shown. Beginning with the second pulse shown, the pulse duration and 

period were switched to d=20″, T=39″. Normalization by the average of the last two prep 

response pulse peak heights. (Normalization by mean of the last two prep response pulses 

yields similar results.) Media contain 0.3% DMSO throughout. Mean over 25 worms. I: 

Same as H except DMSO-only control. Mean over 13 worms. J: Time-average of the 

response pulses after removal of thapsigargin in H (black), compared to control in I (green), 

showing continued depression of the responses. Circle: mean, triangles: mean +/− SEM, 

box: 1st, 2nd, and 3rd quartiles. (Analyzed pulses indicated by black or green bracket in H 

and I, respectively.) *: p<0.05, **: p<0.01, ***: p<0.001. All p value tests one-sided.
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Table 1

circuit type total # tested # adapting # skipping + # refrac. period stabilization

NFL 315549 22188 9712 (44%)

IFFL 307584 16502 48 (0.29%)

Ratio: 150:1

Period skipping and refractory period stabilization are generic in NFLs but not in IFFLs. These results are based on a computational analysis of the 
set of circuit models in Fig. S2. (For details, see Methods.)
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