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Murine Langerin+ dermal dendritic cells prime
CD8+ T cells while Langerhans cells induce
cross-tolerance
Vincent Flacher1,2,†, Christoph H Tripp1,2, David G Mairhofer1, Ralph M Steinman3,

Patrizia Stoitzner1,a,**, Juliana Idoyaga3,‡ & Nikolaus Romani1,2,a,*

Abstract

Skin dendritic cells (DCs) control the immunogenicity of cutane-
ously administered vaccines. Antigens targeted to DCs via the
C-type lectin Langerin/CD207 are cross-presented to CD8+ T cells in
vivo. We investigated the relative roles of Langerhans cells (LCs)
and Langerin+ dermal DCs (dDCs) in different vaccination settings.
Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic
responses upon intradermal immunization with ovalbumin (OVA)-
coupled anti-Langerin antibodies (Langerin/OVA). This correlated
with CD70 upregulation in Langerin+ dDCs, but not LCs. In chimeric
mice where Langerin targeting was restricted to dDCs, CD8+ T-cell
memory was enhanced. Conversely, providing Langerin/OVA exclu-
sively to LCs failed to prime cytotoxicity, despite initial antigen
cross-presentation to CD8+ T cells. Langerin/OVA combined with
imiquimod could not prime CD8+ T cells and resulted in poor cyto-
toxicity in subsequent responses. This tolerance induction required
targeting and maturation of LCs. Altogether, Langerin+ dDCs prime
long-lasting cytotoxic responses, while cross-presentation by LCs
negatively influences CD8+ T-cell priming. Moreover, this highlights
that DCs exposed to TLR agonists can still induce tolerance and
supports the existence of qualitatively different DC maturation
programs.
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Introduction

Dendritic cells (DCs) are professional antigen-presenting cells,

specialized to take up protein antigens and process them into

peptides that they load onto their MHC molecules. Once activated,

DCs migrate to lymph nodes and interact with antigen-specific T

cells there. Thus, DCs are essential to initiate adaptive immune

responses (Palucka et al, 2010; Steinman, 2012). Over the last

decade, the role of the different DC subsets has been intensively

addressed in a variety of immune responses. Functional specializa-

tions have been identified, although their generalization and transla-

tion from mouse to humans (Cohn et al, 2013) is complicated by

the phenotypic plasticity of DCs under the influence of their envi-

ronment. In particular, identifying which DCs can efficiently prime

cytotoxic responses remains a controversial question that needs to

be resolved, because such immune responses are essential to fight

against viral infections and tumors. Indeed, increasing evidence

from clinical studies emphasizes the role of CD8+ T cells in the

control of tumors and the prolongation of patient survival (Galon

et al, 2006; Mellman et al, 2011; Dhodapkar et al, 2014).

Presentation of exogenous antigens to CD8+ T cells (cross-

presentation) is probably not exclusive to one DC subset (Dickgreber

et al, 2009; Segura et al, 2013). In the mouse, a consistent body of

evidence indicates a dominating contribution of lymph-node-

resident CD8+ DCs in cross-presentation (Pooley et al, 2001; Joffre

et al, 2012). However, skin DCs such as epidermal Langerhans cells

(LCs) (Stoitzner et al, 2006; Flacher et al, 2010) and Langerin+

dermal DCs (dDCs) (Bedoui et al, 2009; Henri et al, 2010) can also

cross-present. In vivo, the relative involvement of skin DCs versus

CD8+ DCs in priming efficient immune responses does not depend

only on the targeted subset, but also on other factors, including the

type, amount and formulation of antigen, the site of immunization,
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the endocytic route and intracellular degradation pathways, and the

maturation signals received by DCs (Delamarre et al, 2003; Spörri &

Reis e Sousa, 2005; Blander & Medzhitov, 2006; Tacken et al, 2007;

Idoyaga et al, 2011; Chatterjee et al, 2012).

When efficiently primed, CD8+ T cells upregulate the IL-7 recep-

tor/CD127 and establish themselves as CD44high CD62L+ central

memory CD8+ T cells in the lymphoid organs (Belz & Kallies,

2010). Upon secondary exposure to the antigen, memory CD8+ T

cells rapidly differentiate into IFN-c-producing effector cells with the

ability to reach the periphery. On the other hand, self-specific CD8+

T cells must be kept under control, a phenomenon known as periph-

eral cross-tolerance (Gill & Tan, 2010). Indeed, cross-presentation

does not always result in priming of a cytotoxic response, since

initial proliferation of CD8+ T cells can be followed by deletion of

the T-cell clone, instead of differentiation into effector T cells

(Bonifaz et al, 2002). The deletion of self-specific CD8+ T-cell

clones is instrumental to avoid deleterious cytotoxic responses

(Kurts et al, 1997). Induction of cross-tolerance can also result from

anergy or suppression by regulatory CD4+ T cells (Lutz & Kurts,

2009; Gill & Tan, 2010). The underlying mechanisms are not fully

understood to date and probably depend on the co-stimulatory

signals delivered by DCs at the time of antigen presentation.

Antibodies (Ab) recognizing C-type lectins (Sancho & Reis e

Sousa, 2012) such as DEC-205 and Langerin have been used to

enhance internalization of antigens by specific DC subsets, resulting

in potent CD4+ and CD8+ T-cell responses (Bonifaz et al, 2002;

Idoyaga et al, 2008, 2013). Recently, this strategy has also been

applied to initiate antigen-specific tolerance, which occurred when

antigen was presented to T cells by DCs in the steady state (Hawiger

et al, 2001; Yamazaki et al, 2008). Nevertheless, inefficient T-cell

priming despite apparent upregulation of molecules considered DC

maturation markers (e.g., CD86) has been documented (Lutz &

Schuler, 2002; Spörri & Reis e Sousa, 2005; Jiang et al, 2007; Platt

et al, 2010). This implies that ‘true’ DC maturation (i.e., resulting in

immunogenicity) remains to be accurately defined on a molecular

level (Joffre et al, 2009; Steinman, 2012).

Our previous work identified LCs and Langerin+ dermal DCs

(dDCs) as prominent transporters of intradermally injected antibod-

ies recognizing C-type lectins (Flacher et al, 2010, 2012). Antigen

targeting to DCs via Langerin results in activation of antigen-specific

transgenic CD8+ T cells in vivo (Idoyaga et al, 2008, 2009), but this

work was performed in [C57BL/6 × BALB/c] F1 mice where

Langerin is expressed not only by LCs and dDCs, but also by CD8+

DCs in skin-draining lymph nodes (Flacher et al, 2008). Therefore,

the outstanding ability of CD8+ DCs in cross-presentation may mask

the contribution of cutaneous Langerin+ DC subsets to CD8+ T-cell

immunity. Conversely, LCs targeted in vivo with ovalbumin (OVA)-

coupled anti-Langerin Ab (Langerin/OVA) did not stimulate the

proliferation of transgenic CD4 and CD8 T cells in vitro (Flacher

et al, 2010). These contrasting results led us to further investigate

T-cell responses depending on Langerin-mediated antigen capture

by skin DCs in a refined experimental model in vivo.

We show here that targeting skin DCs through Langerin has vari-

able outcomes. In C57BL/6 mice that have low if any Langerin

expression in CD8+ DCs, cutaneous immunization with Langerin/

OVA conjugates triggered either efficient cytotoxic immune

responses or hyporesponsiveness of antigen-specific CD8+ T cells.

Strikingly, cross-tolerance developed only in the presence of the

adjuvant imiquimod, but not under steady state conditions. When

we used chimeric mice to target antigen via Langerin exclusively

into either LCs or dermal DCs, we observed that LCs induced cross-

tolerance while Langerin+ dDCs stimulated memory and cytotoxic

responses of CD8+ T cells. Our results introduce novel insights into

the different roles of Langerin+ skin DCs in the development of

CD8+ T-cell responses.

Results

Langerin targeting requires strong adjuvants to allow
development of cytotoxic responses and CD8+ T-cell memory

Previously, we had compared the capacity of LCs to present antigen

internalized through different C-type lectins. After DEC-205-targeted

mature LCs emigrated out of epidermal explants, they induced

proliferation of both OVA-specific CD4+ and CD8+ transgenic T

cells in vitro. On the other hand, LCs targeted through Langerin

failed to present antigen to T cells (Flacher et al, 2010).

To extend these observations in vivo, we monitored endogenous

killing responses against target cells loaded with the OVA MHC class

I peptide SIINFEKL. Targeting antigen to lectin receptors requires

additional adjuvants to generate efficient antigen-specific T-cell

responses (Hawiger et al, 2001; Bonifaz et al, 2002). Intradermal

injection of OVA-coupled anti-DEC-205 monoclonal Ab (DEC/OVA)

yields high rates of target cell killing when a cream containing TLR7

ligand imiquimod was topically applied to the immunization site

(Flacher et al, 2012). However, Langerin targeting by OVA-coupled

anti-Langerin monoclonal Ab (clone L31; Langerin/OVA) in similar

conditions failed to trigger endogenous cytotoxic responses (Fig 1A

and Supplementary Fig S1A). Moreover, vaccination with imiqui-

mod and Langerin/OVA did not protect mice from the growth of

OVA-expressing transplanted B16 melanoma, thereby severely

impairing survival of animals bearing the tumor (Supplementary Fig

S1B and C).

A combination of the TLR3 ligand poly(I:C) with an agonist

anti-CD40 Ab (pIC/40) has been successfully used to generate

CD8+ T-cell immunity after DEC-205 and Langerin targeting

(Bonifaz et al, 2004; Sancho et al, 2008; Trumpfheller et al, 2008;

Idoyaga et al, 2011). We injected this adjuvant intradermally

together with Langerin/OVA and observed a potent cytotoxic

response, in contrast to imiquimod (Fig 1A). To better understand

this difference, we transferred CFSE-labeled OVA-specific CD8+ T

cells from CD45.1+ OT-I transgenic mice, 1 day before immuniza-

tion. Similar to our previous observations (Idoyaga et al, 2008),

proliferation of OT-I CD8+ T cells was observed 6 days after i.d.

injection of Langerin/OVA, regardless of the adjuvant (Fig 1B).

This is due to the considerable sensitivity of OT-I CD8+ T cells to

minute amounts of antigen (Choi et al, 2009). However, OT-I

CD8+ T cells showing a high number of divisions (more than 6)

were in largest proportions when the adjuvant was pIC/40.

Furthermore, the receptor for IL-7 (IL-7R/CD127), which is

required for survival of memory T-cell precursors (Belz & Kallies,

2010), was only upregulated when the mice had been treated with

pIC/40 (Fig 1C and D).

Because the initial proliferation burst may not lead to establish-

ment of a memory response, we looked for surviving OT-I CD8+ T
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cells in skin-draining lymph nodes 8 weeks after immunization. At

this late time point, only rare OT-I T cells, including CD44low naive

cells, could be found in mice treated with Langerin/OVA alone or

together with imiquimod (Fig 2A). However, when Langerin/OVA

immunization was performed in the presence of pIC/40 treatment,

abundant OT-I CD8+ T cells were still present, with > 90% display-

ing the CD44+ CD62L+ phenotype of central memory T cells (TCM).

Consistent with this, OT-I T cells from mice treated with Langerin/

OVA plus pIC/40 had a dramatically increased potential for reactiva-

tion. In vitro restimulation of lymph node cells with the OVA MHC I

peptide SIINFEKL resulted in differentiation of TCM cells into

CD62Llow effector T cells with considerably stronger synthesis of

IFN-c as compared to untreated or imiquimod-treated mice (Fig 2B

and C).

Treatment with different adjuvants does not alter distribution of
anti-Langerin targeting antibodies

Upon injection into the skin, the anti-Langerin L31 clone binds to

Langerin+ dermal DCs, LCs (Idoyaga et al, 2008) and, in mice with

BALB/c genetic background, to CD8+ DCs (Idoyaga et al, 2009).

Inflammatory stimuli may affect antigen distribution to DC subsets,

for instance by a possible de novo Langerin expression in potently

cross-presenting lymph node-resident CD8+ DCs of C57BL/6 mice.

To address this, we injected a fluorescent full-length anti-Langerin

L31 antibody or isotype control in the same amount and route as

OVA-coupled conjugates (Supplementary Fig S2). CCR7neg CD8+

lymph node-resident DCs represented less than 0.5% of targeted

DCs in any given condition, emphasizing that the vast majority of

targeted cells in the lymph nodes comes from the skin. In mice not

treated with adjuvant, most of the CD11c+ DCs targeted by fluores-

cent anti-Langerin antibodies were CCR7+ CD8neg skin-derived DCs

(Mean � SD: day 2, 91.1% � 8.3; day 4, 83.6% � 12.1). The distri-

bution of targeting antibody was similar between the different DC

subsets regardless of the adjuvant used. No significant difference

was observed in mice treated with imiquimod (day 2, 91.7% � 5.2;

day 4, 85.3% � 4.7) or poly(I:C)/aCD40 (day 2, 91.7% � 3.1; day 4,

90.2% � 4.0). Among these targeted skin DCs, we could identify

LCs, Langerin+ dDCs, and Langerinneg CD103neg dDCs. However, a

fraction of the latter population also captured the isotype control

antibody. This clearly suggests a non-specific, Fc Receptor (FcR)-

dependent binding of full-length antibodies. Of note, FcR-mediated

uptake cannot occur with OVA-coupled conjugates, because they

contain a mutation in their FcR-binding site (Clynes et al, 2000;

Hawiger et al, 2001). Altogether, the contribution of CD8+ DCs and

Langerinneg dDCs in immune responses triggered by Langerin/OVA

conjugates is most likely marginal and independent of the adjuvant

used.

Figure 1. Langerin targeting with poly(I:C) and anti-CD40 efficiently triggers CD8+ T-cell responses.

A In vivo killing of OVA-loaded target cells. C57BL/6 mice were immunized i.d. into both ears with 0.5 lg Langerin/OVA (L31) alone or in addition to imiquimod
(+imiq) or poly(I:C) and anti-CD40 (+pIC/40). Seven days later, CFSE-labeled OVA-loaded target cells and CTO-labeled unloaded control cells were transferred i.v.
Specific lysis of OVA-loaded target cells was measured in the blood 2 days later. Values from individually analyzed mice are pooled from two independent
experiments (L31: three mice; L31+imiq: 10 mice; L31+pIC/40: six mice) and compared using one-way ANOVA (P < 0.0001) followed by Tukey’s test (n.s.: non-
significant, P > 0.05).

B–D Proliferation and differentiation of OVA-specific transgenic CD8+ T cells. CD8+ T cells purified from [OT-I × Ly5.1] F1 mice were labeled with CFSE and injected i.v.
into C57BL/6 mice. The next day, mice were immunized i.d. into both ears with 0.5 lg Langerin/OVA (L31) alone or in addition to imiquimod (+imiq) or poly(I:C) and
anti-CD40 (+pIC/40). Six days later, skin-draining lymph nodes were digested, and CD45.1+ CD8+ T cells were analyzed by flow cytometry for proliferation and
expression of IL-7R/CD127. Values from individually analyzed mice are pooled from three independent experiments (L31: six mice; L31+imiq: nine mice; L31+pIC/40:
five mice) and compared using one-way ANOVA followed by Tukey’s test (n.s.: non-significant, P > 0.05). (B) Proportions of cells that underwent 0–6 or more cycles
of division (ANOVA: P < 0.0001). (C) Representative histogram plots of CD127 stainings. The vertical line depicts the geometric mean intensity of fluorescence when
immunizing with Langerin/OVA alone. (D) Proportion of CD127+ divided cells (ANOVA: P = 0.0004).
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Langerin+ dermal DC, but not LCs, upregulate CD70 after
treatment with poly(I:C) and anti-CD40

Induction of CD8+ T-cell memory depends on factors expressed by

DCs at the time of antigen presentation to naive cells, including

expression of CD70 (Sanchez et al, 2007) and release of IL-12

(Trinchieri, 2003). Fitting with previous observations (Soares et al,

2007), intradermally injected adjuvant pIC/40 was considerably

more potent at inducing expression of CD70 than application of

imiquimod (Fig 3A and B). Interestingly, only Langerin+ dDCs, but

not LCs, could upregulate CD70 on their surface after pIC/40 treat-

ment. Conversely, IL-12p40 synthesis by either subset of Langerin+

DCs was not affected by any adjuvant (Fig 3C and D).

We have also analyzed expression of different factors involved in

CD8+ T-cell tolerance, namely CD273/PD-L2/B7-DC, CD274/PD-L1/

B7-H1, and CD275/ICOSL/B7-H2 (Chen, 2004). We observed some-

what increased expression of CD274/PD-L1 on LCs and Langerin+

dDCs in response to both adjuvants, whereas CD273/PD-L2 and

CD275/ICOSL remained unchanged (Supplementary Fig S3A and B).

Additional factors known to induce T helper 2 responses (CD134/

OX40L) (Liu, 2007) or immunoregulation (IL-10) (Boonstra et al,

2006) were not at all expressed in Langerin+ DCs/LCs (Supplemen-

tary Fig S3C).

Selective Langerin expression by skin DC subsets in bone marrow
chimeric mice

Upon lethal irradiation and reconstitution, only epidermal LCs

survive (Merad et al, 2002), while other DCs, including Langerin+

dermal DCs, are newly generated from transferred bone marrow

(Ginhoux et al, 2007; Poulin et al, 2007) (Supplementary Fig S4A).

We took advantage of this and designed bone marrow transfer proto-

cols using Langerin�/� (LKO) mice (Kissenpfennig et al, 2005a) to

obtain Langerin expression in selected skin DCs, thereby making

Langerin targeting only possible in either Langerin+ dermal DCs or

LCs. Three months after bone marrow transfer, Langerin staining of

epidermal sheets (Supplementary Fig S4B) and epidermal cell

suspensions (Supplementary Fig S4C) confirmed that LCs remained

mostly of recipient origin, although a small proportion appeared to

be derived from the bone marrow graft, in accordance with recent

results (Nagao et al, 2012). In skin-draining lymph nodes, Langerin+

CD103+ EpCAMneg dDCs (Henri et al, 2010) were only observed in

mice that received wild-type bone marrow grafts (Supplementary Fig

S4D). When Langerin+ LCs could be observed in epidermal cell

suspensions, a corresponding Langerin+ CD103neg population was

found in skin-draining lymph nodes. In summary, we obtained mice

with Langerinneg dDCs and Langerin+ LCs (LKO?wt) or, conver-

sely, Langerin+ dDCs and Langerinneg LCs (wt?LKO).

Langerhans cells are not involved in cross-priming of CD8+

T-cell responses

Using these chimeric mice, we investigated which Langerin+ DC

subset is responsible for CD8+ T-cell responses after Langerin

targeting and robust stimulation by pIC/40. Killing of OVA peptide-

loaded target cells was only slightly decreased in mice where only

Langerin+ dermal DCs could be targeted. In contrast, targeted LCs

alone were unable to prime endogenous cytotoxic responses

(Fig 4A). This was not due to a lack of antigen cross-presentation,

since initial proliferation of transferred OT-I CD8+ T cells occurred

similarly in LKO?wt and wt?LKO mice (Fig 4B). CD127 upregula-

tion by proliferating cells was also visible in both chimeras (Fig 4C).

Finally, 3 weeks after Langerin targeting with pIC/40, CD8+ T-cell

memory was estimated by IFN-c synthesis by restimulation with

OVA MHC I peptide of OT-I T cells recovered from lymph nodes

(Fig 4D). The absence of LC targeting (wt?LKO chimera) led to

markedly superior IFN-c production as compared to chimeric mice

Figure 2. Poly(I:C) and anti-CD40 Ab allow generation of memory CD8+ T
cells after Langerin targeting.
CD8+ T cells purified from [OT-I × Ly5.1] F1 mice were labeled with CFSE and
injected i.v. into C57BL/6mice. The next day, mice were immunized i.d. into both
ears with 0.5 lg Langerin/OVA (L31) alone or in addition to imiquimod (+imiq) or
poly(I:C) and anti-CD40 (+pIC/40). Data from individually analyzed mice are
pooled from three independent experiments and compared using one-way
ANOVA followed by Tukey’s test (n.s.: non-significant, P > 0.05).

A Six days or 8 weeks after immunization, the proportions (L31: six mice;
L31+imiq: nine mice; L31+pIC/40: five mice; ANOVA: P = 0.0002 at day 6,
P = 0.0001 at week 8) and absolute numbers (L31: four mice; L31+imiq: five
mice; L31+pIC/40: five mice; ANOVA: P = 0.0011 at day 6, P = 0.0061 at
week 8) of CD45.1+ CD8+ T cells in skin-draining lymph nodes were
evaluated.

B After 8 weeks, total lymph node cells were exposed overnight to the OVA
peptide SIINFEKL. CD62L expression and IFN-c production were visualized
in CD45.1+ CD8+ T cells by flow cytometry. Representative stainings.

C Percentage of CD62L-low IFN-c-producing among OT-I CD8+ T cells (L31:
four mice; L31+imiq: five mice; L31+pIC/40: five mice; ANOVA: P = 0.0024).
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that lacked Langerin on dDCs (LKO?wt), reinforcing the possibility

of a stronger priming by Langerin+ dDCs. We observed here an

unexpectedly low response of wild-type mice. Although IFN-c
production may not perfectly correlate with cytotoxicity, this

contrasted with the results of killing assays (Fig 4A). However, it

should be noted that the proportion of IFN-c-producing cells of

wild-type mice were typically lower here than in other experiments

(i.e., restimulation 8 weeks after immunization, Fig 2C). Altogether,

this does not change the overall conclusions of our study and the

validity of the side-by-side comparison of the chimeric mice.

Langerin targeting promotes hyporesponsiveness of CD8+ T cells

To extend our initial findings (Fig 1), we sought to determine if

Langerin targeting in the presence of imiquimod could influence

the development of subsequent immune responses. We set up a

pre-treatment consisting of intradermal injection of ISO/OVA or

Langerin/OVA into one ear, in the presence of imiquimod. One

week later, we elicited cytotoxic responses by DEC/OVA and

topical imiquimod in the contralateral ear (Supplementary Fig S1;

Flacher et al, 2012).

Although no primary cytotoxic responses were observed after

immunization with imiquimod and either ISO/OVA or Langerin/

OVA, pre-treating the mice with the latter had a visible impact on

secondary responses. Langerin/OVA pre-treatment led to a 61%

decrease of OVA-specific target cell lysis in the blood, as compared

with ISO/OVA (Fig 5A). This experiment was repeated in

Langerin�/� mice (Fig 5B), or in the absence of imiquimod (Fig 5C).

In both cases, conditioning with Langerin/OVA did not impair the

secondary immune response.

Intradermal immunization with DEC/OVA plus imiquimod in

only one ear resulted in relatively low killing rates. Intraperitoneal

Figure 3. Langerin+ dDCs, but not LCs, express CD70 upon pIC/40 stimulation in vivo.
Both ears of C57BL/6mice were treated with imiquimod (imiq), poly(I:C) and anti-CD40 (pIC/40), or left untreated (nt). Two or 4 days later, a cell suspension was obtained from
four auricular lymph nodes collected from two identically treated mice, and expression of CD70 and IL-12p40 was evaluated by flow cytometry. Measurements, each
comprising cells from two mice, are pooled from two independent experiments (nt: n = 7; imiq—day 2: n = 4; imiq—day 4: n = 4; pIC/40—day 2: n = 4; pIC/40—day 4:
n = 3) and compared using one-way ANOVA followed by Tukey’s test (n.s., non-significant, P > 0.05).

A Representative stainings showing surface expression of CD70 in CD11c+ Langerin+ DCs.
B Percentages of Langerin+ dDCs and LCs expressing CD70 (ANOVA: P < 0.0001 and P = 0.0003, respectively).
C Representative stainings showing intracellular expression of IL-12p40 in CD11c+ Langerin+ DCs after a 3-h incubation with Brefeldin A.
D Percentages of Langerin+ dDCs and LCs expressing IL-12p40 (ANOVA: P = 0.0008 and P = 0.0995, respectively).
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injection of DEC/OVA and poly(I:C), however, allowed to reach

approximately 80% of specific target cell lysis. Despite these high

levels, we still observed a potent inhibition following Langerin/OVA

conditioning (Fig 5D). Interestingly, when the primary immuniza-

tion was done under similar conditions, but with pIC/40 instead of

imiquimod, targeting with Langerin/OVA did not result in tolerance

(Supplementary Fig S5A).

Finally, we extended our observations by following the growth of

transplanted B16 tumors expressing OVA. When the conditioning

step was performed with ISO/OVA and imiquimod, subsequent

intraperitoneal DEC/OVA and poly(I:C) considerably slowed down

the growth of implanted B16-OVA tumors (Fig 5E), thereby increas-

ing the lifespan of tumor-bearing animals (Fig 5F). On the other

hand, conditioning with Langerin/OVA and imiquimod significantly

impaired the therapeutic effect of DEC/OVA tumor treatment,

further confirming induction of antigen-specific hyporesponsive-

ness.

Cross-tolerance upon Langerin targeting relies on Langerhans
cells, but not Langerin+ dermal DCs

To exclude the possibility that an ongoing primary response inter-

feres with the development of secondary cytotoxic responses, we

waited for 6 weeks after the pre-treatment to trigger a cytotoxic

response using i.p. DEC/OVA and poly(I:C). A potent reduction of

the secondary response was still observed in Langerin/OVA-pre-

treated mice (Fig 6A, left). In parallel, the proportion of OVA-

specific endogenous CD8+ T cells, measured by OVA-Kb pentamer

staining, was lower in Langerin/OVA-pre-treated mice (Fig 6A,

right).

Figure 4. Langerin+ dermal DCs have a dominant role in activation of CD8+ T cells.

A LKO?wt, wt?LKO chimeric mice, or C57BL/6 wt mice were immunized into both ears with 0.5 lg Langerin/OVA in the presence of poly(I:C) and anti-CD40 Ab.
Seven days later, CFSE-labeled OVA-loaded target cells and CTO-labeled unloaded control cells were transferred i.v. Specific lysis of OVA-loaded target cells by the
endogenous cytotoxic T cells was measured in lymph nodes 2 days later. Data from individually analyzed mice are pooled from at least two independent
experiments (wt: 3 mice; LKO?wt: seven mice; wt?LKO: 16 mice) and compared using one-way ANOVA (n = 3–16; P < 0.0001) followed by Tukey’s test (n.s.: non-
significant, P > 0.05).

B–D Proliferation and differentiation of OVA-specific transgenic CD8+ T cells. CD8+ T cells obtained from [OT-I × Ly5.1] F1 mice were labeled with CFSE and transferred
i.v. into LKO?B6 or B6?LKO chimeric mice, or wt mice. The following day, both ears were immunized with Langerin/OVA in the presence of poly(I:C) and anti-
CD40. Data are pooled from four independent experiments and compared using one-way ANOVA followed by Tukey’s test (n.s.: non-significant, P > 0.05). (B,C) Six
days later, skin-draining lymph nodes were digested, and CD45.1+ CD8+ T cells were analyzed by flow cytometry for proliferation (wt: five mice; LKO?wt: five mice;
wt?LKO: five mice). Proportions of cells with more than six cycles of division are depicted in (B) (n = 5; ANOVA: P = 0.0598) and proportions of CD127+ divided
cells in (C) (ANOVA: P = 0.1085). (D) Three weeks after transfer, total skin-draining lymph nodes cells were stimulated overnight with OVA peptide SIINFEKL. The
percentage of CD45.1+ CD8+ T cells producing IFN-c was evaluated by flow cytometry (individually analyzed mice: wt: 9; LKO?wt: 12; wt?LKO: 12; ANOVA:
P = 0.0037).
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This suggests that imiquimod disturbs the establishment of

antigen-specific memory upon uptake of the antigen via Langerin.

We performed similar experiments in chimeric mice. A clear inhibi-

tion of killing as well as a reduced percentage of OVA-specific

endogenous CD8+ T cells were observed in mice which retained

Langerin expression only on epidermal LCs (Fig 6B). Strikingly,

when OVA was targeted exclusively to Langerin+ dDCs, killing rates

as well as the proportion of OVA-Kb pentamer+ CD8+ T cells

remained similar to the control pre-treatment.

Finally, we used our chimera system to investigate whether the

tolerogenic influence of LCs was retained with a stronger adjuvant.

Thus, we performed the primary immunization with Langerin/OVA

in the presence of pIC/40 instead of imiquimod. Similar to wild-type

C57BL/6 mice (Supplementary Fig S5A), tolerance induction was

absent in control chimera mice, as well as in mice with dDC-

restricted Langerin expression (Supplementary Fig S5B). Unexpect-

edly, when only LCs could be targeted by Langerin/OVA, secondary

responses were repressed, suggesting that LCs can exert a tolerogenic

function in the presence of either adjuvant. However, in wild-type

mice and control chimeras, the tolerogenic contribution of LCs

may be obscured or outweighed by the potent priming capacity of

Langerin+ dDCs.

Discussion

Different types of antigen-presenting cells reside in the skin. For this

reason, the potential of the skin as a vaccination site has attracted

Figure 5. Combination of Langerin/OVA and imiquimod decreases endogenous killing responses and impairs anti-tumoral responses against tumor cells
expressing ovalbumin.

A–C (A) One ear was immunized with Langerin/OVA or isotype control ISO/OVA and treated with imiquimod (imiq). One week later, the contralateral ear was immunized
with DEC/OVA and imiquimod. One week later, CFSE-labeled OVA-loaded target cells and CTO-labeled unloaded control cells were transferred i.v. Specific lysis of
OVA-loaded target cells was measured in the blood 2 days later (n = 7). Data from individually analyzed mice are pooled from at least two independent
experiments (ISO/OVA+imiq ? DEC/OVA+pIC: seven mice; Langerin/OVA+imiq ? DEC/OVA+pIC: seven mice) and compared using Student’s unpaired t-test. The
same experiment was performed (B) in Langerin�/� mice (ISO/OVA+imiq ? DEC/OVA+pIC: six mice; Langerin/OVA+imiq ? DEC/OVA+pIC: six mice) or (C) in C57BL/6
without topical imiquimod application (nt) (ISO/OVA nt ? DEC/OVA+pIC: five mice; Langerin/OVA nt ? DEC/OVA+pIC: six mice).

D Both ears were immunized with Langerin/OVA or isotype control ISO/OVA and treated with imiquimod (imiq). One week later, mice were injected i.p. with 2 lg
anti-DEC-205/OVA and 50 lg poly(I:C) (DEC/OVA+pIC). One week later, CFSE-labeled OVA-loaded target cells and CTO-labeled unloaded control cells were
transferred i.v. Specific lysis of OVA-loaded target cells was measured in the blood 2 days later. Values from individually analyzed mice are pooled from three
independent experiments (ISO/OVA+imiq ? DEC/OVA+pIC: nine mice; Langerin/OVA+imiq ? DEC/OVA+pIC: nine mice) and compared using Student’s unpaired
t-test (n.s.: non-significant, P > 0.05).

E, F Tumor protection assay. Both ears of C57BL/6 mice were immunized with Langerin/OVA or isotype control ISO/OVA and treated with imiquimod, or left untreated.
On the same day, 105 B16 melanoma cells expressing OVA were implanted subcutaneously. One week later, mice were injected i.p. with 2 lg anti-DEC-205/OVA and
50 lg poly(I:C) (DEC/OVA+pIC). Tumor growth (E) and survival of recipient mice (F) were monitored three times a week. Data from individually analyzed mice are
pooled from two independent experiments (untreated: five mice; ISO/OVA+imiq ? DEC/OVA+pIC: 10 mice; Langerin/OVA+imiq ? DEC/OVA+pIC: 10 mice). Tumor
growth was compared using one-way ANOVA (day 11: P = 0.0131; day 14: P < 0.0001) followed by Tukey’s test (*P < 0.05; ***P < 0.001), or using Student’s
unpaired t-test (day 16: P = 0.0226). Survival curves were compared using a Mantel–Cox test.
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considerable interest in the last few years. Skin DC subsets have

been the subject of many investigations regarding their relative

immunological roles. Despite this, their precise contribution to

CD8+ T-cell immunity is not definitely settled. We further examined

their capacity of cross-presentation and, importantly, priming of

cytotoxic responses in a murine system where antigen uptake is

mediated by the Langerin/CD207 receptor present on two important

cutaneous DC subsets, namely LCs and Langerin+ dDCs. We

describe here that immunization strategies targeting Langerin gener-

ate either cytotoxic responses and long-lived memory or antigen-

specific cross-tolerance. Strikingly, the latter did not occur in the

steady state, but required application of an adjuvant. Moreover, we

found that Langerin+ dDCs are potent at cross-priming, while LCs

are more prone to induce CD8+ T-cell tolerance.

Differences in the target receptor result in different internaliza-

tion pathways (Mahnke et al, 2000; Cohn et al, 2013). In addition,

these pathways may be different from one DC subset to another. As

a consequence, critical variations in antigen processing and presen-

tation can be expected from different targeting strategies. We have

previously found intradermal DEC-205 targeting of OVA to result in

potent priming of endogenous CD8+ T-cell responses in the pres-

ence of imiquimod. We have identified Langerinneg dDCs (Flacher

et al, 2012) and CD8+ DCs (Idoyaga et al, 2011) as essential subsets

following cutaneous DEC-205 targeting, depending on the mouse

strains. These two potent immunostimulatory populations of DCs

may represent the key to explain the differences with Langerin

targeting in that they might outcompete the tolerogenic activity of

the simultaneously targeted DEC-205+ LCs.

There is evidence for in vitro cross-presentation of keratinocyte-

derived or exogenously added OVA by LCs (Stoitzner et al, 2006;

Holcmann et al, 2009; Flacher et al, 2010), although in vivo OT-I

proliferation assays rather identified Langerin+ dDCs as cross-

presenting cells (Bursch et al, 2009; Henri et al, 2010; Igyarto et al,

2011). To study the contribution of skin DCs in immune responses,

we and others have previously used diphtheria toxin (DT)-induced

depletion of Langerin+ DCs in Langerin-DTR mice (Kissenpfennig

et al, 2005b; Poulin et al, 2007; Noordegraaf et al, 2010; Flacher

et al, 2012). Unfortunately, this model does not permit reliable

depletion of either LCs or Langerin+ dDCs over several weeks. The

time needed for reconstitution of the depleted Langerin+ DCs is

variable and influenced by inflammation in the skin (Ginhoux et al,

2006; Nagao et al, 2012), possibly leading to misinterpretations

when comparing different adjuvants. In addition, 15 days after

depletion, LCs are still absent, but absolute numbers of Langerin+

dDCs remain low as compared to untreated mice (Noordegraaf et al,

2010). For these reasons, we have chosen a bone marrow chimeric

model (Merad et al, 2002; Bursch et al, 2009; Shklovskaya et al,

2011) that allowed us to selectively target either Langerin+ dDCs or

LCs with Langerin/OVA conjugates.

The absence of endogenous cytotoxic responses observed during

exclusive targeting of LCs proves that Langerin+ dDCs are far supe-

rior in priming OVA-specific immunity. Despite this, both chimeras

show similar early proliferation of OT-I CD8+ T cells. The lack of

LC promotes the generation of highly sensitive memory CD8+ T

cells (Fig 4D). Furthermore, the induction of tolerance by Langerin/

OVA pre-treatment relies solely on LCs (Fig 6B and Supplementary

Fig S5B). Taken together, these results confirm that LCs do cross-

present antigens to CD8+ T cells in vivo, but are not sufficient for

priming cytotoxic responses. Instead, cross-presentation of Langer-

in-targeted antigen by LCs leads to deletion of antigen-specific T

cells. Such properties fit with previous explanations for the tolero-

genic role of LCs (Igyarto et al, 2011).

A widely accepted paradigm states that immature DCs induce

tolerance because they support differentiation of regulatory T cells

(Treg) from naı̈ve CD4+ T cells (Yamazaki et al, 2006), while

mature DCs promote immunity (Hawiger et al, 2001). Imiquimod is

an approved drug for the treatment of basal cell carcinoma and geni-

tal warts. This TLR7 agonist promotes emigration and maturation of

Figure 6. Impairment of secondary CD8+ T-cell responses is dependent on targeting of Langerhans cells.
Both ears of C57BL/6 or chimeric mice were immunized with 0.5 lg Langerin/OVA (L31) or isotype control ISO/OVA and treated with imiquimod (imiq). Six weeks later, mice
were injected i.p. with 2 lg anti-DEC-205/OVA and 50 lg poly(I:C) (DEC/OVA+pIC). After 6 days, CFSE-labeled OVA-loaded target cells and CTO-labeled unloaded control cells
were obtained from Ly5.1 mice and transferred i.v. Specific lysis of OVA-loaded CD45.1+ target cells was measured in the blood 1 day later, while endogenous OVA-specific
CD8+ T cells of skin-draining lymph nodes were characterized as CD45.1� CD19� CD4� NK1.1� OVA-Kb pentamer+ CD8+.

A C57BL/6 mice: values from individually analyzed mice are pooled from three independent experiments and compared using Student’s unpaired t-test (ISO+i?
aDEC+pIC: 10 mice; L31+i?aDEC+pIC: 10 mice).

B Chimeric mice: data from individually analyzed mice are pooled from two independent experiments and compared using Student’s unpaired t-test (LKO?wt:
[ISO+i?aDEC+pIC]: four mice, [L31+i?aDEC+pIC]: seven mice; wt?LKO [ISO+i?aDEC+pIC]: 9 mice; [L31+i?aDEC+pIC]: 10 mice).
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skin DCs, including LCs (Suzuki et al, 2000; Flacher et al, 2008).

Consequently, imiquimod can trigger potent cytotoxic immune

responses (Rechtsteiner et al, 2005; Flacher et al, 2012) and a

psoriasis-like skin inflammation that relies on dDCs (Van der Fits

et al, 2009; Wohn et al, 2013). Despite this, in wild-type mice,

imiquimod appears to have a tolerogenic influence, thereby support-

ing alternatives to the above-mentioned paradigm (Joffre et al,

2009). Our observations are direct evidence that the decision

between immunity versus tolerance must not be simply equated

with DCs being phenotypically mature versus immature, respec-

tively. Intrinsic properties of DC subsets or different maturation

programs may lead to tolerogenic DCs which do express known

maturation markers, but are unable to prime sustained proliferation

of T cells and their differentiation into memory cells (Jiang et al,

2007; Platt et al, 2010). Here, we extend these findings to another

experimental model and specifically to skin DCs.

In murine experimental setups, tolerance induced by LCs has

been explained by mechanisms such as induction of Treg (Gomez

de Agüero et al, 2012), immunosuppressive IL-10 release (Igyarto

et al, 2009), or incomplete maturation (Azukizawa et al, 2011;

Shklovskaya et al, 2011). We could not detect production of IL-10 in

emigrant LCs, and targeting via Langerin did not yield more

antigen-specific Treg than targeting via DEC-205 (Idoyaga et al,

2013). In line with our observations, when OVA expression was

induced in keratinocytes, imiquimod-triggered inflammation was

not sufficient to prime OT-I-dependent autoimmunity, and this

tolerance to OVA was independent of Treg (Holcmann et al, 2009).

Surprisingly, chimeric mice with LC-restricted Langerin expres-

sion displayed a strong tolerogenic capacity when treated with

either imiquimod or pIC/40. We conclude that, in these chimera at

least, Langerin-mediated antigen uptake by LCs alone and subse-

quent presentation to CD8+ T cells in skin-draining lymph nodes

may be sufficient to promote deletional cross-tolerance regardless of

the adjuvant. Nevertheless, in wild-type mice that would correspond

to the physiological situation, pIC/40 simultaneously unfolds the

strong immunogenic potential of Langerin+ dDCs, thereby hiding

the tolerogenic contribution of LCs, while imiquimod does not.

Antigen-presenting cells expressing CD70, a member of the TNF

superfamily engaging CD27 on T cells, are critical in CD8+ T-cell

responses (Brown et al, 1995; Sanchez et al, 2007). The superior

potential of Langerin+ dDC on CD8+ T-cell priming (Henri et al,

2010) may be a consequence of their exclusive expression of CD70

(Elentner et al, 2009). In human LCs, which can present antigens to

CD8+ T cells (Cao et al, 2007; Klechevsky et al, 2010), there is simi-

lar evidence that CD70 expression correlates with the ability to

induce proliferation of naı̈ve (van der Aar et al, 2011) or memory

(Polak et al, 2012) CD8+ T cells.

The selective upregulation of CD70 by pIC/40 reflects qualita-

tively different DC activation states (Azukizawa et al, 2011;

Shklovskaya et al, 2011) resulting from stimulation of different

pattern-recognition receptors (PRRs). How such differential DC

maturation programs establish in vivo remains a complex question,

because danger signals are sensed and transmitted by a variety of

immune and non-immune cells. Imiquimod engages TLR7 while

poly(I:C) is sensed by TLR3 and cytoplasmic receptors RIG-I and

MDA-5. Direct rather than bystander activation has been suggested

to potentiate antigen presentation by DCs (Blander & Medzhitov,

2006). Unfortunately, few detailed studies of expression of PRRs and

response to their ligands are available for mouse skin DCs. Neither

TLR3 nor TLR7 has been found on Langerin+ dDCs or LCs so far

(Fujita et al, 2004; Mitsui et al, 2004; Haley et al, 2012), whereas

MDA-5 (Ifih1) and RIG-I (Ddx58) are detectable (Immunological

Genome Project, http://www.immgen.org). Importantly, inflamma-

tory signals may change the expression profile of PRRs by skin DCs.

Although human keratinocytes do express TLR7 (Flacher et al,

2006), there is no clear evidence that non-immune murine skin cells

(fibroblasts, keratinocytes) respond to imiquimod and provide

bystander activation signals to DCs (Drobits et al, 2012). However,

dermal mast cells represent early responders for TLR7 stimulation,

and they play a critical role in attracting pDCs and promoting LC

emigration into lymph nodes (Heib et al, 2007;Drobits et al, 2012).

Plasmacytoid DCs release high amounts of IFN-a (Palamara et al,

2004), which impairs maturation of LCs in vitro (Fujita et al, 2005).

Since expression of type I IFN receptors on skin DCs remains

unknown, the significance of this effect in vivo is not clear, but may

explain why an antigen targeted to LCs is only poorly presented

when the adjuvant is imiquimod.

Regarding poly(I:C), keratinocytes and fibroblasts express TLR3

(Drobits et al, 2012) and possibly cytoplasmic dsRNA receptors,

resulting in the release of pro-inflammatory cytokines. This influ-

ence of poly(I:C) is probably potentiated by concomitant triggering

of CD40 (Sanchez et al, 2007), providing a direct maturation signal

to DCs.

Altogether, our observations demonstrate that despite a mostly

similar apparent maturation, the influence of Langerin+ dDCs and

LCs on immune responses is essentially linked to the nature of the

adjuvant. Elucidation of these mechanisms both in mouse and in

human skin appears important and timely because DC-targeted

vaccination with tumor antigens has now entered the clinical stage

(Dhodapkar et al, 2014). We believe that systematic analysis of the

sensitivity of skin DCs to different adjuvants now represents an

important challenge that might help to reconcile previous contradic-

tions and advance the recognition and application of skin DCs as a

potent clinical target.

Materials and Methods

Mice

All mice used in this study were on a C57BL/6 genetic background.

Inbred strains Ly5.1, C57BL/6, OT-I and OT-II were purchased from

Charles River Laboratories (Sulzfeld, Germany). Langerin�/� mice

(Kissenpfennig et al, 2005a) were a kind gift of Dr. Sem Saeland.

Female mice were used for all experiments at 2–6 months of age.

All experimental protocols were approved by the Austrian Federal

Ministry of Science and Research, Department for Genetic Engineer-

ing and Animal Experimentation (#66.011/16-II/106/2008 and

66.011/0076-II/10b/2010).

Reagents and antibodies

Cell cultures were performed in complete culture medium consisting

of RPMI-1640 supplemented with 10% heat-inactivated FCS, 2 mM

L-glutamine (Sigma, St. Louis, MO), 50 lg/ml gentamicin (PAA,

Linz, Austria), and 50 lM beta-mercaptoethanol (Sigma).
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Phenotypical analyses were performed by flow cytometry with

mAb against CD4 (clone RM4-5), CD45.1 (clone A20), MHC class

II (anti-I-A/I-Ediverse, clone 2G9), CD11c (clone HL3), CD8a (clone

Ly-2), CD45 (clone 30-F11), CD103 (clone M290), EpCAM/CD326

(clone G8.8), CD19 (clone 1D3), NK1.1 (clone PK136), IL-12p40

(clone C15.6) (all from BD-Pharmingen, San Diego, CA), CD127

(clone A7R34, Biolegend, San Diego, CA), CD70 (clone FR70,

Biolegend), and Langerin/CD207 mAb (clone 929F3; Dendritics,

Lyon, France). When possible, viable cells were determined by

exclusion of 7-AAD-positive dead cells (BD-Pharmingen). IL-12p40

and IL-10 stainings were performed on total lymph node cell

suspension (106 cells/ml) incubated for 3 h in 1 lg/ml Brefeldin A

(Golgiplug, BD-Pharmingen). To stain for Langerin or intracellular

cytokines, permeabilization was performed with Cytofix/perm kit

(BD-Pharmingen).

Targeting antibodies

Ovalbumin-coupled anti-Langerin (Langerin/OVA), anti-DEC-205

(DEC/OVA) or isotype control (ISO/OVA) was produced at the

Rockefeller University from antibody clones L31, NLDC145, and III/

10, respectively (Idoyaga et al, 2008). All conjugates have a geneti-

cally engineered constant part which avoids binding to Fc receptors.

Immunizations

Unless otherwise stated, 0.5 lg of Langerin/OVA, DEC/OVA, or

ISO/OVA, diluted in 25 ll PBS (PAA, Linz, Austria), was injected

intradermally into one or both ear pinna(e) of anesthetized mice,

with or without adjuvant. For imiquimod treatment, approximately

40 ll of Aldara 5% imiquimod cream (a kind gift of Meda Pharma,

Vienna, Austria), representing 2 mg imiquimod, was applied topi-

cally at each injection site. Alternatively, OVA-conjugated antibodies

were injected i.d. together with 12.5 lg poly(I:C) (Sigma) and

12.5 lg anti-CD40 (clone 3/23, BD-Pharmingen).

In some experiments, intradermal injection of 0.5 lg of Langerin/

OVA or ISO/OVA into one ear was followed by topical imiquimod

treatment. One week later, 0.5 lg of DEC-OVA plus imiquimod was

applied to the contralateral ear to trigger a cytotoxic response. Alter-

natively, both ears were immunized with Langerin/OVA or ISO/OVA

in the presence of imiquimod, and the secondary response was initi-

ated by i.p. injection of 2 lg DEC/OVA and 50 lg poly(I:C).

Preparation of lymph node cell suspensions

Lymph nodes were harvested at the indicated times, and cell

suspensions were obtained by digestion in PBS with 160 lg/ml

Collagenase D and 120 lg/ml DNAse I (Roche Applied Science,

Hamburg, Germany), for 25 min at 37°C.

In vivo killing assays

At the indicated times after immunization, mice were injected i.v.

with CD45.1+ cells, obtained from lymph nodes and spleen of Ly5.1

mice and differentially labeled with 20 or 200 nM CFSE (Invitrogen,

Carlsbad, CA), and loaded with 10 or 100 nM OVA257–264 (OVA

peptide SIINFEKL), respectively. As an internal control, unloaded

cells labeled with 10 lM Cell-Tracker Orange (CTO; Invitrogen)

were mixed with CFSE-labeled cells. From each target cell popula-

tion, we injected 3–6 × 106 cells, meaning a total of 9–18 × 106

target cells per mouse. Lymph nodes draining the immunization site

and blood were collected 24 or 48 h after injection of target cells.

Percentage of OVA-specific killing was calculated as described else-

where (Hermans et al, 2004).

T-cell transfer experiments

CD45.1+ ovalbumin-specific CD4+ and CD8+ T cells were obtained

from F1 crossings of Ly5.1 mice with OT-II and OT-I mice, respec-

tively. CD4+ or CD8+ T cells were purified by MACS separation

(Miltenyi-Biotec, Bergisch Gladbach, Germany) from cell suspen-

sions of lymphoid organs. Purified T cells were labeled with 0.5 lM
CFSE for 10 min at room temperature, and 106 OT-I or 5.106 OT-II

was injected i.v. into congenic CD45.2+ C57BL/6 mice. The next

day, mice were immunized as indicated. Six days later, we moni-

tored by flow cytometry the proportion of T cells exhibiting diluted

CFSE, indicating proliferation, and expressing IL-7R/CD127.

Three or 8 weeks after immunization, the percentage and abso-

lute numbers of CD45.1+ CD8+ T cells in skin-draining lymph

nodes were also evaluated. At these time points, total lymph node

cells were cultured in the presence 1 lM OVA peptide SIINFEKL

(Proimmune). After overnight incubation, lymph node cells were

exposed to 1 lg/ml Brefeldin A (Golgiplug, BD-Pharmingen), before

fixation, permeabilization, and flow cytometry analysis of IFN-c
production by individual CD45.1+ CD8+ T cells.

Tracking of Langerin-targeted DC subsets

0.5 lg of PE-coupled full-length anti-Langerin L31 antibody (eBio-

science, San Diego, CA) or rat IgG2a isotype control, diluted in

25 lL PBS, was injected intradermally into both ear pinnae of

anesthetized mice, with or without adjuvants imiquimod or poly

(I:C)+anti-CD40 (see Immunizations). Two or 4 days later, mice

were sacrificed and auricular lymph nodes collected, digested,

and analyzed by flow cytometry as described above.

Irradiation and reconstitution by bone marrow grafts

C57BL/6, Ly5.1, or Langerin�/� mice were lethally irradiated with a

single dose of 10 Gy. Immediately after irradiation, they were

injected intravenously with 5 × 106 bone marrow cells from C57BL/

6, Ly5.1, or Langerin�/� mice. Eight to twelve weeks later, ear skin

and skin-draining lymph nodes were obtained from chimera. In

preliminary experiments, Ly5.1 mice expressing the congenic

marker CD45.1 were used to obtain bone marrow or as a recipient

for Langerin�/� bone marrow. In these chimeric mice, reconstitution

of T- and B-cell populations was followed in the blood and lymph

nodes and took at least 8 weeks. To characterize the reconstitution

of Langerin+ skin DC subsets, epidermal sheets were stained with

anti-Langerin hybridoma supernatant (clone 929F3), followed by

chicken anti-rat immunoglobulin/Alexa 594 (Invitrogen), and count-

erstained with anti-MHCII/FITC (clone 2G9; BD-Pharmingen).

Langerin expression was also determined by flow cytometry on

CD45+ CD11c+ cells from digested epidermis. In cell suspensions

from skin-draining lymph nodes, CD11c+ Langerin+ lymph node

DCs were stained for CD103 and EpCAM.
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Endogenous ovalbumin-specific CD8+ T cells

PE-coupled pentamers recognizing ovalbumin-specific CD8+ T cells

were purchased from Proimmune (Oxford, UK). Because the same

mice had been injected with fluorescently labeled CD45.1+ OVA-

loaded and control target cells for simultaneous in vivo killing

assays, ovalbumin-specific T cells were characterized as CD45.1�

CD8+ pentamer+ from cell suspensions of skin-draining lymph

nodes. CD19+ B cells, NK1.1+ NK/NKT cells, CD4+ T cells and

7AAD+ dead cells were also excluded.

Tumor challenge

Mice were injected subcutaneously into the flank with 105

B16.OVA tumor cells (a kind gift of Dr. E.M. Lord and Dr. J.G.

Frelinger, University of Rochester, Rochester, NY, USA (Lugade

et al, 2005). Tumor size was assessed three times per week by

measuring the short and long tumor diameters using calipers and is

expressed as mean product of tumor volume (length × width2).

Four to five mice were used in each group. Measurements were

stopped when one mouse in the cage reached maximum tumor size

(> 1 cm in one of its dimensions) and had to be euthanized.

The tumor sizes from all mice in each group were used to calculate

the mean tumor size.

Flow cytometry analyses

Experimental data were acquired on a FACSCalibur (Becton-

Dickinson) and analyzed with the FlowJo software.

Statistical tests

All experiments involved groups of at least three mice and were

performed at least twice with similar results. Statistical analyses

were performed using the GraphPad Prism software. Unpaired

t-tests were used to compare two groups of data. For more than two

groups, one-way ANOVA followed by post hoc Tukey’s test was

applied. Survival curves of tumor-bearing mice were compared

using a log-rank Mantel–Cox test. P-values are indicated in the

figure or in the corresponding legend, except in Tukey’s tests for

which GraphPad Prism only provides indicative values, that is,

P > 0.05 (non-significant differences), P < 0.05 (*), P < 0.01 (**),

and P < 0.01 (***). Error bars represent standard error of the mean.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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The paper explained

Problem
Immunotherapy aims at specifically harnessing the immune system’s
potential to either dampen inflammatory responses or boost immu-
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