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Abstract: In this study, tannin-based natural coagulant was used to treat stabilized landfill leachate.
Tannin modified with amino group was utilized for the treatment process. Central composite
design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four
responses. The treatment efficiency was evaluated based on the removal of four selected (responses)
parameters; namely, chemical oxygen demand (COD), color, NH3–N and total suspended solids
(TSS). The optimum removal efficiency for COD, TSS, NH3–N and color was obtained using a tannin
dosage of 0.73 g at a pH of 6. Moreover, the removal efficiency for selected heavy metals from
leachate; namely, iron (Fe2+), zinc (Zn2+), copper (Cu2+), chromium (Cr2+), cadmium (Cd2+), lead
(Pb2+), arsenic (As3+), and cobalt (Co2+) was also investigated. The results for removal efficiency
for COD, TSS, NH3–N, and color were 53.50%, 60.26%, and 91.39%, respectively. The removal of
selected heavy metals from leachate for Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb2+, As3+ and cobalt Co2+

were 89.76%, 94.61%, 94.15%, 89.94%, 17.26%, 93.78%, 86.43% and 84.19%, respectively. The results
demonstrate that tannin-based natural coagulant could effectively remove organic compounds and
heavy metals from stabilized landfill leachate.
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1. Introduction

Landfilling is still considered a common and preferable method of disposal for solid municipal
waste [1]. However, large quantities of leachate generated from landfills contain high levels of organic
and non-organic pollutants, such as heavy metals, dissolved and colloidal solids and various pathogens
that can potentially contaminate groundwater and surface water [2–6]. About 133 different toxic
chemicals were discovered in 56 conventional municipal waste landfills compared to 72 toxic chemicals
in industrial waste landfills [7]. In Malaysia, solid waste generation is expected to reach 30,000 tons
per day in 2020, with a daily per capita average of 0.8 kg [8]. The production of solid waste in
Malaysia is annually increased between 3% and 4% [9]. This increasing trend is due to rapid economic
growth, rapidly changing life styles and rural-urban migration. Approximately 70% of this waste is
collected and roughly 95% of collected waste is disposed in landfills [10]. As most of the dumpsites
are old, the leachate produced has been stabilized and has low biodegradability [11–13]. Therefore,
advanced treatment methods are necessary prior to discharge. Several treatment applications have
been applied to leachate, such as coagulation and electrocoagulation [14,15], Fenton, photo-Fenton and
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Electro-Fenton reaction [16–19], ozonation-based advanced oxidation processes [20–22], adsorption
and ion exchange [23,24]. In spite of the potential or promise demonstrated by certain treatment
processes; questions about treatment cost, sludge production and chemical residues in treated effluent
remain unanswered. The use of low cost and natural materials for wastewater treatment has recently
gained increasing attention from a number of researchers. In the past two decades, many studies have
been conducted to evaluate the effectiveness in substituting chemical coagulants with natural polymers
in coagulation processes; polymers have been selected due to a number of advantages: the lower
volume of biodegradable sludge generated from their use, their lower toxicity to the environment [25],
and their ability to work without requiring pH adjustment for wastewater treatment [26]. Tannins
contain positively charged organic compounds with a long polymer chain and can be used as a natural
coagulant for industrial wastewater treatment [27]. Tannin is a class of pollutant recognized by its
ability to precipitate pollutants of proteins [28].

Application of tannin and its effectiveness for the treatment of low organic water and wastewater
has already been demonstrated [29–31]. However, few studies have investigated the use of tannin
for stabilized leachate treatment. In the present work, the efficacy of tannin-based natural coagulants
used for leachate treatment was investigated. Experimental conditions for pH and tannin dosage were
optimized, and the removal abilities of the various treatments were determined. Moreover, the efficacy
of tannin in removing heavy metals from leachate was also examined.

2. Methodology

2.1. Sampling and Site Characteristics

Leachate samples were collected from Ampar Tenang Closed Landfill Site (ATCL). This landfill
site is located in the Sepang district, approximately 4 km to the southeast of Dengkil town in Selangor,
Malaysia at latitude 02◦48.925′ N and longitude 101◦4.933′ E, 40 km southeast of Kuala Lumpur [32].
The landfill site is bound mainly by oil palm plantations, and housing projects have been developed
closed to the landfill. The southern area of the site is located approximately 300 m from Labu River.
The average precipitation in Dengkil is approximately 2450 mm per year. Annual temperatures
consistently range from 24 to 32 ◦C with a mean temperature of 27 ◦C [33]. The ATCL is located on
the Langat basin alluvial aquifer. Layers from silt and sands represent the shallow confined aquifer;
however, the ground surface is more clayey [34], with thickness ranging from 5 to 12 m [35]. There are
other layers of clay under the aquifer with thickness ranging between 8 and 15 m that results in the
aquifer consisting of lenses on its bottom [36].

The ATCL has a total area of 10 acres. It has been operating for 15 years since 1994. During operation,
ATCL received approximately 100 tons of solid waste per day. A total of 500,000 tons of solid waste
has been disposed of at the site. The site was fully closed in 2010. ATCL was upgraded from dumping
site (Level 0) to sanitary classification (Level 1) before it closed. Leachate samples were collected three
times during the August 2017 and January 2018 period. Leachate was manually collected and placed
in 500 mL polyethylene containers. The samples were immediately transported to the laboratory and
cooled at 4 ◦C to reduce the biological and chemical reaction. The general characterization for leachate
is presented in Table 1.
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Table 1. Descriptive statistics including the mean and standard deviation of leachate quality parameters
and heavy metals.

Parameter Mean and Standard Deviation (USEPA [37]; DOE [38])

pH 7.9 ± 0.5 6–9 **
EC (µS/cm) 6565 ± 324 -
TDS (mg/L) 4671 ± 174 -
TSS (mg/L) 40 ± 8 88 *

COD (mg/L) 893 ± 202 400 **
BOD5 (mg/L) 59 ± 10 20 **

NH3–H (mg/L) 531 ± 22 5 **
DO (mg/L) 5 ± 2 10 *
Mg (mg/L) 20 ± 4 -
Ca (mg/L) 40 ± 3 -
Na (mg/L) 639 ± 303 -
Fe (mg/L) 0.8 ± 0.2 5 **
Zn (µg/L) 280 ± 2 2000 **
Cu (µg/L) 42 ± 4 20 **
Cr (µg/L) 45 ± 2 10 **
Cd (µg/L) 0.6 ± 0.1 10 **
Pb (µg/L) 4 ± 1 10 **
As (µg/L) 17 ± 7 50 **
Co (µg/L) 11 ± 8 50 **
Mn (µg/L) 61 ± 49 20 **

* [37], ** [38].

2.2. Tannin Characterization

The tannin used in the present study is a commercial variety extracted from the bark of the
Black Acacia (Acacia mearnsii) and modified by ammonium [27]. Tannins are hydrolyzable and/or
condensed materials [39]. The tannin has a polymeric structure and contains amino groups [28], which
are involved in the bridging mechanism used by particles during the coagulation process (Figure 1).
The composition and physical properties of naturally extracted tannins are described by Roux et al. [40].
The phenolic building blocks substitution and the aliphatic hydroxyl groups enhanced the reactivity of
the natural tannin [40–42]. The chemical modification of naturally extracted tannin was reviewed by
Arbenz and Avérous [42]. Matamala et al. [43] improved the reactivity of natural tannins extracted
from Chilean radiata pine species and from Brazilian black acacia using AISI 1010 (UNS G10100) steels.
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2.3. Experimental Procedure

The experimental procedure was carried out in two stages; the first stage is a preliminary experiment,
which was run using one factor a time to identify the region of interest for each influential variable
(factor) for pH and tannin dosage and to select the appropriate levels. The selected levels for pH and
tannin dosage were used to carry out the second stage using response surface methodology (RSM). A
central composite design with two factors pH and tannin dosage and four responses were carried out.

2.3.1. Effect of Tannin Dosage and pH

For the first stage; modified tannin was utilized for the coagulation of stabilized leachate. The different
dosages of tannin ranging between 0.25 g and 1.25 g were added separately as a powder form to the 500 mL
leachate samples. During this stage of experiment, the initial pH for the leachate sample (8.5) was kept
without adjustment, and coagulation was evaluated based on chemical oxygen demand (COD), color,
total suspended solids (TSS), and NH3–N removal efficiency. Maintaining the optimum dosage obtained
from the previous stage, the influence of pH variation (ranging between three and 12) on the removal of
targeted parameters was analyzed. For pH adjustment, 3M of hydrochloric acid solution and 3M of sodium
hydroxide solution were used. The pH of all samples was adjusted to the desired value before coagulant
addition. Prior to the coagulation process, leachate samples were thoroughly shaken to avoid the possibility
of settling solids. The jar test is a method that uses different coagulant dosages to simulate coagulation to
determine the minimal dosage required to obtain the highest removal efficiency for targeted parameters.
The jar test was first conducted at 250 rpm for 15 min, which was then followed by 60 rpm for 30 min. Then,
the liquor was left for 30 min to settle. After settling, the efficacy of various tannin dosages at removing
targeted parameters was determined [44].

The removal efficiency for COD was calculated using the following equation, Equation (1):

Removal (%) = [(Ci − Cf)/Ci] × 100 (1)

where Ci and Cf are the initial and final COD concentrations.

2.3.2. Optimization of Treatment Efficiency

A central composite design (CCD) for the tannin-based leachate treatment was created using design
expert software (version 6.0.7) to investigate whether COD, color, NH3–N and TSS were influenced by
pH values and the various dosages of tannin. The quantities and levels of each variable (factor) were
selected based on the preliminary experiments explained in Section 2.3. Thirteen experiments were
performed to cover all possible combinations between pH levels and tannin dosages. The levels of the
selected factors (pH and tannin) in terms of actual and coded forms are provided in Table 2.

Table 2. The pH levels and tannin dosages for central composite design (CCD) with axial points.

Level of Value Tannin Dosage (g) pH

Tannin pH Coded Actual Coded Actual Coded

0.4 5.17 −1.414 0.5 −1 6 −1
0 0.75 0 8 0

1.1 10.83 +1.414 1 1 10 1

The data obtained from various experiments of CCD are usually used to fit a polynomial model
and most probably a second-order model (see Equation (2)):

Y = β0 +
k∑

j=1

β jX j +
k∑

j=1

β j jX2
j +
∑

i

k∑
< j=2

βi jXiX j + ei (2)
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where Y is the response, Xi and Xj are the variables, β is the regression coefficient, k is the number of
factors studied and optimized in the experiment, and e is the random error. A p-value less than 0.05
was considered significant.

2.4. Analytical Study

The biochemical oxygen demand (BOD5), chemical oxygen demand (COD), ammoniacal nitrogen
(NH3–N), total suspended solid (TSS), electrical conductivity (EC), pH and heavy metals—copper
(Cu2+), iron (Fe2+), lead (Pb2+), and zinc (Zn2+)—were determined before and after each run of
coagulation. The concentration of BOD5 was determined using Method 5210B. The dissolved oxygen
(DO) was measured using a DO meter (model 1000, YSI Inc., Greene County, OH, USA). The COD
concentration was determined using the closed reflux colorimetric method (5220B-DR2500 HACH,
Loveland, CO, USA). Color concentration was measured using the DR 2800 HACH spectrophotometer
at 455 nm wavelength. The pH and EC were measured using a portable digital pH/mV meter (model
inoLab pH 720, WTW, Weilheim, Germany). Total suspended solids (TSS) was measured using method
2540C. NH3–N concentration was measured by the phenate method (4500-NH3 F) using a DR2500
spectrophotometer at 640 nm. Heavy metals were analyzed using Atomic Absorption Spectroscopy
(Unicam 929 AA Spectrophotometer, UNICO, Franksville, WI, USA). All parameters were determined
following standard methods for examination of water and wastewater [45]. Different tannin dosages
(0.25, 0.50, 0.75, 1.00 and 1.25 g) were added to raw leachate in the beakers to evaluate its performance
in removing targeted parameters.

3. Results and Discussion

3.1. Effect of Tannin

The effects of the various tannin dosages on the leachate samples were investigated. The various
tannin dosages ranged between 0.25 g and 1.25 g. Its effects on COD, color, NH3–N and TSS removal were
evaluated, as seen in Figure 2. The maximum removal percentage for COD, color and TSS were 54%, 78%
and 43%, respectively at 0.75 g of tannin. For ammonia, higher removal was achieved using 1 g of tannin.
The removal of targeted parameters was improved when tannin dosage increased between 0.25 g to 0.75 g.
The removal of organic pollutants improved due to the ability of natural polyphenols in tannin to adsorb
organics and metal ions [46]. The improvement in the removal of organic and ammonia may be due to the
effect of electric double layers formed by carboxylic, phenolic and amino groups [47]. The removal efficiency
of targeted parameters reduced when higher dosages of tannin (>0.75 g) were applied. The positively
charged primary amino groups contained in tannin led to an improved bridging mechanism of the particles
and colloids in the leachate and enhanced the flocculation process [27]. Tannin is unhydrolyzed in leachate
and has a high molecular weight. The use of higher dosage of tannin leads to fast precipitation of large
amount of tannin which may inhibit the flocculation efficiency [48].
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Figure 2. Effect of tannin dosage on chemical oxygen demand (COD), color, total suspended solids (TSS) and
NH3–N removal from leachate at a pH of 8.18, 250 rpm for 15 min, 60 rpm for 30 min and settling for 30 min.
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3.2. Effect of pH Variation

The effect of pH variation in the experiments on leachate coagulation by tannin was investigated by
maintaining tannin dosage at 0.5 g. The pH levels used ranged between 3 and 11. Figure 3 shows that the
maximum removal for COD (51%) and color (78%) was achieved at pH 9, while the highest removal from
TSS (57%) and NH3–N (57%) was achieved at pH 8.18 and 9, respectively. At pH ranging between 7 and 9,
the adsorption capability of the particles will be high due to the neutral electric charge [49]. Cations in
leachate can improve the coagulation process by neutralizing and destabilizing the negative charges of
the residue of the coagulant functional groups by linking with tannin particles [50]. The concentration
of monovalent and multivalent cations in leachate, including Mg2+, Ca2+

, Na+ and Fe2+, stimulated
flocculating activity. These results are analogous to those uncovered by Okaiyeto et al. [51], Wang et al. [52]
and Zhang et al. [53], who reported that the multivalent of cations such as Ca2+, Mn2+ and Al3+ increased
flocculation activities. Cosa et al. [54] and Nwodo et al. [55] also reported increasing flocculating activity as
a result of the influence of Ca2+, Mg2+ and Mn2+.
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3.3. Scanning Electron Microscopy (SEM) Imaging

The morphological surface structure of tannin was observed prior to and after the coagulation process.
As shown in Figure 4a, tannin has a condensed crystalline brick-shaped structure. The structure served as
an attachment site to which suspended particles and cations could bind [56]. Figure 4b illustrates how the
coagulant aggregated the particles, which resulted in the formation of larger flocs that were easily settled.
Therefore, SEM images of tannin indicated that bridging could be responsible for tannin’s impressive
coagulation capabilities [56,57].
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3.4. Analysis of Variance

The effect of pH and tannin dosages on four responses COD, color, NH3–N, and TSS was
investigated using central composite design (CCD). The results of the 13-run (Table 3) obtained from
CCD were analyzed using analysis of variance (ANOVA). The normality assumption for the data,
which should be checked before starting the analysis, demonstrated that the data for all responses
followed normal distribution as presented in Figure 5. The two variables, pH and tannin dosage,
showed a significant effect (p-value < 0.05) for the linear or quadratic or both on the selected responses
as presented in Table 4 for ANOVA results. Furthermore, the interaction effect between pH and tannin
displayed a significant effect on color and TSS removal, which indicates that the two variables pH
and tannin dosages do not work independently, while failing to show any significant effect on other
removals. This means that the two variables work independently.
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Figure 5. Normal probability plots for (I) COD, (II) color, (III) NH3–N and (IV) TSS removals from leachate.
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Table 3. Experimental design conditions and actual and predicted removals for the parameters for leachate coagulation with tannin.
R
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pH
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COD Removal (%) Color Removal (%) NH3–N Removal (%) Total Suspended Solids (TSS) Removal (%)
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Pr
ed
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te

d

R
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id
ua
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A
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l

Pr
ed
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d

R
es

id
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l

1 Axial 5.17 0.75 67.00 66.90 0.10 92.00 93.43 −1.43 68.90 71.20 −2.29 60.26 60.64 −0.38
2 Axial 10.83 0.75 28.00 27.60 0.40 51.00 46.87 4.13 81.00 81.88 −0.88 54.00 49.88 4.12
3 Center 8.00 0.75 37.50 36.34 1.16 78.81 81.09 −2.27 70.32 69.83 0.49 55.70 56.55 −0.85
4 Axial 8.00 0.40 34.00 37.69 −3.69 59.49 59.26 0.23 52.00 54.91 −2.91 45.28 44.52 0.76
5 Center 8.00 0.75 36.80 36.34 0.46 83.70 81.09 2.62 71.02 69.83 1.20 55.70 56.55 −0.85
6 Fact 10.00 0.50 31.00 28.57 2.43 49.00 51.52 −2.52 70.00 67.98 2.02 40.00 42.67 −2.67
7 Center 8.00 0.75 36.17 36.34 −0.16 79.00 81.09 −2.09 70.79 69.83 0.96 54.40 56.55 −2.15
8 Fact 6.00 1.00 33.00 35.93 −2.93 88.71 88.88 −0.17 65.37 64.22 1.15 44.63 45.69 −1.06
9 Fact 10.00 1.00 11.00 14.14 −3.14 44.00 48.10 −4.10 73.85 73.70 0.15 42.00 46.25 −4.25

10 Axial 8.00 1.10 13.00 8.81 4.19 68.00 65.53 2.47 60.00 60.27 −0.27 41.00 38.02 2.98
11 Fact 6.00 0.50 65.00 62.36 2.64 78.00 76.59 1.41 65.37 62.35 3.02 58.96 58.45 0.51
12 Center 8.00 0.75 35.04 36.34 −1.30 83.35 81.09 2.27 69.00 69.83 −0.83 59.28 56.55 2.74
13 Center 8.00 0.75 36.17 36.34 −0.16 80.56 81.09 −0.53 68.00 69.83 −1.83 57.65 56.55 1.11
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Table 4. Analysis of variance (ANOVA) for COD, total suspended solids (TSS), color and
NH3–N removals.

Source Sum of Squares DF Mean Square F Value Prob > F

C
O

D
R

em
ov

al
(%

)

Model 2650.63 5 530.13 103.36 <0.0001
A 1414.38 1 1414.38 275.77 <0.0001
B 767.20 1 767.20 149.59 <0.0001

A2 77.79 1 77.79 15.17 0.0059
B2 334.50 1 334.50 65.22 <0.0001
AB 6.81 1 6.81 1.33 0.2870

Residual 35.90 7 5.13
Lack of Fit 34.46 3 11.49 31.87 0.0030
Pure Error 1.44 4 0.36
Cor Total 2686.53 12
Std. Dev: 2.26, R2: 0.9866, Mean: 33.67; Adj R2: 0.9771, C.V: 6.73; Pred R2: 0.9079; Adeq

Precision: 34.585

C
ol

or
R

em
ov

al
(%

)

Source Sum of Squares DF Mean Square F Value Prob > F

Model 3003.96 5 600.79 58.23 <0.0001
A 2167.80 1 2167.80 210.10 <0.0001
B 39.36 1 39.36 3.82 0.0917

A2 207.87 1 207.87 20.15 0.0028
B2 607.43 1 607.43 58.87 0.0001
AB 61.68 1 61.68 5.98 0.0444

Residual 72.22 7 10.32
Lack of Fit 50.44 3 16.81 3.09 0.1523
Pure Error 21.78 4 5.44
Cor Total 3076.18 12

Std. Dev.: 3.21, R2: 0.9765, Mean: 71.97, Adj R2:0.9598, C.V.:4.46
Pred R2:0.8723, Adeq Precision: 21.336

Source Sum of Squares DF Mean Square F Value Prob > F

N
H

3–
N

R
em

ov
al

(%
)

Model 529.27 5 105.85 20.75 0.0005
A 114.12 1 114.12 22.37 0.0021
B 28.75 1 28.75 5.64 0.0493

A2 78.35 1 78.35 15.36 0.0058
B2 260.56 1 260.56 51.08 0.0002
AB 3.71 1 3.71 0.73 0.4220

Residual 35.71 7 5.10
Lack of Fit 29.08 3 9.69 5.85 0.0604
Pure Error 6.62 4 1.66
Cor Total 564.98 12

Std. Dev.: 2.26, R2: 0.9368: Mean: 68.13, Adj R2: 0.8917, C.V.: 3.32: Pred R2: 0.6156, Adeq
Precision: 17.580

T
SS

R
em

ov
al

(%
)

Source Sum of Squares DF Mean Square F Value Prob > F

Model 631.55 5 126.31 13.02 0.0020
A 115.80 1 115.80 11.94 0.0106
B 42.23 1 42.23 4.35 0.0754

A2 2.88 1 2.88 0.30 0.6030
B2 405.95 1 405.95 41.84 0.0003
AB 66.69 1 66.69 6.87 0.0343

Residual 67.91 7 9.70
Lack of Fit 53.14 3 17.71 4.80 0.0820
Pure Error 14.77 4 3.69
Cor Total 699.46 12
Std. Dev.: 3.11, R2: 0.9029, Mean: 51.45, Adj R2: 0.8336, C.V.: 6.05, Pred R2: 0.4267, Adeq

Precision:10.690

A: pH B: Tannin dosages.
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The effect of pH and tannin was modelled using a second-order model as given in Equations (3)–(6).

COD removal (%) = +35.88 − 13.30 × A − 9.79 × B + 3.34 × A2
− 6.93 × B2 + 1.30 × A × B (3)

Color removal (%) = +81.09 − 16.46 × A + 2.22 × B − 5.47 × A2
− 9.34 × B2

− 3.93 × A × B (4)

NH3-N removal (%) = +69.83 + 3.78 × A + 1.90 × B + 3.36 × A2
− 6.12 × B2 + 0.96 × A × B (5)

TSS removal (%) = +56.55 3.80 × A − 2.30 × B 0.64 × A2
− 7.64 × B2 + 4.08 × A × B (6)

The models in Equations (3)–(6) are good because the coefficient of determination is high and
close to 1 (Table 4), which indicates that most of the variance in the data is captured by the model.
However, Equation (3) is not as good as other models in explaining the variance in the model since
the lack of fit is significant (p < 0.003) which indicates that the model of COD is not as good as other
models for color, NH3–N and TSS removals. This means that a higher order model such as third-order
polynomial model or more complicated models can be used to enhance the model of COD removal.
The effect of pH and tannin on the selected responses is pictorially presented in Figure 6. Figure 6
displays a three-dimensional response surface plot to describe the behavior of each response regarding
pH and tannin. Figure 6 demonstrates the maximization of all four responses (COD, color, NH3–N and
TSS); the region of maximum effect is well defined with the selected boundaries of pH and tannin.
Figure 7 represents the interaction between the two main factors (pH and tannin) and their removal
behaviors on the selected parameters.
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Figure 6. Response surface plots for (I) COD, (II) color, (III) NH3–N and (IV) TSS removals from leachate.
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Figure 7. The effect of Interaction between tannin dosage and pH for: (I) COD, (II) color, (III) NH3-N
and (IV) TSS removal during coagulation of landfill leachate (B−: represents the low level of tannin
dosage, B+: represents the high level of tannin dosage and: represents the design point).

3.5. Optimization of Leachate Treatment Using Tannin

The optimization process was carried out to determine the optimum value of COD, color, NH3–N,
and TSS removal efficiency, using the Design Expert 6.0.7 software. According to the software
optimization step, the desired goal for each operational condition (tannin dosage and pH) was chosen
“within” the range. The responses (COD, color, NH3–N, and TSS) were defined as maximum to achieve
the highest performance. The program combines the individual desirability into a single number,
and then searches to optimize this function based on the response goal. Accordingly, the optimum
working conditions and respective percentage removal efficiencies were established, and the results
are presented in Table 5. As shown in Table 5, the removal for COD (53.50%), color (91.4%), NH3–N
(69.7%) and TSS (60.7%) are predicted, respectively. The desirability function value was found to be
0.844 for these optimum conditions.
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Table 5. Optimal Response results from model prediction and laboratory.

pH Tannin Dosage
(g)

TSS Removal
(%)

Color Removal
(%)

COD
Removal (%)

NH3–N
Removal (%) Desirability

6.00 0.73 60.3 91.3882 53.5 69.7 0.844
Lab experiment 60.7 90.7 52.8 66.3

A confirmatory laboratory experiment was run using these optimum conditions, and the results
obtained were the following: 60.30% TSS, 90.70% color, 52.80% COD and 66.70% NH3–N removal
rates. The residual for COD, color, NH3–N and TSS was reported as 418 mg/L, 279 Pt-Co, 180 mg/L
and 17 mg/L, respectively, which are still higher than discharge limits, except for TSS.

3.6. Heavy Metal Removal

The metal complexation of tannin is played an important role for heavy metal deposition from
wastewater treatment using natural modified tannin [58]. Slabbert [59] characterized and identified
five metal complexes formed by iron (Fe+2), aluminum (Al+3), titanium (Ti), and molybdenum (Mo)
ions. The metal complexes increased the charged transfer and enhanced the adsorption and deposition
of dissolved heavy metals in water [59–63]. The removal of selected heavy metals from leachate
under the obtained optimum experimental conditions (tannin dosage 0.75 g, pH 6, 250 rpm for 15 min
followed by 60 rpm for 30 min and settling for 30 min) was investigated, and the results are presented
in Table 6. The removal efficiency for the majority of heavy metals ranged between 84% and 94%,
while the lowest removal efficiency was reported for Cd2+ at 17.26%, which may be due to the optimal
pH value for Cd removal being 5 [64], while the experiment for heavy metals removal was performed
at pH 6. Tondi et al. [65] used tannin based rigid foam to enhance the removal of dissolved heavy
metals in water. Oo et al. [66] employed mangrove tannins for removing lead (Pb2+) and copper (Cu2+)
involving the ion exchange and complexation process by interaction of metals with hydroxyl groups.

Table 6. Effect of tannin on heavy metal removal (tannin dosage 0.73 g, pH 6, 250 rpm for15 min,
60 rpm for 30 min and 30 min of settling).

Heavy Metals Initial Concentration in
Leachate

Residual After Tannin
Coagulation Removal (%)

Fe (mg/L) 0.8 ± 0.2 0.1 ± 0.0 89 ± 2
Zn (µg/L) 280 ± 2 15 ± 1 94 ± 3
Cu (µg/L) 42 ± 4 2.5 ± 0.3 94 ± 2
Cr (µg/L) 45 ± 2 5 ± 1 90 ± 1
Cd (µg/L) 0.6 ± 0.1 0.5 ± 0.1 17 ± 1
Pb (µg/L) 4 ± 1 0.3 ± 0.0 94 ± 2
As (µg/L) 17 ± 7 2.4 ± 1 86 ± 1
Co (µg/L) 11 ± 8 1.7 ± 0.5 84 ± 2

4. Conclusions

In this study, the optimization of COD, TSS, color, and NH3–N removal for the coagulation
treatment process of stabilized leachate was investigated. In the runs, the highest COD, TSS, color and
NH3–N removal rates were achieved at 52.5%, 53.5%, 91.39% and 64%, respectively. Variables such as
tannin and pH were modeled with satisfactory degrees of fit. The results suggest that a tannin dosage
0.73 g at a pH of 6 and duration of 45 min can be considered as an efficient pre-treatment process for
leachate, and additional post treatment can be considered for further organic and ammonia removals.
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