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Turing patterns by supramolecular self-assembly
of a single salphen building block

Martha V. Escárcega-Bobadilla,1,3,* Mauricio Maldonado-Domı́nguez,1,2 Margarita Romero-Ávila,1

and Gustavo A. Zelada-Guillén1,3,4,*

SUMMARY

In the 1950s, Alan Turing showed that concerted reactions and diffusion of acti-
vating and inhibiting chemical species can autonomously generate patterns
without previous positional information, thus providing a chemical basis for
morphogenesis in Nature. However, access to these patterns from only one mo-
lecular component that contained all the necessary information to execute
agonistic and antagonistic signaling is so far an elusive goal, since two or more
participants with different diffusivities are a must. Here, we report on a single-
molecule system that generates Turing patterns arrested in the solid state, where
supramolecular interactions are used instead of chemical reactions, whereas
diffusional differences arise from heterogeneously populated self-assembled
products. We employ a family of hydroxylated organic salphen building blocks
based on a bis-Schiff-base scaffold with portions responsible for either activation
or inhibition of assemblies at different hierarchies through purely supramolecular
reactions, only depending upon the solvent dielectric constant and evaporation
as fuel.

INTRODUCTION

In Turing’s original paper (Turing, 1952), the so-called 6th morphology consists of stationary periodic waves

with finite wavelength (l), where the crests correspond to the visible part in the pattern (spots, stripes, or

labyrinths) and the troughs in the same are their respective void spaces. In Nature, Turing patterns (e.g.

Figure 1) can be found in the colony growth and spatial positioning mechanisms of bacteria (Karig et al.,

2018; Murray and Sourjik, 2017), pigment distribution and structural features in fish (Almuedo-Castillo

et al., 2018; Cooper et al., 2018; Konow et al., 2021; Mahalwar et al., 2014; Onimaru et al., 2016), seashells

(Cooper, 2012; Meinhardt, 2009), corals (Cohen et al., 2004; Pratchett et al., 2015), octopus (Ishida, 2021),

plants (Vadde and Roeder, 2020; van den Berg et al., 2021), anatomical traits and hair follicle spacing in

mammals (Cetera et al., 2018; Economou et al., 2012, 2020; Raspopovic et al., 2014; Sheth et al., 2012;

Sick et al., 2006), feather branching and coloration in birds (Harris et al., 2005; Haupaix et al., 2018), the

left-right asymmetry and teeth development in vertebrates (Marcon and Sharpe, 2012; Salazar-Ciudad

and Jernvall, 2010), etc.

Turing pattern formation mechanism is based on, at least, two coexisting morphogens, an activator (A) and

an inhibitor (B), where diffusion (DA,DB.) can lead to patterning if antagonistic reactions at the long-range

are coupled to agonistic reactions at the short- to the mid-range (Gierer and Meinhardt, 1972; Kondo and

Miura, 2010; Turing, 1952). Commonly, this means that a faster degradation (or a slower synthesis) of A is

remotely driven by the larger mobility of B, whereas the morphogenetic output (the patterning readout)

is locally triggered by the lessmobile A counterpart; this usually implies that an easier patterning is possible

for the larger the difference betweenDA andDB. Such an interplay between reactions and diffusion of A and

Boccurs through stochastic instabilities arisen from initially stable and homogeneous concentrations. In this

regard, the regulatory role of the components is associated with non-linearity in the reactions and cooper-

ativity, in a way that for the larger the cooperativity in a reaction-diffusion (RD) system, the lesser the restric-

tions for Turing patterns to emerge (Diambra et al., 2015; Epstein and Xu, 2016; Tompkins et al., 2014).

These principles have been observed not only in biological morphogenetic processes but are also widely

present in many more dynamic systems than thought earlier (Kuznetsov and Polezhaev, 2020; Leyshon

1School of Chemistry,
National Autonomous
University of Mexico (UNAM),
Circuito Escolar s/n, Ciudad
Universitaria, 04510 Mexico
City, Mexico

2Department of
Computational Chemistry, J.
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et al., 2021; Scholes et al., 2019), including demographic, sociolinguistic, psychologic, economic, ecologic,

or epidemiologic phenomena (Batabyal, 2021; Chakraborty et al., 2021; Chen, 2019; Iskarous, 2019; Lacalli,

2020; Mimar et al., 2021; Pal and Poria, 2021; Putra et al., 2019; Vandermeer and Perfecto, 2020; Zincenko

et al., 2021). Nevertheless, in chemistry, these RD principles have been typically used to explain how reac-

tions concerted at different scales can result into oscillatory and out-of-equilibrium systems, such as the

Belousov-Zhabotinsky (BZ) reaction (Zaikin and Zhabotinsky, 1970) (e.g. oxidation of malonic acid by

bromate using metal-catalysis) and some other examples in biochemistry and metabolism, organic chem-

istry, and redox and electrochemical reactions (Agladze and Steinbock, 2000; Astrov and Logvin, 1997;

Christoph et al., 1999; Ertl, 2008; Fleury, 1997; Goesten et al., 2016; He et al., 2012; Heuser et al., 2015; Na-

kouzi and Sultan, 2011; Sugai et al., 2017; Yashin and Balasz, 2006).

So far, the RD principles have been more widely employed to engineer synthetic systems based on (cova-

lent) chemical reaction networks. These systems facilitated the access to autonomous evolutionary synthe-

sis of functional cages, macrocycles and molecular motors, self-replication of abiotic molecules, and bot-

tom-up construction of adaptive biosensors and self-assembled architectures (Cera and Schalley, 2018;

Grzelczak et al., 2019; Grzybowski et al., 2017; Kosikova and Philp, 2017; Orrillo et al., 2019; Scalise and

Schulman, 2013; van Roekel et al., 2015; van Rossum et al., 2017). However, it was not until 2021, that

such principles were experimentally demonstrated to also allow for soft-/inorganic-matter redistribution

patterning that otherwise were believed to be microphase separation or nucleation-growth processes,

with the construction of out-of-the-equilibrium Turing patterns arrested in the solid state at the macro,

the micro, and the nanoscale in polymeric membranes (Qiao et al., 2021; Wu et al., 2021), semiconducting

wafers (Leitgeb et al., 2021), atomic layer deposits (Fuseya et al., 2021), and metal chalcogenide nanostruc-

tures (Zhang et al., 2021). These works proved the existence of an interplay between RD in Turing instabil-

ities and classical phase-separation processes formerly modeled through the Cahn-Hilliard approach,

which on the contrary describes processes occurring near the thermal equilibrium. In this manner, and

as earlier predicted analytically (Brauns et al., 2020, 2021), the reports also afforded a wider perspective

on RD patterning, showing that morphogenesis also proceeds through mass redistribution instabilities

driven by multiple local equilibria that play as mass-flux scaffolds to which the pattern is intrinsically linked.

Unfortunately, the use of Turing’s model to engineer patterning systems based on much less complex RD

platforms beyond the reported examples or by using ‘‘supramolecular reactions’’ instead of ‘‘covalent re-

actions’’ as a paradigm shift (Vantomme andMeijer, 2019; Whitesides et al., 1995) that, in turn, could help in

reconceiving the classical physical point of view for matter aggregation into a more inclusive frame that ac-

counted for non-covalent patterning from small molecules has remained a major challenge over the last

Figure 1. Turing patterns are ubiquitous in Nature

(A) The coral Diploria labyrinthiformis which is usually present in the Atlantic Ocean exhibits superficial 2D waves that

meet Turing’s criteria; the specimen in the figure was found by the authors as a brick in a wall of the first house that Hernán

Cortés constructed during the XVI century in La Antigua, Veracruz, central east Mexico; scale bar is 10 mm, inset is the full

specimen in its current location at the coordinates 19�19016.2"N, 96�19015.1"W.

(B) Fast Fourier transform (FFT) of the photograph shows a 360� annular spot rendered by the isotropic wavelength in the

pattern (l), where the tolerance in l is indicated by the rim of the ring’s width limits, i.e. for the case, 5.6–10.8 mm, while

the central value in l is represented by the circumference of maximum intensity located between these limits (l = 8.2 G

2.6 mm).
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decades (Bánsági et al., 2011; Grzybowski et al., 2017; Kondo and Miura, 2010; Nakouzi and Steinbock,

2016; Santos-Moreno and Schaerli, 2019). In this sense, autonomous pattern evolution from a single molec-

ular structure which itself contained all the information needed to cooperatively achieve auto-regulation via

agonistic and antagonistic signaling and, consequently, tuneable self-organization at increased complexity

levels would represent a breakthrough in matter control and adaptive chemistry (Lehn, 2013), since no re-

ports exist to date in this regard, presumably by the challenge in programming antagonistic ‘‘covalent’’ re-

activities in a same synthon. The latter would be a single-molecule level example of how equal cells can self-

organize and spatially constrain into differentially controlled structures in living organisms without the need

for external signals but relying only on collective information exchanges, as pointed out by the latest dis-

coveries in biology (Marcon and Sharpe, 2012; Raspopovic et al., 2014; Sheth et al., 2012; Toda et al., 2018)

yet artificially shown so far only for self-sorted DNA origami nanofibrils and nanotubes lacking spatial dis-

tribution control (Groeer et al., 2021). Therefore, instead of using an orthodox approach based on agonist/

antagonist ‘‘classical’’ (covalent) chemical reactions to transfer information between molecules of different

predetermined diffusivities, herein, we used supramolecular interactions as the signaling information car-

riers and differently aggregated populations to engineer an artificial RD system with autonomous organi-

zation capabilities through self-assembly of a single building block (BB). In this way, we simplified our task

to the identification of the minimum molecular characteristics and medium conditions that could facilitate

the access to Turing patterns arrested in the solid state as a bottom-up construction tool.

In a recent work (Zelada-Guillén et al., 2018), we studied the tuneable self-assembly of modular BBs based

on bis-salphen compounds, i.e. symmetrical tetrakis-Schiff bases containing two terminal di-aromatic ke-

timine moieties linked through adjacent o-phenylenediamine derivative portions, both being coupled

via aldimine counterparts to a central biphenyl hinge. In that report, we demonstrated that those structures

could drive concerted self-assembly scenarios at different hierarchical levels, where the raise in BB concen-

tration during solvent evaporation displaced self-assembly equilibria toward more complex and differen-

tiated structures. In addition, in a previous work, we determined that the presence of a free phenyl group at

each of the two terminal ketimine moieties in structurally similar bis-salphen BBs made possible to activate

their nanoscale molecular self-assembly into vesicles in solution, which upon solvent evaporation created

3D-networked structures that mimicked the neurons in a brain (Escárcega-Bobadilla et al., 2013a). In that

work, those free phenyl groups gave access to further coalescence of the vesicles through drop casting to

render interconnected microscale bodies at the mid-range mediated by p-p and van der Waals (vdW) in-

teractions via variation of dielectric constant (ε) of themedium. In this work, we report on the design of a bis-

Schiff-base molecular scaffold (e.g. molecule 1 in Figure 2) containing two key portions, a and b, which are

connected through a central o-phenylenediamine derivative bridge, i.e. an unsymmetrical organic salphen

scaffold. Portion a consisted of a similarly free phenyl group located at only one di-aromatic ketimine moi-

ety, instead of two as reported earlier (Escárcega-Bobadilla et al., 2013a; Zelada-Guillén et al., 2018), while

portion b represented a variable number of -OH groups at different relative positions in an aromatic aldi-

mine moiety. Portion a was kept unchanged for all BBs (excepting for one of the blanks) to expect the role

of an agonist component, which dictated positive feedback over mid-range aggregation of upper hierarchy

level assemblies via p-p and vdW interactions regulated by ε of solvent. In this way, we pursued that the

larger assemblies, due to their higher size and lower diffusivities in comparison with the free molecules,

would favor local coalescence, thus playing as an agonistic signaling. Conversely, the b portion was varied

to progressively control their access to intermolecular H-bonding depending on ε of aprotic solvents and,

consequently, to promote an antagonic competition to the dispersive forces. In this manner, we expected a

negative regulation of locally available matter for self-assembly through the highly diffusive free molecules

able to migrate at longer ranges and, therefore, to render an antagonistic signaling.

RESULTS

Turing patterns by self-assembly of a single building block

Turing patterns (Figures 3A–3C) consisting of stationary waves with a constant l centered at 1.45 mm,

average range from 1.259 mm to 1.771 mm (Figure 3D), emerged at different levels of magnitude, when

we drop cast acetone solutions of 1 at an onset concentration [1] = Co (1 mM). The pattern was stably pro-

duced without relevant defects at surfaces that ranged from the micro (400 mm2 in Figure 3C) and themeso-

scale (104 mm2 in Figure 3B) up to the macroscale (ca. 1 mm2 in Figure 3A but surfaces >1 cm2 were easily

accessible), as observed by optical microscopy (OM). Co was found to be the lowest concentration able to

generate visible patterns after complete evaporation. Similar patterning results were also achievable for [1]

up to 10 mM, but concentrations above and below this range resulted into irregular association at the
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microscale, i.e. random droplets or isolated microparticles, respectively. Turing patterns with different l

values were also obtained for acetone solutions from 2 and 3 at the same Co concentration (Figures S1A

and S1B). However, no pattern was obtained from neither 4 (Figure S1C) nor the blanks 5 (Figure S1D)

and 6 (Figure S1E) in these conditions, which yielded only amorphous randomly distributed aggregates.

Fast Fourier transform (FFT) of the respective OM data discarded any patterning from 4, 5, or 6, while

FFT combined with linear grayscale analysis confirmed periodic waves from 1, 2, and 3 which consisted

of isotropic populated zones (the crests) surrounded by unpopulated regions (the troughs) with an average

distance l between the crests that depended upon the -OH positions at b: cf. l1 = 1.45 mm for 1 (Figures 3D

and 3E), l2 = 1.07G 0.327 mm for 2 (Figures S1F and S1K), and l3 = 0.46G 0.081 mm for 3 (Figures S1G and

S1l); no lwasmeasured for neither 4 (Figure S1H), 5 (Figure S1I) nor 6 (Figure S1J). Atomic forcemicroscopy

(AFM) confirmed the isotropic patterning trend for 1 (Figure 3F), where the analysis showed crest heights of

ca. 60–100 nm (Figure 3G), wavelength confidence interval at p < 0.02 (CI) l1 = 1.43 G 0.172 mm, and crest

widths between 0.8 mm and 1.5 mm; the data were consistent with FFT analysis in Figure 3G and grayscale

analysis in Figure 3E. Confocal laser scanning microscopy (CLSM) showed that the crests in AFM and the

populated waves in OM were internally composed of self-assembled vesicles (<1 mm diameter) that ex-

hibited highly fluorescent spherical cores and non-emitting shells (Figure 3H), surrounded by remaining

non-emitting amorphous matter. The vesicles followed a Gaussian distribution in a range between

0.4 mm and 1.05 mm, a mean value of 0.647 mm, and a standard deviation (s.d.) of 0.146 mm (Figure 3I).

On the other hand, aprotic solvents with very different ε that could oppositely alter H-bonding capabilities

in the molecules, such as chloroform or dimethyl sulfoxide (DMSO), produced either irregular droplets or

amorphous microparticles for all the key structures when studied under comparable conditions (Figures 3J,

3K, and S1M–S1R). Hence, acetone resulted in a necessary input for the Turing patterning process to

Figure 2. Synthesized building blocks

In the common scaffold (e.g. 1–4), the di-aromatic ketiminemoiety with a free phenyl group is kept unchanged at one part

of the structure (part a, blue rectangle), while aromatic -OH groups at different positions in an aldimine moiety are

incorporated at the other part of the molecule (part b, red circle); note that both parts are linked through an

o-phenylenediamine derivative bridge. In blanks 5–6, the variable -OH at b is absent, while the phenyl group at a is

present only for the former.
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Figure 3. Turing patterns from a single molecule

(A) OM analysis of a drop-cast acetone solution [1] = Co on glass shows the pattern at long-range in the macroscale; scale bar 100 mm, field: ca. 1 mm2.

(B) Analysis at higher amplifications shows the high stability of the pattern at the mesoscale; scale bar 10 mm, field: 104 mm2.

(C) In the microscale, OM shows a homogeneous distribution of dark waves (populated zones), separated by clear zones (unpopulated); scale bar 10 mm,

field: 400 mm2.

(D) The 360� annular spot obtained by FFT analysis of B confirms the isotropic l1 = 1.45 mm in the pattern (N = 171); range: 1.259 mm (N = 116) to 1.771 mm

(N = 68).

(E) 1D grayscale analysis of the red line in C shows an example for the periodicity found at l1 from FFT in D.

(F) AFM analysis of the specimens shows isotropic periodicity in crests.

(G) The height of the crests measured from the troughs in the red and cyan lines selected from F, raise up to 60–100 nm, showwidths within the limit found in E

(<1.5 mm) and l1 = 1.43 G 0.172 mm (confidence interval, CI, p < 0.02, n = 23, under a t-distribution scheme).

(H) CLSM analysis shows that the crests are composed of self-assembled vesicles (<1 mm diameter) that are fluorescent at the inner part, which match the

features found by OM and AFM; scale bar 20 mm.
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manifest during drop-casting experiments. Then, we used molecule 1 as a model system in this work to

study such pattern formation from different approaches.

Identification of the morphogens and their roles in hierarchical self-assembly

We used dynamic light scattering (DLS), high-resolution transmission electron microscopy (HR-TEM),

and 1H nuclear magnetic resonance (NMR) diffusion-ordered spectroscopy (DOSY), as well as data from

molecular modeling to identify the components playing as the two morphogens A and B in acetone solu-

tions of 1 and in their evaporated counterparts. First, DLS was used to study the self-assembly of 1 (Fig-

ure 4A) in solutions (j) at representative BB concentrations ranging from below to above the onset value

Co, so as to determine the population distribution of assemblies (k) and their hydrodynamic diameters

(dh j,k) together with their diffusion coefficients (Dj,k) at different stages of the patterning process. Under

steady-state conditions, the evolution in number of aggregates and their size as a function of [1] facilitated

the identification of the population segment playing as the activator A. Solutions prepared at the onset

concentration, j = Co, and at 10-fold that concentration, j = 10Co (a surrogate for a Co sample after 90%

of solvent evaporation), produced two different aggregate population segments, k = 1 and k= 2, according

to our analysis of aggregate populations in solution; the first population component consisted of nanoscale

assemblies (e.g. for Co, dh Co,1 = 82 nm and DCo,1 = 17 mm2 s�1), while the last one corresponded to micro-

scale bodies of the same size order of the crest width observed by AFM andOM in dry counterparts (e.g. dh

Co,2 = 1.63 mm). According to Turing’s mechanism during further stages in the patterning process, the dif-

ference in diffusion between both morphogens together with stochastic local perturbations which sponta-

neously caused that [A]local>>[B]local, also promote an adjacent regional depletion of A that results into a

local transposition in the original concentration ratio between activator/inhibitor (i.e. from [A]0R[B]0 to

[A]local<<[B]local and [B]local<[B]0). This ratio inversion together with the local inhibitory effect driven by

the predominance of B over A induces the more pronounced decrease in the relative local concentration

of A in comparison with its initial steady-state value in the bulk before patterning occurred ([A]local<<[A]0),

thus triggering formation of the void spaces and laterally propagating the instabilities until the final pattern

is achieved. For a patterning system containing only one molecular component instead of two or more,

where the oscillations produced in [A]local and [B]local must be mutually in-phase and should follow the

Le Châtelier principle, such a reduction in [A]local is the microscale equivalent to diluting the activator in

the macroscale. Therefore, we analyzed two different diluted solutions at [1]<Co, from which we observed

that our Turing patterns were inhibited ([1] = 10�4 M). One of these solutions was prepared by diluting

10-fold the Co stock solution (j = 0.1Co) and the other one by dilution of the 10Co sample in a factor of

1/100 (j = 10Co diluted), so that both reached equivalent concentrations under different routes. At these con-

ditions, the microscale aggregates (k = 2) previously observed for j = Co and j = 10Co were now absent.

Furthermore, the nanoscale assemblies (k = 1) reduced their average diameter in a factor of ca. 4 or 5, if

respectively compared to their source solutions Co or 10Co. According to the model’s prerequisites, it is

plausible that 1) at the onset conditions Co, k = 1 nanoscale assemblies are playing the role of an active

version of morphogen A, so that DAhDCo,1 = 17 mm2 s�1; 2) the k = 2 microscale aggregates coexisting

at [1]RCo could be solvated components of the visible part in the pattern (a patterning readout prior to

dryness), which might be produced by self-assembly of N units of morphogen A into a higher hierarchical

level, following the Le Châtelier principle, the higher the concentration, the larger the self-association and

vice versa; 3) from dimensional comparison of CLSM vs. DLS data, it is likely that k = 1 aggregates are the

nanosized vesicles described earlier; 4) at diluted conditions [1]<Co (e.g. [1] = 0.1Co), the k = 1 nanoscale

assemblies exist under a reversibly inhibited (inactive) form of morphogen A that does not trigger a

patterning readout, which suggests that A should be progressively degraded during emergence of the

void spaces. As free 1 molecules were neither confirmed nor discarded as a population segment by

DLS, likely because of their low abundance, we used DOSY to confirm if they actually coexisted with the

rest of the self-assembled counterparts (Figure S2). DOSY delivered a value of D1 = 1750 mm2 s�1 and

dh1 = 8.0 Å, which according to density functional theory (DFT) and molecular dynamics (MD) calculations

should correspond to the free molecule (Figure S3). Hence, despite the coexistence of morphogen A and

solvated microscale pattern components at Co, free molecules are the population component with the

Figure 3. Continued

(I) Particle size distribution analysis of vesicles in H yields a mean value of 0.647 mm following a Gaussian trend; standard deviation (s.d.) 0.146 mm, N = 147.

(J) OM micrograph from the molecule in chloroform at Co shows irregularly spaced microparticles; scale bar 10 mm.

(K) OMmicrograph from drop casting 1 at Co in DMSO yields amorphous agglomerations; scale bar 10 mm. See also Figure S1 for OM from 2–6 atCo = 1 mM

in acetone (a–e), their FFT results (f–j), 1D grayscale analysis for 2 and 3 (k and l) and OM from 1–4 at Co in CHCl3 and DMSO (m–r); scale bars in Figure S1 are

10 mm. Experimental details can be found in the STAR Methods section.
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Figure 4. Activation and inhibition of hierarchical self-assembly

DLS (A) shows morphogen A (level 2) in two reversibly stable forms in solution: inhibited A ([1]<Co) and active A ([1]RCo) which triggers further self-assembly

(level 3) into pattern components before dryness. HR-TEM confirms that A consists of discrete hollow spherical vesicle-type particles with a shell thickness t

(B) or solid structures (C) depending on the concentration; A can spontaneously degrade under dynamic conditions –i.e. bursting vs. reassembly in C–,

through smaller nanostructured components (level 1); diameter of level 1 nanostructures (dL1) follows a Gaussian distribution (D), shaded orange area isG1

standard deviation (s.d.), dL1 average is the arithmetic mean value, N = 48; scale bars are 20 nm for B and 50 nm for C. In silico studies (E) show that size

d (spherical approximation), of n1 assembled molecules at level 1 evolves bi-logarithmically until a point where further self-assembly produce curved bodies

(level 2) with thickness equivalent to t in B; with the data, concerted activation/inhibition supramolecular reaction paths (F) are proposed from different

hierarchies. The hydrodynamic radii of free molecule 1 at hierarchy level 0 were determined as 4.0 Å from DOSY using the Stokes-Einstein equation

-Equation 1, this implies that the hydrodynamic diameter (dh1) in solution is 8.0 Å, these data agree with the dimensions obtained as the minimum energy

structure from the random generation of conformers followed by optimization at the DFT level, using the PBE(DTS)/DNP method with implicit solvation in

acetone. Experimental and computational details can be found in the STAR Methods section. See also Figures S2–S4 and S11.
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highest diffusivity in the pool (D1>>DA, D1 z 100DA) and thus, they are the most probable candidate for

playing the role of the inhibitor morphogen B, so that DBhD1=1750 mm2 s�1.

We used HR-TEM to gain insight on what should occur when the active morphogen A degrades to produce

its inactive version (inhibition path). Drop-cast samples prepared at [1]<<Co (e.g. [1] = 10�5 M) facilitated

the disassembly processes and provided morphological information on the outcome of such path

(Figures 4B–4D). However, as the inhibition path should be intrinsically connected to the activation path,

in this section, we compared the experimental data from HR-TEM with the modeled size evolution of

self-assemblies resulting from calculations (Figure 4E) to propose both paths under supramolecular reac-

tion terms and hierarchical self-assembly (Figure 4F). The specimens analyzed by HR-TEM exhibited two

types of spherical morphologies (cf. Figure 4B vs. Figure 4C) with diameter d values in agreement with

DLS data for inhibited morphogen A (Figure 4A). The first morphology type consisted of hollow vesicle-

type bodies (Figure 4B) with an external shell thickness, t = 3.6–9.9 nm, where the smaller the value d,

the thicker the shell (cf. Figure 4B vs. Figure S4). This trend was normally observed to a point where the

structures became solid spherical nanoparticles for the smaller versions, while such tendency could on

the contrary explain the existence of the larger fluorescent vesicles of ca. 600 nm diameter previously

observed by CLSM in the final pattern at C0 (i.e. Figure 3H). Interestingly, we also found a prevalence of

the solid spherical nanoparticles up to the highest concentration that in glass afforded the pattern ([1] =

10 mM, Figure S4). Occasionally, some of these inhibited morphogen A structures spontaneously carried

out disassembly through a bursting process (Figure 4C). When the latter occurred, smaller nanostructures

with a diameter of 4.1G 0.81 nm (Figure 4D) were expelled to the surroundings. The evolution of diameter

as a function of the number of self-assembled molecules n1 (Figure 4E) evaluated through in silico studies

indicated that these expelled nanostructures should be composed of ca. 8–21 molecules integrated in a

hierarchical self-assembly level 1 (L1) in an inhibited version (namely L1i). However, as shown in Figure 4C,

it is likely that the disassembly of morphogen A into L1i nanostructures proceeded under dynamic condi-

tions, in which L1 structures could reassemble again into larger spherical bodies of the same size order than

morphogen A. Such scenario indicated that morphogen A should be structured at a higher hierarchy level 2

of self-assembly (i.e. L2). The latter was also supported by in silico studies, size evolution of modeled self-

assemblies proceeded bi-logarithmically for oligomers between 2 and 256molecules (Figure 4E), following

an isotropic aggregation trend via surfaceminimization. In contrast, self-assembly of bodies larger than 256

molecules produced anisotropic and curved structures beyond this point. These curved assemblies were

integrated by discrete numbers of L1 units in their activated version (namely L1a), and their morphological

features and thickness values matched the t values measured by HR-TEM (cf. t in Figure 4B vs. n1 = 1024 at

L2 in Figure 4F).

These results strongly suggest that the external shell in morphogen A vesicles is composed of self-assem-

bled L1a units if these reach oligomerization beyond a critical value. Consequently, the activation path for

the patterning process should consist of both, oligomerization of free molecules at the hierarchy level

0 (namely L0) into L1 up to such a critical value (L1a nanostructures) and self-assembly of the latter into

morphogen A at L2, through independent but concerted out-of-equilibrium supramolecular reactions suc-

cessively favored by an increase in [BB] at a local level (Figure 4F, reaction path: a1/a2). Hence, as shown

earlier by DLS data and according to Turing’s model, when the activation path occurs locally during solvent

evaporation, the patterning process is triggered at the short- to the mid-range mediated by the assembly

of morphogen A particles (the vesicles in Figure 3H) into solvated pattern components at a hierarchy level 3

(Figure 4A). On the contrary, when the inhibition path is favored, concerted dynamic equilibria should occur

via degradation of L2 morphogen A into L1i nanostructures, until these oligomers finally may disassemble

into free molecules at L0, i.e. in Figure 4F, reaction path: i1/i2. These L1i structures should actually be

smaller than their L1a homologs involved in the opposed path (Figure 4F, products in i1 and a1), such

that their respective degrees of oligomerization cover size domains which do not overlap: cf. in Figure 4E,

regression curve sections n1:8% n1% 21 vs. n1:32% n1% 256. In any case, as seen fromHR-TEM Figure 4C,

bursting of morphogen A into L1 nanoparticles might proceed dynamically to yield reassembled bodies

composed of the latter, whereas infrequent totally scattered L1 structures seemed markedly reduced in

size (apparently unstable). Then, both paths might be also connected through an intermediate equilibrium

between the smaller oligomers L1i and the larger assemblies L1a (i.e. in Figure 4F, reactions i3 and a3). In this

way, depending on the local condition dynamics during the pattern emergence, different path combina-

tions of these supramolecular reaction steps either at the activation path (a1, a2 or a3) or the inhibition

path (i1, i2 or i3) could simultaneously occur in the system, thus creating a local equilibria shift that facilitates
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flux-balance, total mass conservation, non-linearity in reactions, and cooperativity during RD (Brauns et al.,

2020, 2021; Diambra et al., 2015).

In silico studies in self-assembly modulated by supramolecular signaling

Molecular modeling considering the solvent ε usingMD, DFT, molecular mechanics (MM), andMonte Carlo

methods was carried out to identify the supramolecular mechanisms that rule the formation of self-assem-

bled components in solution (supramolecular signaling). Through random binary mixing, we generated ten

aggregate generations, up to 210 molecules each, finding that bodies composed of 1024 molecular units in

acetone approximate the dimensions and morphology of the observed assemblies in morphogen A, as

already mentioned in the last section. Plausible hierarchical levels L1 and L2 of self-assembly emerged dur-

ing this expedition and are discussed concerning their formation.

In general, molecular modeling determined that depending on ε, H-bonding has paramount importance in

self-assembly and seems to be decisive during the early growth of particles from free molecules in solution,

as inferred from the three possible scenarios for self-assembly. This interaction may, however, be disrupted

by highly polar solvents such as DMSO (ε = 46.7). In these conditions, vdW and p-p through portion a in the

BB are the main interactions among molecules, with scarce H-bonding, as delivered from an analysis of the

interactions in DMSO (Figure S5). The plasticity of these soft contacts, along with the likely occlusion of sol-

vent, as well as the lack of further contribution to overall stabilization when particles grow beyond 32 mol-

ecules (Figures S6 and S7), are among the factors that can be associated to the absence of the Turing

pattern using DMSO as solvent. On the other hand, H-bonding is especially important in low polarity me-

dium, such as CHCl3, whose dielectric constant (ε = 5.62) exerts only a faint influence on the electrostatic

component of H-bonding, as seen in our analysis of the interactions in chloroform (Figure S8). In these con-

ditions, aggregation can be expected to be mainly led, at the first stages, by H-bond-driven oligomeriza-

tion through portion b.

A moderately polar solvent such as acetone (ε = 20.7) proved to be key in tuning assembly of the bis-Schiff

bases explored. Its polarity modulates H-bonding at the short-range, while its vapor pressure facilitates its

departure during evaporation. At the molecular level, self-assembly of the most stable conformations of 1

occurs via partially hindered H-bonded domains through portion b, which appear as cooperative modes of

oligomerization during earlier self-assembly generations in hierarchy L1 (Figures 5A and S9), with contribu-

tion from diffuse interactions at portion a such as p-p and vdW, as evidenced from an analysis of the inter-

actions in acetone. This aggregation mechanism is less sterically hindered for Schiff bases 2 and 3, thus

facilitating oligomerization through more accessible intermolecular H-bonding at portion b in these mol-

ecules (Figure S10). Therefore, accessibility of -OH groups at bmight play a major role in the reduction of l

values for the patterns obtained from 1–3 (i.e. l1>l2>l3). The first level of organization L1 of 1 is likely

H-bonding-driven assembly of small oligomers. During evaporation of relatively polar acetone,

H-bonding is screened until concentration reaches a critical value, where the aggregation hierarchy L1 (Fig-

ure 5A) is a synergistic interplay of polar and dispersive contributions, modulated by ε and molecular steric

hindrance. Higher order aggregates at L2 (Figure 5B) form through a combination of shape complemen-

tarity, diffuse vdW andp-p interactions from exposed a domains, as well as solvophobic interactions, spon-

taneously shifting from a homogeneous mixture of discrete smaller nanoparticles at L1 to the characteristic

curved shell components of morphogen A at L2 (Figure S11). A similar process is expected to occur at least

in part for 2 and 3; as assembly of aggregates proceeds (Figures S12 and S13), larger clusters in the order of

ca. 103 molecules and up to 30 nm in size were formed under the modeling conditions tested, as shown

during the analysis of the assembly dimensions in acetone. An estimation of aggregation and solvation en-

ergies on kinetically trapped supramolecular clusters (Figure 5C) determined that below a critical value

starting at n1 = 8, solvation energy per molecule outweighs aggregation, and the dominant species in so-

lution is L0 with infrequent occurrence of low self-assembly generation intermediaries (2% n1 < 8); this sce-

nario should be favored under low local [1] conditions (e.g. during emergence of the void spaces in the

pattern, when [B]local<[B]0 and [A]local<<[B]local). Above n1 = 32 (L1a onward), the aggregation energy per

molecule has practically converged; this situation is expected to occur at higher local [1] regimes (e.g. dur-

ing the formation of the visible parts of the pattern, when [A]local>>[B]local and [A]local>>[A]0). At L2

(n1 > 256), the solvation energy converges to values close to 0 kcal/mol; at this point, the tangent to

each curve is practically zero and the assemblies begin behaving as pure phase. L1i, L1a, and L2 belong

to the regime where aggregation energy overcomes solvation. L1i is closer to the threshold and is the tran-

sition zone where the change in particle size translates in a large change in solvation/aggregation energy
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differences (the slope of each curve is significantly s 0 but aggregation is already exothermic). Therefore,

volatility, which dissipates the overall exothermic contribution from self-assembly, and thus, could be seen

as a type of energy currency, as well as polarity of the medium, are the two key factors to achieve total

Figure 5. Supramolecular signaling at hierarchy levels

Molecular modeling of 1 in acetone determined that depending on the degree of oligomerization (n1), self-assembly is

signaled by either the portion b (at lower degrees) or a (at higher degrees). Earlier self-assembly generations (A) at L1 (e.g.

L1i) are mainly formed through regulated access to H bonding between the -OH groups at b by partially hindered

H-bonding domains, according to particle modeling at the DFTB+ level with the 3ob Slater-Koster library; L2 (B) is an

assembly of L1 units at later self-assembly generations (i.e. L1a) via vdW/p-p interactions between domains containing

exposed a portions. As self-assembly takes place (C), the weighed aggregation energy per molecule (A) decreases

steadily from 0 kcal/mol at L0, converging toward a nearly constant value of �13.2 kcal/mol per molecule for n1 R 32 (L1a
onward); solvation energies per molecule (:) follow the opposite trend, they start from a minimum value for L0

(�20.6 kcal/mol) and consistently increase; intersection occurs at n1 z 8; as a result, assembly is unstable for 2 % n1 < 8.

See also Figures S5–S13 and S22, Tables S2 and S4.
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control of the desired assembly. These factors participate together with a regulated hindrance to intermo-

lecular H-bonding through -OH groups at portion b of free molecules and during earlier generations of L1i
self-assembly to rule the inhibitory factors in the patterning process via an antagonistic participation of

H-bond signaling (information transfer) executed by highly diffusible components. On the contrary, the

same two key factors also contribute to the activating component in the development of the patterns

when self-assembly is driven by vdW and p-p at hierarchy L2 thanks to the further access to superficial ar-

omatic domains provided by portion a of later generations at L1a through an agonistic involvement of vdW/

p-p signaling carried out by little diffusible structures.

High-throughput mathematical analysis and the mechanism of Turing patterning

We used linear stability analysis to perform a high-throughput mathematical screening of the possible RD

interaction networks (Figure 6A) between the different diffusible components at hierarchy levels L0, L1, and

L2 (Marcon et al., 2016). This analysis was carried out to narrow down all the possible RD topologies asso-

ciated with each network which are able to generate Turing patterns in terms of network feedbacks rather

than reaction parameters, as well as to confirm if the roles proposed for A (L2) and B (L0) matched Turing’s

model requisites. In this way, we expected to finally simulate what type of Turing patterns (spots, stripes, or

labyrinths) would be expected from components with diffusivities as those measured so far, and if the

analytically predicted patterning readout agreed with the experimental observations. In a first scenario,

the mathematical screen was constrained with known diffusivities from experimental data for morphogens

A (DA) and B (DB) for a 2-node RD network. In this manner, we could analytically assign the topology with the

highest robustness, with the aim of finding the one with the highest volume of the kinetic parameter space

that affords pattern-forming conditions with respect to all the universe of possible kinetic constant values.

Such restriction was also done for amore complex 3-node RD network scenario also including the diffusivity

approximations for the observed L1 hierarchy (DL1), using, respectively, the activated (L1a) and inhibited

(L1i) versions as lower and upper interval limits for the range 107–346 mm2 s�1 (assumptions and data

used for the estimations are indicated in the STAR Methods section). In this way, plausible supramolecular

reaction mechanisms which are based only on the diffusible pool components L0, L1a/L1i, and L2 and the

reaction equilibria from Figure 4F could be proposed for both 2-node and 3-node scenarios in order to

define the RD role of each hierarchy and, at the same time, to determine the most probable mechanistic

manifold in Turing patterning.

In both RD scenarios, topologies with reasonable positive and negative feedbacks resulted from the anal-

ysis (Figures 6B and 6C). These topologies were able to produce in-phase periodic variations in component

concentrations (Figures 6D and 6E), while Turing patterns of the same family, dimensions, and l intervals

than the experimentally observed ones emerged after 2D numerical simulations (Figures 6F and 6G). In the

first 2-node network scenario (up to four possible interactions, l = 1.1G 0.44 mm), mathematical screening

using the experimental data constrained RD topologies to a robust and physically coherent activator-inhib-

itor model candidate (Figure 6B) where a short-range activation was carried out by morphogen A, which

was responsible for the periodic concentration crests in Figure 6D and the occupied red regions in the Tu-

ring pattern prediction Figure 6F. In this same scenario, a long-range inhibition was performed by B, where

this morphogen was responsible for the periodic troughs in Figure 6D and the unoccupied black regions in

the Turing pattern Figure 6F. This analysis also predicted a self-enhancing loop on node A that corre-

sponded to its auto-catalyzed production as well as a self-regulation loop on B, which represented its

self-clearance from the diffusible pool. Each feedback might be individually explained by proposed reac-

tionmechanisms (Figure S14 and STARMethods section, ‘‘supramolecular reaction mechanisms for 2-node

RD network’’) which involve reaction routes that include combinations from one to three of the steps a1, a2,

a3, i1, and i2 in Figure 4F, depending on the case analyzed. Although reaction i3 is left out of this 2-node

scenario, these possible mechanisms are coherent with experimental data andmolecular modeling results,

whereas the predicted kinetic constant intervals estimated for each interaction could give place to robust

2D Turing patterns in the range for l from 0.66 mm to 1.54 mm (1.45 mm experimentally). However, such to-

pology is not able to provide a reasonable explanation for the diffusion role of L1 nanostructures on the

overall patterning process. On the contrary, participation of L1 in the proposed mechanism reaction steps

is restricted to an intermediary level despite the evidence of their role played in hierarchical self-assembly,

thus limiting the scope of the full 2-node RD mechanism to a simplified scenario.

In this sense, mathematical analysis through a 3-node RD network scenario (up to nine possible interac-

tions, l = 1.8 G 0.58 mm when L1i data is tested) offered a full picture and a more comprehensive
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mechanistic manifold (STAR Methods section, ‘‘supramolecular reaction mechanisms for 3-node RD

network’’ and Figure S15) to the overall patterning process observed. Under the 3-node scenario, the re-

sulting RD topology consists of a short- to mid-range activation process simultaneously carried out by

the little diffusible pair morphogen A/hierarchy level 1 (L2/L1), where the activation information (the

agonistic supramolecular signaling via vdW and p-p through portion a in 1) is hierarchically transferred

from L2 to L1 (and vice versa) to finally deliver the same from L1 to morphogen B (positive feedbacks in Fig-

ure 6C). This process is concerted with a long-range inhibition driven by the highly diffusible morphogen B,

which directly interacts with both activating nodes (negative feedbacks in Figure 6C), primarily via

Figure 6. High-throughput mathematical analysis constrained to diffusion parameters

Automated analysis of all the possible 2-node and 3-node interaction networks (A) between hierarchy levels playing the

morphogen roles A and B (black) or between A, B, and level 1 (black + gray), respectively delivered RD topologies B and C

when constrained to the estimated diffusivities DA, DB, and DL1; topologies are consistent with experimental and

modeling data, they confirm the roles for each hierarchy under an activator-inhibitor system and predict decay loops that

are coherent with out-of-equilibrium supramolecular reactions in Figure 4F; kl are kinetic constant predictions (STAR

Methods section, supramolecular reaction mechanisms for 2-node and 3-node RD networks). 1D simulations of B (D) and

C (E) yield in-phase morphogen concentration spatial periodicities; 2D counterparts respectively predict Turing patterns

F and G that are of the same type, similar dimensions, center for l, and range values (see FFT insets) than the experimental

results observed by OM and AFM in Figure 3; DL1 = 346 mm2s-1 for E/G calculations (DL1i). See also Figures S14–S16. For

Figure S16, 1D simulation (a) of the 3-node network produces morphogen A/B concentration periodicities which are in-

phase with L1a; 2D counterparts produce a Turing pattern (b) similar to experiments, but at a 7-fold larger wavelength;

these results were obtained from DA = 17 mm2s-1, DB = 1750 mm2s-1, and DL1a = 107 mm2s-1. The 3-node RD network that

resulted from predictions was identical to Figure 6C. Further details can be found in the STAR Methods section.
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antagonistic H-bonding signaling through portion b in 1. However, L1 also exhibits a self-mediated degra-

dation (negative feedback loop in Figure 6C) at the mid-range and thus, a self-imposed antagonistic

signaling through similar H-bonding interactions as in B. In this topology, the activation and inhibition pro-

cesses are also possible under both limiting scenarios for DL1, but L1i affords wavelength values 1.22 mm to

2.38 mm that are closer to the experiments than those from L1a. Either L1i or L1a, together with L2

morphogen A, synergistically impose the spatially periodic concentration crests in Figure 6E (for L1i) and

Figures S16A (for L1a) as well as the occupied regions in the predicted Turing patterns (red regions in

Figures 6G and S16B). Under both DL1 limit scenarios that respectively yield periodic wavelengths at l =

1.8 G 0.58 mm for L1i and l = 10.7 G 3.16 mm for L1a, the concentration troughs in Figures 6E and S16A

are ruled by a direct inhibitory effect of morphogen B on both upper hierarchy levels and the self-clearance

predicted for L1. These factors are responsible for the unoccupied regions in the Turing pattern simulations

(black regions in Figures 6G and S16B). The analysis also predicts kinetic constant ranges for each interac-

tion which are more reasonably explained in terms of all the 6 reactions am and im (Figure 4F) through routes

that involve from one to three steps. These steps could be classified into five different types of matter trans-

fer processes which depend upon the reaction step in the mechanism: (self) assembly (a1 and a2), coales-

cence (a3), splitting (i2 and i3), leaching, or sequestering (i1, i2, and i3 for both). However, these five matter

transfer scenarios also depend upon the feedback class, where the sum of positive feedbacks excludes the

participation of sequestering processes, while the negative feedbacks do not include (self)assembly. Evi-

dence that suggests their viability in the overall proposed mechanism could be found in the results from

experiments/molecular modeling/predicted spatial concentration oscillations. Moreover, this 3-node-

based mechanism is more solidly sustained by the solvation vs. aggregation energy profiles if compared

with the simpler 2-node mechanism.

DISCUSSION

Our findings indicate that Turing pattern emergence is carried out with a synergistic and cooperative

participation of the three diffusible nodes L0, L1, and L2, which trigger the patterning readout at the hier-

archy L3. The supramolecular reaction mechanisms proposed for the positive feedbacks are meeting both,

the Turing’s model, and predicted patterning dimensions according to the estimated diffusion values and

proposedmorphogen roles, predominantly ruled by agonistic supramolecular signaling based on vdW and

p-p interactions mediated by little diffusible particles. On the contrary, the mechanism counterparts that

explain the negative feedbacks are mediated by antagonistic signaling through H-bonding from highly

diffusible pool components. It is therefore reasonable to expect that also the rate-determining step in

each of the mechanistic routes is dominated by these supramolecular interactions depending upon

whether they are part of a positive or a negative feedback. However, such a level of more complex under-

standing is at this point an open question and currently ongoing studies aim to unravel the roles of variable

self-assembly rates arisen from the dynamics in size-evolution and hierarchical regulation of non-covalent

interactions.

Nevertheless, it is important to highlight that the spontaneous formation of Turing patterns by hierarchical

self-assembly of a single molecular building block has never been reported so far. Therefore, this study

shows that it is possible to use differentially modulated supramolecular interactions as either agonistic

or antagonistic signaling regulators in order to transfer molecular chemical information up to the meso-

scale in the form of a patterning readout. This situation opens evidence-based conceptual venues toward

more complex patterning mechanisms departing from only one elementary assembling unit, where the

classical yet simple 2-node activator-inhibitor RD system has practically remained the basis to explain

RD Turing patterns from different reactants for six decades. In this scenario, it is nowmuch easier to hypoth-

esize on, for example, how life evolved from inert molecular components using not only chemical transfor-

mations but also supramolecular interactions as a currency for information exchange, which in turn, could

more efficiently be exploited by protocells in different adaptive manners depending upon the number of

entities associated in a constrained space.

Limitations of the study

In this study, we only identified the minimum molecular programming requisites for an organic salphen

compound to drive self-assembly toward simultaneous populations of different diffusivities and sizes in

acetone solutions, which upon evaporation rendered a Turing pattern in the solid state. We explained

the process hierarchically, through concerted and networked supramolecular reactions based on the solely

constructive or destructive matter interchange scenarios allowed for the case. However, we identified two
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plausible RD topologies that involved activation and inhibition expressed in the form of positive and nega-

tive feedbacks under kinetic ranges that were only predicted analytically. We circumvented this limitation

by deploying not only a comprehensive molecular dynamics study coupled to the mathematical analysis

but also achieved the largest number of experimental data possible for such a dynamic heterogeneous sys-

tem, from OM, CLSM, AFM, HR-TEM, DLS, and NMR DOSY.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B General synthesis and characterisation

B Synthesis of bis-schiff-base 1

B Synthesis of bis-schiff-base 2

B Synthesis of bis-schiff-base 3

B Synthesis of bis-schiff-base 4

B Optical microscopy

B Confocal Laser Scanning Microscopy

B Atomic force microscopy

B Dynamic light scattering

B HR-TEM

B In silico studies

B High-throughput mathematical analysis

B Analysis of aggregate populations in solution

B Three possible scenarios for self-assembly

B Analysis of the interactions in DMSO

B Analysis of the interactions in CHCl3
B Analysis of the interactions in acetone

B Assembly dimensions in acetone

B Diffusivity approximations for the hierarchy level 1 (L1)

B Supramolecular reaction mechanisms for 2-node RD network

B Supramolecular reaction mechanisms for 3-node RD network

B Solvation energies on supramolecular clusters

B Aggregation energies on supramolecular clusters

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104545.

ACKNOWLEDGMENTS

The research leading to these results has received funding from theDGAPA-PAPIIT program fromUNAM (grant

numbers IN201220 and IN100720) and the (National Council for Science and TechnologyCONACYTgrant num-

ber 283975).We acknowledge I. Puente-Lee andK. Jiménez-Durán from theUSAII/School ofChemistry – UNAM
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

2-hidroxybenzophenone Sigma-Aldrich CAS: 117-99-7

2-hydroxybenzaldehyde Sigma-Aldrich CAS: 90-02-8

Methanol Sigma-Aldrich CAS: 67-56-1

o-phenylenediamine Sigma-Aldrich CAS: 95-54-5

2,3-dihydroxybenzaldehyde Sigma-Aldrich CAS: 24677-78-9

Acetone-d6 Sigma-Aldrich CAS: 666-52-4

CDCl3 Sigma-Aldrich CAS: 865-49-6

2,4-dihydroxybenzaldehyde Sigma-Aldrich CAS: 95-01-2

2,3,4-trihydroxybenzaldehyde Sigma-Aldrich CAS: 2144-08-3

2,5-dihydroxybenzaldehyde Sigma-Aldrich CAS: 1194-98-5

Acetone Sigma-Aldrich CAS: 67-64-1

Chloroform Sigma-Aldrich CAS: 67-66-3

Dimethyl sulfoxide Sigma-Aldrich CAS: 67-68-5

3-((E)-((2-(((E)-(2-hydroxyphenylphenyl)

methylene)amino)phenyl)imino)methyl)

benzene-1,2-diol

This paper N/A

4-((E)-((2-(((E)-(2-hydroxyphenyl) (phenyl)

methylene)amino)phenyl)imino)methyl)

benzene-1,3-diol

This paper N/A

4-((E)-((2-(((E)-(2-hydroxyphenyl) (phenyl)

methylene)amino)phenyl)imino)methyl)

benzene-1,2,3-triol

This paper N/A

2-((E)-((2-(((E)-(2-hydroxyphenyl) (phenyl)

methylene)amino)phenyl)imino)methyl)

benzene-1,4-diol

This paper N/A

Software and algorithms

ImageJ 1.50b Wayne Rasband https://imagej.nih.gov/ij/index.html

FV10-ASW Ver. 01.07c Olympus Corporation https://www.olympus-lifescience.com/es/support/

downloads/

XEI Package Park Systems

Corporation

https://www.parksystems.com/manuals-software

Gatan Digital Micrograph Gatan, Inc. https://www.gatan.com/products/tem-analysis/

digitalmicrograph-software

Materials Studio 8 suite Biovia, Dassault

Systèmes

https://www.3ds.com/products-services/biovia/

products/molecular-modeling-simulation/biovia-

materials-studio/

ORCA 4.0 program Neese (2012) https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.81

Molecular Silverware Blanco (1991) https://onlinelibrary.wiley.com/doi/10.1002/jcc.540120214

RDNets Marcon et al. (2016) https://elifesciences.org/articles/14022

Wolfram CDF Player 11.3 Wolfram Research, Inc. https://www.wolfram.com/cdf-player/index.es.html
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Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Gustavo A. Zelada-Guillén (g.zelada@unam.mx).

Materials availability

All unique reagents generated in this study are available from the lead contact without restriction.

Data and code availability

d This study did not generate any standardised datasets. All data reported in this paper will be shared by

the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not use experimental models typical in life sciences.

METHOD DETAILS

General synthesis and characterisation

All starting materials were purchased from commercial sources and used without further purification. Com-

pounds (E)-2-(((2-aminophenyl)imino) (phenyl)methyl) phenol (Escárcega-Bobadilla et al., 2012) and the

respective blank BBs 2-((E)-((2-(((E)-2-hydroxybenzylidene)amino)phenyl)imino) (phenyl)methyl)phenol, 5

(Escárcega-Bobadilla et al., 2013b), and 2,2’-((1E,10E)-(1,2-phenylenebis(azaneylylidene))bis(methaneylyli-

dene))diphenol, 6 (Deng et al., 2014), were prepared using reported methodologies as described ahead;

briefly, stoichiometric amounts (ca. 0.35 mmol each, ratios 1:1 for first and second compounds, 2:1 for the

third one) of the necessary carbonylic synthon (e.g. 2-hidroxybenzophenone for the first compound,

2-hydroxybenzaldehyde for the second and third ones) and the amine precursor (o-phenylenediamine

for the first and third compounds, (E)-2-(((2-aminophenyl)imino) (phenyl)methyl) phenol for the second

one) were dissolved in 10 mL of methanol (MeOH) and stirred for 18 h at 298 K; the solids were filtered

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Perkin Elmer 2400 for CHNS analyser Perkin Elmer, Inc. https://www.perkinelmer.com/es/product/2400-chns-o-

series-ii-system-100v-n2410650

Varian VNMRS 400 MHz apparatus Varian Instruments, Inc. https://www.varian.com/

Agilent 6530 QTOF spectrometer Agilent Technologies, Inc. https://www.agilent.com/en/product/liquid-

chromatography-mass-spectrometry-lc-ms/

lc-ms-instruments/quadrupole-time-of-flight-lc-

ms/6530-q-tof-lc-ms

Bruker Ascend 500 MHz apparatus Bruker Corporation https://www.bruker.com/en/products-and-solutions/

mr/nmr/ascend-nmr-magnets.html

Motic model BA210 Motic https://www.motic.com/As_LifeSciences_UM_BA210/

Olympus model FV1000 microscope Olympus Corporation https://www.olympus-lifescience.com/es/technology/

museum/micro/2004/

Park Systems model NX10 microscope Park Systems Corporation https://www.parksystems.com/products/small-

sample-afm/park-nx10/specifications

Zetasizer Nano ZSP Malvern Instruments Ltd. https://www.malvernpanalytical.com/es/support/

product-support/zetasizer-range/zetasizer-nano-

range/zetasizer-nano-zsp

JEOL model JEM-2010 microscope JEOL, Ltd. https://www.jeol.co.jp/en/products/
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and washed with MeOH and their identities were confirmed by NMR using a suitable deuterated solvent as

described ahead. Elemental analyses (EA) were performed with a Perkin Elmer 2400 for CHNS analyser. All

NMR measurements were carried out on a Varian VNMRS 400 MHz apparatus at 298 K in acetone-d6 or

CDCl3 as needed, and chemical shifts are given in ppm vs. TMS. High resolution mass spectrometric

(HR-MS) data were obtained with an Agilent 6530 QTOF spectrometer from Unidad de Servicios para la

Industria Petrolera (USIP) of the School of Chemistry – UNAM. DOSY experiments were carried out on a

Bruker Ascend 500 MHz apparatus at 298 K in acetone-d6 and [1] = Co and were determined at Laboratorio

Universitario de Resonancia Magnética Nuclear (LURMN) – UNAM. The hydrodynamic radii of 1 was deter-

mined as 4.0 Å from DOSY results using the Stokes-Einstein equation -Equation 1-, this implies that the hy-

drodynamic diameter (dh1) in solution is 8.0 Å; see also Figure S2.

Synthesis of bis-schiff-base 1

3-((E)-((2-(((E)-(2-hydroxyphenyl) (phenyl)methylene)amino)phenyl)imino)methyl)benzene-1,2-diol, 1, was

synthesised as described ahead. (E)-2-(((2-aminophenyl)imino) (phenyl)methyl) phenol (100 mg,

0.35 mmol) and 2,3-dihydroxybenzaldehyde (51 mg, 0.37 mmol) were dissolved in 10 mL of MeOH and re-

fluxed at 337 K for 18 h. A red suspension was formed, the solid was filtered and washed with MeOH. Red

solid, 140 mg, 98%. 1H NMR (400 MHz, Acetone-d6): d = 6.79 (ddd, JHH = 8.2, 7.4, 1.2 Hz, 1H), 6.83 (t, JHH =

7.8 Hz, 1H), 6.95–6.98 (m, 2H), 7.01–7.05 (m, 2H), 7.06 (dd, JHH = 7.8, 1.6 Hz, 1H), 7.1–7.16 (m, 2H), 7.18–7.20

(m, 2H), 7.27–7.36 (m, 4H), 7.43 (ddd, JHH = 7.8, 1.6 Hz, 1H), 8.67 (s, 1H, CHaldimine), 8.67 (s, 1H, OH), 13.25 (s,

1H, OH), 13.94 (s, 1H, OH). 13C{1H} NMR (100 MHz, CDCl3): d = 175.11, 162.71, 161.94, 149.31, 145.28,

142.00, 139.25, 134.65, 133.69, 132.55, 129.12, 128.48, 128.04, 127.33, 125.69, 123.34, 122.94, 119.72,

119.11, 118.85, 118.22, 117.80. MS (MALDI +) m/z 408.732 ([M+]). EA calcd. (%) for C26H20N2O3 C 76.46,

H 4.94, N 6.86 found C 76.23, H 4.66, N 6.81. For 1H and 13C{1H} NMR spectra see Figure S17.

Synthesis of bis-schiff-base 2

4-((E)-((2-(((E)-(2-hydroxyphenyl) (phenyl)methylene)amino)phenyl)imino)methyl)benzene-1,3-diol, 2, was

synthesised as described ahead. (E)-2-(((2-aminophenyl)imino) (phenyl)methyl) phenol (100 mg,

0.35 mmol) and 2,4-dihydroxybenzaldehyde (50 mg, 36 mmol) were dissolved in 10 mL of MeOH and re-

fluxed at 337 K for 18 h. A red suspension was formed, the solid was filtered and washed with MeOH.

Red solid, 136 mg, 95%. 1H NMR (500 MHz, Acetone-d6): d = 6.32 (d, JHH = 2.3 Hz, 1H), 6.48 (dd, JHH =

8.5, 2.3 Hz, 1H), 6.79 (td, JHH = 7.6, 7.2, 1.2 Hz, 1H), 6.95 (dt, JHH = 5.5, 3.8 Hz, 1H) 7.03 (ddd, JHH = 7.6,

6.0 Hz, 1.5), 7.10 (dd, JHH = 6.0, 3.4 Hz, 1H), 7.21 (d, JHH = 6.6 Hz, 2H), 7.26–7.36 (m, 4H), 7.40 (d, JHH =

8.5 Hz, 1H), 7.43 (ddd, JHH = 8.5, 7.2, 1.5 Hz, 1H), 8.61 (s, 1H, CHaldimine), 9.14 (s, 1H, OH), 13.49 (s, 1H,

OH), 14.02 (s, 1H, OH). 13C{1H} NMR (100 MHz, CDCl3): d = 175.76, 164.60, 163.50, 163.27, 163.11,

142.83, 135.36, 134.24, 133.05, 129.79, 129.08, 128.95, 128.76, 127.18, 126.42, 123.65, 120.55, 118.87,

118.79, 118.61, 117.28, 113.76, 108.53, 103.43. MS (MALDI-TOF) m/z found 389.91 ([M+�H2O]). EA calcd.

(%) for C26H20N2O3$
1/4MeOH C 75.71, H 5.08, N 6.73 found C 75.30, H 4.89, N 6.72. For 1H and 13C{1H}

NMR spectra see Figure S18.

Synthesis of bis-schiff-base 3

4-((E)-((2-(((E)-(2-hydroxyphenyl) (phenyl)methylene)amino)phenyl)imino)methyl)benzene-1,2,3-triol, 3, was

synthesised as described ahead. (E)-2-(((2-aminophenyl)imino) (phenyl)methyl) phenol (100 mg,

0.35 mmol) and 2,3,4-trihydroxybenzaldehyde (57 mg, 35 mmol) were dissolved in 10 mL of MeOH and re-

fluxed at 337 K for 18 h. A brown suspension was formed, the solid was filtered and washed with MeOH.

Brown solid, 146 mg, 98%. 1H NMR (500 MHz, Acetone-d6): d = 6.49 (d, JHH = 8.5 Hz, 1H), 6.79 (ddd, JHH =

8.3, 7.3, 1.2 Hz, 1H), 6.92–6.93 (m, 1H), 6.97 (d, JHH = 8.5 Hz, 1H), 7.02 (dd, JHH = 8, 1.6 Hz, 1H), 7.03 (dd,

JHH = 8.3, 1.2 Hz, 1H), 7.07–7.11 (m, 2H), 7.18–7.20 (m, 2H), 7.24–7.25 (m, 1H), 7.28–7.35 (m, 3H), 7.43 (ddd,

JHH = 8.6, 7.2, 1.7 Hz, 1H), 7.72 (s, 1H, OH), 8.24 (s, 1H, OH), 8.53 (s, 1H, CHaldimine), 13.48 (s, 1H, OH),

14.01 (s, 1H, OH). 13C{1H} NMR (101 MHz, Acetone-d6): d = 175.93, 163.85, 163.53, 152.03, 150.83, 142.61,

140.78, 135.53, 134.30, 133.15, 133.03, 129.86, 129.04, 128.81, 127.20, 126.54, 125.35, 123.75, 120.62,

119.25, 118.87, 118.68, 113.94, 108.47. MS (MALDI+) m/z 425.462 ([M+H]). EA calcd. (%) for C26H20N2O4 C

73.57, H 4.75, N 6.60 found C 73.31, H 4.51, N 6.72. For 1H and 13C{1H} NMR spectra see Figure S19.

Synthesis of bis-schiff-base 4

2-((E)-((2-(((E)-(2-hydroxyphenyl) (phenyl)methylene)amino)phenyl)imino)methyl)benzene-1,4-diol, 4, was

synthesised as described ahead. (E)-2-(((2-aminophenyl)imino) (phenyl)methyl) phenol (100 mg,
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0.35 mmol) and 2,5-dihydroxybenzaldehyde (50 mg, 36 mmol) were dissolved in 10 mL of MeOH and re-

fluxed at 337 K for 18 h. A yellow suspension was formed, the solid was filtered and washed with MeOH.

Yellow solid, 143 mg, 99%.1H NMR (400 MHz, Acetone-d6): d = 6.73 (d, JHH = 8.8 Hz, 1H), 6.77 (ddd,

JHH = 8.3, 7.2, 1.3 Hz, 1H), 6.92 (dd, JHH = 8.8, 3.0 Hz, 1H), 6.95–7.03 (m, 4H), 7.12 (ddd, JHH = 7.1, 4.7,

1.9, 2H), 7.19 (dt, JHH = 6.6, 1.7 Hz, 2H), 7.27–7.35 (m, 4H), 7.41 (ddd, JHH = 8.6, 7.2, 1.7 Hz, 1H), 8.02 (s,

1H, OH), 8.62 (s, 1H, CHaldimine), 12.43 (s, 1H, OH), 13.92 (s, 1H, OH). 13C{1H} NMR (101 MHz, Acetone-

d6): d = 174.77, 162.72, 161.98, 155.26, 148.05, 141.29, 139.69, 134.31, 133.65, 132.42, 129.05, 128.38,

128.20, 127.95, 127.06, 125.70, 123.20, 121.63, 119.44, 118.90, 118.42, 118.18, 118.11, 118.06, 117.33.

HRMS (MALDI +) m/z 409.18981 ([M+H]). EA calcd. (%) for C26H20N2O4$½H2O C 74.81, H 5.07, N 6.71 found

C 74.46, H 5.07, N 6.71. For 1H and 13C{1H} NMR spectra see Figure S20.

Optical microscopy

OM analysis was carried out with a Motic model BA210 microscope equipped with Live Imaging Module

Digital Camera. For greyscale and FFT analysis, the images were processed and statistically analysed

with ImageJ 1.50b software (Wayne Rasband). Samples were prepared by drop-casting 1–10 mM solutions

(concentration deviations are mentioned in the text) of the corresponding compound (previously dissolved

in the selected solvent) on a glass slide at 298 K and dried completely for 1 day. Fields were adjusted to

highlight the representative features of the samples analysed. See Figures 3 and S1.

Confocal Laser Scanning Microscopy

CLSM analysis was carried out with an Olympus model FV1000 microscope, using a green diode laser exci-

tation wavelength of 559 nm. The images were processed with FV10-ASW Ver. 01.07c software, (Olympus

Life Science) and statistical analysis was processed with ImageJ from data collected during emission map-

ping. Samples were prepared by drop-casting 1 mM solutions of 1 (acetone) on a glass slide at 298 K and

dried completely for 1 day. See Figure 3.

Atomic force microscopy

AFM analysis was performed at tapping mode on a Park Systems model NX10 microscope using an

AC160TS cantilever and the data was processed with XEI package (Park Systems). Samples were prepared

by drop-casting solutions of 1 (1 mM in acetone) on a glass slide at 298 K and dried completely for 1 day.

See Figure 3.

Dynamic light scattering

DLS analysis was carried out on a Zetasizer Nano ZSP (Malvern Instruments Ltd.) with 532 nm laser radiation

source. 3 mL of the corresponding solutions of 1 (variable concentration in acetone) were analysed on a

standard fluorescence glass cuvette with an optical path length of 1 cm at 298 K. See Figure 4.

HR-TEM

High Resolution Transmission Electron Microscopy (HR-TEM) analysis was performed on a JEOL model

JEM-2010 microscope with an acceleration voltage of 200 keV, 50 micrometer C2 aperture, spot size 1

and variable dose rate. Images were processed with Gatan Digital Micrograph software (Gatan, Inc.) and

analysed with ImageJ. Liquid samples were prepared by drop-casting 10 mM to 10 mM solutions of 1 in

acetone on formvar carbon film-covered square mesh copper grids and dried completely for 4 h at 298

K. See Figure S4. In the same figure, TEM analysis of drop-cast solutions from 1 in acetone (10�5 M upper

micrographs, 10 mM central-inferior micrograph) shows that in general terms for the diluted regimes, the

larger the diameter d in hollow spherical vesicle-type bodies (morphogen A), the shorter the thickness t of

the external shell, but solid nanosized spherical counterparts are prevalent even at the largest concentra-

tion tested; scale bar is 50 nm for the threemicrographs in the upper row; scale bar is 400 nm for the central-

inferior panel, field: 16 mm2. See also Figure 4.

In silico studies

Calculations were carried out using the Materials Studio 8 suite (MS8), provided by Biovia, Dassault Sys-

tèmes, unless stated otherwise. The DMol3 program was employed for DFT computations with the

COSMO implicit solvation model as implemented in MS8. Solvation energy benchmarking was performed

using the SMD method (Marenich et al., 2009) with the ORCA 4.0 program (Neese, 2012). See Figures 4, 5,

S3, and S5–S13.
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Solvation and aggregation energies on supramolecular clusters were semi-quantitatively estimated upon

calibration of an MM-based methodology and their detailed heuristics are explained in further subhead-

ings. Briefly, we proposed random binary mixing to approach the modelling of kinetically trapped con-

glomerates and explore the energetic aspects of the first steps of self-assembly leading to nanoparticle

consolidation. To calibrate our MM method, intramolecular H-bonding and rotation of the -OH group

were the first parameters to be benchmarked. Our reference values came from DFT calculations using

the PBE functional (Perdew et al., 1996) with the Tkatchenko-Scheffler empirical dispersion scheme for ge-

ometry optimisations (Tkatchenko and Scheffler, 2009), and the double-zeta polarised basis DNP,

PBE(DTS)/DNP, with final energies evaluated with the m06L functional and the triple-zeta TNP basis, in va-

cuo for direct comparison with MM. Using the ESP-fitted DFT-derived atomic charges and the Dreiding

(Mayo et al., 1990) force field (DFF) we succeeded to locate a maximum along the dihedral scan and the

endothermic character of the local minimum at 180� was qualitatively correct. This protocol was subse-

quently used for all tasks performed at the MM level.

A set of conformers was generated for each molecule with the following methodology: a diluted (1 mole-

cule in 1000 units of solvent) solution in acetone, with density 0.78 g/mL, was built using the Amorphous

Cell program and the MM protocol; systems were then subject to molecular dynamics (carried out with

the Forcite code, covering 1000 ps in 1 fs steps, under the NVT ensemble at 473 K to facilitate conforma-

tional flexibility). From the resulting trajectories, five frames were extracted, at 200 ps sampling intervals.

The molecules from each frame were stripped from solvent molecules and optimised.

Supramolecular assemblies were generated using the Blends program, an implementation of the molec-

ular silverware methodology (Blanco, 1991). Stochastic binary mixing was modelled, generating random

aggregates of 2x molecules, with x ranging from 0 to 10, meaning x the generation number in self-assembly

so that 2x = n1. Using this strategy, particles reaching 200–300 Å in length and up to 1024 molecules (52,224

atoms per aggregate) were built and closely inspected, studying their self-assembly from single molecules

to nanoparticles. With this static approach, we maintained atomic resolution throughout the study while

accessing particle sizes of up to 1,024 (210) molecules with reasonable computational cost.

Geometry benchmark of aggregates was then carried in two steps. (1) Optimisation of bimolecular mixtures

using (a) the DFT-based tight binding method DFTB+ (Aradi et al., 2007) with the ob3 Slater-Koster library

(Gaus et al., 2013) and (b) the DFT PBE(DTS)/DNP procedure. Structural similarity between these sets was

quantified as the overlap of steric fields, defined as the Lennard-Jones potential seen by a probe carbon

atom on each structure. The structural match between DFT and DFTB+ was on average 99 G 1%, so this

method proved robust for the generation of DFT quality geometries for a fraction of the cost. On step

(2) structures optimised with the MM protocol were compared with those obtained through DFTB + for

generation 1 (89 G 5% similarity), generation 2 (85 G 3%) and generation 3 (78 G 2%). These deviations

reflect the flat potential energy surface associated with larger aggregates yet are acceptable given the

large scale of the calculations performed and, thus, we applied this MM protocol for the general geometry

optimisation of molecules and clusters.

The aggregation energy benchmark was performed using a set of conformers which were generated using

the Conformers program with the MM protocol. From the results, the lowest energy conformer was opti-

mised and used as seed to generate a collection of 105 bimolecular mixtures with the Blends program. The

100 lowest energy pairs were kept for the next step. Without further optimisation, aggregation energy was

computed at the DFT level using the m06L/TNP method in vacuo. By comparing average aggregation en-

ergies from both methods (DFT: �14.4 G 1.2 kcal/mol, MM protocol: �13.5 kcal/mol), we conclude that

DFF embodies an adequate parameterisation yielding semi-quantitative aggregation energies vs. DFT

computed values.

Solvation energy calculations were benchmarked as follows. For a given geometry, solvation was

computed at different levels: a) Reference: m0623/def2tzvp with the SMD method, calculated in ORCA

4.0; b) m06L/TNP with COSMO solvation in acetone; c) random mixing with the chosen force field and

the Blends program in MS8. For single molecules (generation 0), COSMO was +1.5 kcal/mol off and the

Blends method reproduced the SMD solvation energy within 1 kcal/mol. For generation 1 aggregates,

COSMO was ca +8.3 kcal/mol off and Blends was +0.5 kcal/mol off. This random mixing approach yielded

semi-quantitatively solvation energies, while being relatively inexpensive. Therefore, the Blends method
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was standardised to the following procedure: Perform three mixing runs. The average base + screen inter-

action energy EBS is stored; three coordination number runs with 30, 50 and 150 iterations are run to extrap-

olate coordination numbers, CN. Solvation energy is obtained as DEsolv = EBS x CN. The method proved

affordable up to generation 7 (n1 = 128). Solvation for larger aggregates was obtained through extrapola-

tion leveraging on the linear relationship between size and solvation energy found for generations n1 > 4.

High-throughput mathematical analysis

Automated linear stability analysis and high-throughput analytical prediction of Turing patterning condi-

tions were carried out using the web-based software RDNets (Marcon et al., 2016) through the Wolfram

CDF Player 11.3 interface (Wolfram Research). The algorithm used has been recently reported to success-

fully predict Turing pattern-forming diffusivity and kinetic constant parameter ranges in RD networks by ex-

ploiting a new graph-theoretical formalism that simplified analysis to a graphical-user interface under a

reasonable computational demand. See Figures 6 and S16.

During the mathematical analysis, we left unconstrained all the possible interactions (activation or inhibi-

tion feedbacks) between each hierarchy, the pattern phase (in-phase, out-of-phase) and the pattern type

(I, II or III) in order to avoid bias in the final results. As a first step, we constrained the 2-node RD scenario

with the two morphogen diffusivity valuesDA = 17 mm2s-1 for L2 and DB = 1750 mm2s-1 for L0; for the 3-node

scenario, we used the same previous hierarchy diffusivities together with a third node representing L1, in

which we alternatively included either the lower limiting valueDL1 = 107 mm2s-1 for L1a or the upper limiting

value DL1 = 346 mm2s-1 for L1i, to consider a dynamic case in which L1 can progressively cover a range of

sizes rather than comprising size-defined independent nodes, and still be able to participate in the Turing

patterning process.

Afterwards, from the different RD networks generated through each mathematical analysis, we only

selected the systems with the highest estimated robustness per interaction network and discarded the

rest. These selections were further analysed through the software pipeline to determine their respective

network topologies in order to predict the kinetic constant intervals (kl>0 for the activation feedbacks,

kl<0 for the inhibition feedbacks, 2-node:1 % l % 4, 3-node: 5 % l % 10) that delivered viability in Turing

patterning under the diffusivity constrains provided at the beginning of the analysis; for computational rea-

sons, the 3-node scenario was analysed in two steps: first, prediction of k5 to k9 general conditions was car-

ried out automatically, and second, prediction of k10 was performed using selected data from the ranges

given by the former step (selected data is described ahead). Subsequently, by using representative numer-

ical data for each kl (310�4 s�1) and variable final times (s), we carried out 1D analysis of the concentration

fluctuations for the diffusible components vs. space: for 2-node analysis we used k1 = 0.504, k2 = 1, k3 = 1,

k4 = 1, final time 61.951; for 3-node analysis with L1awe used k5 = 1, k6 = 1, k7 = 0.00391, k8 = 1, k9 = 0.00171,

k10 = 0.00915249, final time 15.530; for 3-node analysis with L1i we used k5 = 1, k6 = 1, k7 = 1, k8 = 1, k9 =

0.625, k10 = 0.1875, final time 124.24. Finally, we used the same feedback constrains to predict spatial 2D

Turing patterning capabilities for morphogen A concentration under each scenario, to determine whether

the graphical results were consistent with the labyrinth patterning families observed in the experiments.

Analysis of aggregate populations in solution

For j = Co solutions, k = 1 consisted of nanoscale assemblies with dh Co,1 = 82 nm (DCo,1 = 17 mm2s-1, from

the Stokes-Einstein equation -Equation 1-), whereas k = 2 corresponded to a 20-fold larger aggregate at

the microscale with dh Co,2 = 1.63 mm (DCo,2 = 0.86 mm2s-1), with a volume ratio k = 2:k = 1 of VCo,2 z

7.83103VCo,1 under a spherical model. Interestingly, the microscale population presented the same size

order of the crest width observed by AFM and OM in dry counterparts.

D =
kBT

6PhRh
(Equation 1)

We also analysed a ten-fold concentrated solution (j = 10Co), as a surrogate for a Co sample after 90% of

solvent evaporation, in order to determine what occurs with the aggregate populations during the drop-

casting process but before dryness. The latter produced a simultaneous increase of dh j,k in a factor of ca.

3 for both populations k = 1 and k = 2, giving larger nanoscale and microscale counterparts with dh

10Co,1 = 227 nm and dh 10Co,2 = 4.56 mm. In the 10Co solutions, coexistence of both aggregates k = 1

and k = 2 (D10Co,1 = 6.2 mm2s-1 and D10Co,2 = 0.31 mm2s-1, respectively) occurred as in the original Co so-

lution. These populations also preserved the same diameter ratio 1:20 and roughly the same volume
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ratio (V10Co,2 z 8.1 3 103V10Co,1) as in Co, but respectively represented an increase in spherical volume

equivalent to 21–22 times that resulted from rising the concentration 310 (cf. V10Co,1 z 21VCo,1 vs.

V10Co,2 z 22VCo,2).

In line with the observed trend, if k = 2 is produced from N self-assembled k = 1 particles through a non-

crystalline spherical agglomeration model with a lack of inter-particle spacing due to plasticity in the com-

ponents, then their volume ratio would be a fair approximation to the number of k = 1 units integrated in

one k = 2 aggregate. Therefore, in either Co or 10Co, microscale bodies k = 2 are derived from the coales-

cence of ca. 7.8 3 103–83103 nanoscale particles (N) of the population k = 1 observed at each

concentration.

On the other hand, their diluted counterparts j = 0.1Co and j = 10Co diluted did not favour the expression of

microscale populations k = 2, but only produced nanoscale assemblies k = 1 with 4-fold or 5-fold decrease

in diameter values: dh 0.1Co,1 = 21 nm (D0.1Co,1 = 67 mm2s-1) or dh 10Co diluted,1 = 44 nm (D10Co diluted,1 =

32 mm2s-1).

Three possible scenarios for self-assembly

Self-assembly in the studied bis-Schiff bases can be divided in three scenarios, depending on the polarity

of the solvent. In the first scenario, a polar solvent with a high H-bond disrupting character, such as DMSO,

rules out oligomerisation through H-bonding; hence, short range contacts such as p-p and vdW interac-

tions are expected to dominate self-assembly. In the second one, involving a low-dielectric constant me-

dium such as CHCl3, the electrostatic component of H-bonding is key to aggregation. This interaction is not

screened and thus may lead to the anisotropic formation of H-bonded oligomers. In the third case,

acetone, being intermediate between these extreme cases, can be expected to present characteristics

from both the first and second scenarios.

In the computational study, factors such as the evaporation time of solvents (1.9 for CHCl3, 1.8 for acetone

and 1500 for DMSO, considering Et2O evaporation as unity) and their viscosity (0.57, 0.33 and 2.0 cP,

respectively) -Smallwood, 1996-, are not accounted for, yet these factors are expected to add to the full

picture of the complex phenomenon under analysis.

Analysis of the interactions in DMSO

In highly screening DMSO, H-bonding can be regarded as nearly absent. This leads to the most isotropic

scenario, where no directional forces influence aggregation. The short-range of p-p and vdW interactions

means that, in these conditions, coalescence is a random process where a distribution of configurations

interact upon contact without preferential modes. We simulated this by random binary mixing, where sta-

ble conformations are blended without bias.

A close look to the sequential growing of aggregates allows delving further into the manifold of plausible

self-assemblies. Ideally, first-generation aggregates would be bimolecular with suppressed influence of

intermolecular H-bonding. Due to the presence of 4 aromatic rings, dispersive forces are the main contri-

butions to intermolecular contacts, especially parallel-displaced and edge-to-face p-p and vdW interac-

tions. As estimated using the DFT methodology, bimolecular interactions are energetically close-lying if

H-bonding is excluded. As clusters grow, the gamut of intermolecular contacts broadens and the appear-

ance of accidental H-bonding is expected. As stated by Day and co-workers in their studies on molecular

crystals (Thompson and Day, 2014) and herein applied to nascent nanoparticles, the contacts which maxi-

mise surface overlap can be strongly favoured even at the cost of conformational strain. A rough visual anal-

ysis of Figure S5 shows that the most compact aggregates are those where the interacting surface of the

conforming molecules are maximal. This can be illustrated with the surface of the aggregate that is acces-

sible to solvent. As will be shown, this approximate relationship holds true from the bimolecular cluster

space up to particles in the nanoscale, composed of > 103 molecules. See also Figure 5.

In Figure S5, self-assembled structures are obtained when the influence of intermolecular H-bonding in 1 is

partially suppressed by a high dielectric constant scenario and no solvent occlusion occurs. First-genera-

tion aggregates are bimolecular, second and third generations are particles constituted by 4 and 8 molec-

ular units, respectively. Aggregates include aggregation energies and solvent-accessible surfaces for each
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particle. Energy values shown are relative to the free units and weighted with the number of molecules in

the cluster, reflecting the average aggregation energy per molecule.

Particle surface naturally increases with the number of constituting units; this value, weighted with the num-

ber of molecules in the aggregate, shows the trend observed in Figure S6. As aggregates grow near 32

molecules, the surface/size ratio becomes nearly constant; further coalescence does not contribute to

decrease this ratio. If the total and weighted aggregation energies, rather than surface, are now compared

in a similar fashion, it can be seen that the trend becomes monotonic when particles are around 16 units

large (Figure S7). See also Figure 5.

Analysis of the interactions in CHCl3

The systems under study present different hydroxylation patterns. In CHCl3, they may engage in extensive

H-bonding during solvent evaporation and solid consolidation. While the conformational study supports

that the -OH groups near the imine nitrogen atoms (i.e. position 2) aremost likely involved in intramolecular

interactions (in agreement with what has been observed in the crystal phase of related structures -Thakuria

et al., 2012-), the ring decorated with 2 -OH (in 1 and 2) and 3 -OH moieties (in compound 3) in portion b of

the scaffold is central to intermolecular H-bonding, giving place tomultiple possiblemodes of aggregation

relying on this directional interaction (Figure S8). Intermolecular H-bonding of 1, 2 and 3 is driven at the

(sub)nanoscale regime by the accessibility of -OH groups in portion b and facilitated by the dielectric con-

stant of the solvent, thus allowing multiple modes of aggregation during the earliest assembly stages, as

shown in Figure S8 for molecule 2 in CHCl3. See also Figure 5.

While this kind of pattern is common to 2 and 3, due to the more accessible -OH group in position 4, that is

not completely the case for compound 1. For this system, the outermost -OH is located at position 3, rela-

tively hindered for H-bonding. Although the Turing pattern is not favoured in CHCl3, these results show

that -OH at position 3 is still accessible for H-bonding, and this regulated hindrance (cf. -OH at position

3 in 1 vs. 4 in 2 and 3) seems to play an important role in themodulation of l at the Turing patterns observed

with each BB.

H-bond-driven aggregation can be safely assumed to appear since the earliest stages of particle formation,

being a decisive factor during self-assembly, controlling the first hierarchy of supramolecular consolidation;

this opens pathways for directional aggregation overcoming the isotropic scenario where diffusion and

evaporation rate are probably the main factors controlling growth.

Analysis of the interactions in acetone

In acetone, intermolecular assembly throughH-bonding can be expected to be only partially screened. Besides

the difference in dielectric constant, the volatility of acetone, > 800 higher than that of DMSO, is likely an impor-

tant factor during aggregation. Fast evaporation may lead mainly to kinetic ordering during aggregation (dy-

namic self-assembly). In contrast, the slow evaporation of DMSOmay favour a thermodynamically driven assem-

bly (static self-assembly). According to our findings, the Turing pattern is disfavoured in the latter conditions.

Once concentration reaches a certain value, screening of H-bondingmay be overridden, opening access to

the gamut of aggregation modes led by this interaction. As seen in Figure S9, aggregation of 1 occurs by

partially hindered H-bonding domains; in the case, particle was modelled at the DFTB+ level with the 3ob

Slater-Koster library, as detailed in the ‘in silico studies’ of this section. Regulation for H-bond-guided oli-

gomerisation in molecule 1 appears as a crucial factor, in contrast with molecules 2 and 3 where function-

alisation steric demand is poorer and the -OH group in position 4 in both BBs is more accessible to engage

in H-bonded aggregates (Figure S10). In the left column of Figure S10, we find the most stable conformers

for BBs 1 (top), 2 (centre) and 3 (bottom); In the right column of Figure S10, we find the respective modes of

bimolecular aggregation by regulated access to intermolecular H-bonding for BBs 1 (top), 2 (centre) and 3

(bottom); in these cases, free molecules were modelled by MD in acetone and optimised at the DFT level

and particles were modelled at the DFT level. Computational details can be found in the ‘in silico studies’

subheading of this section. See also Figure 5.

With these modelling experiments, we conclude that an intermediate dielectric constant and high volatility

of the chosen solvent are the conditio sine qua non to achieve Turing-patterned self-assembled materials.
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From the molecular systems we explored, it is crucial that aggregation through H-bonding is modulated

both sterically at the molecular unit and dynamically through judicious solvent selection.

Assembly dimensions in acetone

The largest particles we observed for 1–3, and whose assembly modelled computationally, lie around the

20–30 nm scale (Figures S11–S13). These dimensions are approximated by clusters of 210 molecular units,

with, for instance, 418,251 uma for 1 (roughly >6 times the mass of the Human Serum Albumin protein);

nonetheless their self-assembly and patterning via non-covalent interactions can be tuned through the

adequate combination of physicochemical parameters.

In Figure S11, structures composed by one to 1024 molecules of 1 showing their solvent accessible surface

are comparatively scaled; the number of assembled molecules is indicated below each agglomerate and

their corresponding hierarchy levels are indicated above each group of structures. The structure containing

one molecule conformer corresponds to the result obtained by MD in 1000 molecules of acetone, stripped

from solvent molecules and further optimised at the DFT level. Clusters of up to 16 molecules were

computed using DFTB+. All the supramolecular assemblies were optimised at the MM Dreiding level, us-

ing DFT-derived atomic charges, adjusting the number of optimisation steps to ensure minima were

reached in all cases. Computational details are included in the ‘in silico studies’ subheading of this section.

See also Figures 4 and 5.

In Figure S12, selected structures composed by one to 1024molecules of 2 showing their solvent accessible

surface are comparatively scaled; the number of assembled molecules is indicated below each agglom-

erate. Results were obtained with a similar procedure as in Figure S11. Computational details are included

in the ‘in silico studies’ subheading. See also Figure 5.

In Figure S13, selected structures composed by one to 1024molecules of 3 showing their solvent accessible

surface are comparatively scaled; the number of assembled molecules is indicated below each agglom-

erate. Results were obtained with a similar procedure as in Figure S11. Computational details are included

in the ‘in silico studies’ subheading. See also Figure 5.

Diffusivity approximations for the hierarchy level 1 (L1)

Diffusivity for L1i (upper limit, DL1 = 346 mm2s-1) was estimated using dL1 average from HR-TEM analysis data

in Figure 4D, while its counterpart for L1a (lower limit, DL1 = 107 mm2s-1) was obtained using the estimated

size d frommolecular modelling size evolution trend for n1 = 256 in Figure 4E. Estimations were carried out

using the Stokes-Einstein equation (Equation 1) at 298 K, making the following assumptions on the hydro-

dynamic diameter (dh) in acetone:

Supramolecular reaction mechanisms for 2-node RD network

Proposed supramolecular reaction mechanisms for the four interactions (Figure 6B) in the 2-node RD

network between morphogens A and B (Figure S14), their kinetic constant predictions (kl) obtained from

their estimated diffusivities DA = 17 mm2s-1 and DB = 1750 mm2s-1 and examples of experimental/molecular

modelling/mathematical analysis data which might support the viability for the reaction steps proposed

are listed ahead. In the mechanisms, level 1 is not accounted for as a diffusible participant in the overall

RD network but is only limited to an intermediary role. The RD equations (Equations 2 and 3) derived

from the automatic mathematical analysis are also listed below (Marcon et al., 2016).

v½A�
vt

= k1½A�+ k2½B� � ½A�3 +a½A�2 +DAV
2½A� (Equation 2)

v½B�
vt

= k3½B�+ k4½A� � ½B�3 +a½B�2 +DBV
2½B� (Equation 3)

In Figure S14, positive feedback (panel a top, green) from morphogen A (L2) to morphogen B (L0) might

proceed in two reaction steps, i1/i2 (bottom), where the overall reaction results into an increased local

concentration of free molecules (L0). Negative feedback loop (panel a top, red) on morphogen B node

could be carried out in one reaction a1 (bottom), which results into self-clearance of free BBs from the

diffusible pool. Negative feedback (panel b top, red) from morphogen B to morphogen A potentially oc-

curs in two reaction steps, i1/i2 (bottom-right), which results into a decreased local concentration of L2

concerted with a local replenishment of BBs consumed in the process. Positive feedback loop (panel b
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top, green) on morphogen A node could proceed in three steps, i1/a3/a2 (bottom-left), where the over-

all reaction results into production of additional L2 particles at the diffusible pool. See also Figure 6.

k1. Positive feedback loop in morphogen A node (L2) through three successive reaction steps: i1/a3/a2.

k1:0.187<k1<1 (310�4 s�1).

i1) Leaching of inhibited level 1 intermediaries (L1i) from L2 without destruction of the latter.

a3) Self-coalescence of intermediary L1i particles yields larger counterparts (activated level 1 intermedi-

aries, L1a).

a2) Progressive assembly of intermediary L1a to generate L2 results into additional L2 particles at the

diffusible pool.

Examples: Leaching of L1i can be observed during the bursting process in Figure 4C and their Gaussian

trend in size is shown in Figure 4D. The homogeneous growth trend from L1i to L1a can be observed in mo-

lecular modelling, Figure 4E throughout the regression curve section between n1 = 8 and n1 = 256, whereas

the isotropic assembling in the same n1 interval is evidenced in Figure S11. The assembly of level 1 struc-

tures to produce level 2 counterparts can be detected as a reassembly process in Figure 4C, while the

regression curve trend disruption between n1 = 256 and n1 = 1024 in Figure 4E and anisotropic assembling

in the same n1 interval in Figure S11 confirm the viability for such behaviour.

k2. Negative feedback from morphogen B (L0) to morphogen A in two reaction steps: i1/i2.

k2:–6.8<k2<�0.504 (310�4 s�1).

i1) BBs located at the interface of L2 assemblies could be accessible to sequestering by unassembled

BBs (L0) to yield intermediary L1i nanostructures until remaining matter at L2 is consumed; in the pro-

cess, destruction of L2 derives into a decreased local concentration of the same.

i2) Previously formed L1i intermediaries that are unstable because of a low degree of oligomerisation

could follow a splitting process to release unassembled molecules (L0) and thus, promote a local

replenishment of BBs consumed at i1.

Examples: The size reduction trend in L2 to values close to L1 observed for progressive dilution of BB in

Figure 4A, as well as the bursting process detected in Figure 4C and the Gaussian trend in Figure 4D

show that A is depleted by the local conditions through a process that is carried out via release of L1i par-

ticles to the surroundings. In this sense, in Figure 6D, the in-phase periodic drop in concentration of A and B

(the troughs in the curves) where [A]local<<[B]local suggests that the higher availability of B triggers an inter-

action process between both morphogens which also drives the inhibition of A. In addition, the six scat-

tered L1 structures in Figure 4C which appear markedly smaller than their reassembled counterparts, sug-

gest that these L1i structures are potentially unstable if remained isolated from other L2 bodies (i.e. if the

local concentration of L2 is relatively lower); in this sense, the less-marked concentration drop of B vs. A in

Figure 6D, ([B]local>>[A]local) could be partially a result from a buffering effect from free molecules pro-

duced during the splitting of L1i, which avoids a more noticeable depletion of B.

k3: Positive feedback from morphogen A to morphogen B in two reaction steps: i1/i2.

k3:0.504<k3<6.8 (310�4 s�1).

i1) Leaching of L1i intermediaries from L2 assemblies without total destruction of the latter.

i2) Successive splitting of unstable L1i into L0, should result in an overall increased local concentration of

free molecules.

Examples: The bursting process of L2 in Figure 4C and the Gaussian trend in Figure 4D, together with the 6

scattered and potentially unstable L1 structures observed in Figure 4C suggest that L2 can release matter

to the surroundings via smaller intermediary particles which potentially degrade into their elementary
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components. The overall process can be explained by the in-phase periodic rise in concentration between

A and B in Figure 6D, where [A]local>>[B]local means that the higher the amount of A particles at a local level,

the higher the local concentration of free molecules, therefore, these freemolecules should bematter orig-

inated from L2 structures.

k4. Negative feedback loop in morphogen B node through one reaction: a1.

k4:–1.98<k4<�0.504 (310�4 s�1).

a1) Progressive assembly of free molecules yields activated level 1 intermediaries (L1a); the process

results into self-clearance of free BBs from the diffusible pool.

Examples: In Figure 4E, the homogeneous trend observed throughout the regression curve section be-

tween n1 = 2 and n1 = 256 and the isotropic assembling in the same n1 interval in Figure S11 could explain

the self-mediated clearance of free molecules.

Supramolecular reaction mechanisms for 3-node RD network

Proposed supramolecular reaction mechanisms for the six interactions (Figure 6C) in the 3-node RD

network between morphogens A and B and hierarchy level 1 (Figure S15), their kinetic constant predictions

(kl) obtained from the estimated diffusivities DA = 17 mm2s-1, DB = 1750 mm2s-1 and either L1a lower limit

DL1 = 107 mm2s-1 or L1i upper limitDL1 = 346 mm2s-1, as well as examples of experimental/molecular model-

ling/mathematical analysis data which might support the viability for the reaction steps proposed are listed

ahead. In the mechanisms, level 1 in either the activated L1a or the inhibited L1i form is accounted for as a

diffusible and reactive component in the overall RD network, instead of an intermediary player as in the

2-node RD network equivalent. The RD equations (Equations 4, 5, and 6) derived from the automatic math-

ematical analysis are also listed below (Marcon et al., 2016).

v½A�
vt

= k9½L1�+ k10½B� � ½A�3 +a½A�2 +DAV
2½A� (Equation 4)

v½B�
vt

= k7½L1� � ½B�3 +a½B�2 +DBV
2½B� (Equation 5)

v½L1�
vt

= k5½L1�+ k6½B�+ k8½A� � ½L1�3 +a½L1�2 +DL1V
2½L1� (Equation 6)

In Figure S15, Positive feedback (a top row, green) from level 1 (either L1a or L1i) to A (L2) might proceed

through two possible routes (middle row), reaction a2 and/or reaction steps a3/a2, giving as a result an

increased local concentration of A in both scenarios. Negative feedback (a top, red) from B (L0) to A could

be carried out in two reaction steps i1/i2 (middle row), which results into clearance of A from the diffusible

pool concerted with a local replenishment of BBs consumed in the process. Positive feedback from A to

level 1 (b top row, green) is potentially performed through three possible routes (middle row), reaction

i1, reactions i1/a3 and/or reactions i1/i2/a1; in all the cases, the local concentration of either L1a or

L1i is increased at the diffusible pool. Negative feedback loop (b top row, red) on level 1 node could pro-

ceed in two possible reaction routes (bottom row), successive reaction steps i3/i2 and/or reaction i2; in

both routes, self-promoted depletion of L1a and/or L1i might occur by instabilities arisen from local con-

centration conditions. Positive feedback (c top row, green) from level 1 to B is probably developed through

three alternative routes (middle row), reaction steps i3/i2, only the reaction i3 and/or the reaction i2; in the

three scenarios, the local concentration of free BBs is increased by the presence of either L1a or L1i. Nega-

tive feedback (c top row, red) from B to level 1 might be carried out through two possible routes, reaction

steps i3/i2 (bottom row) and/or only the reaction i2; in both routes, free BBs are responsible for triggering

the local depletion of any form of L1 (L1a or L1i) from the diffusible pool. See also Figure 6.

k5. Negative feedback loop on hierarchy level 1 node (L1a and/or L1i) via two possible routes occurring

either individually or simultaneously: route departing from L1a in two-reaction steps i3/i2 and route de-

parting from L1i in one-reaction i2.

For DL1 = 107 mm2 s�1, k5:–1.38<k5<�0.0173 (310�4 s�1).

For DL1 = 346 mm2 s�1, k5:–51.8<k5<�0.5 (310�4 s�1).
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i3) Local instabilities arisen from relatively low level 1 concentration conditions trigger splitting of L1a
nanostructures to produce their smaller counterparts L1i, these products participate in a further step i2.

i2) The low concentration of pre-existent and/or generated L1i bodies promotes their destabilisation

which catalyses their splitting into free molecules to the surroundings. In the overall process, the con-

centration of both level 1 forms is decreased.

Examples: The six isolated level 1 nanostructures observed by TEM in Figure 4C appear smaller and less

stable than their counterparts that remain relatively closer to other level 1 homologues. This suggests

that the lower the concentration of level 1 nanostructures, the higher their probability to be degraded

into the elementary components. The same phenomenon is supported by Figure 5C for self-assembly gen-

erations 2 and 3 (2 % n1 % 8), where their instability is predicted as a result from the energetic trade-off

occurring between solvation and aggregation upon local BB dilution, while at this self-assembly generation

range, H-bonding is the predominant motive force (Figures 5A, S9, and S10).

k6. Negative feedback from morphogen B (L0) to hierarchy level 1 (L1a and/or L1i) via two possible routes

occurring either individually or simultaneously: route starting from L1a in two-reaction steps i3/i2 and

route starting from L1i in one-reaction i2.

For DL1 = 107 mm2 s�1, k6:–11.7<k6<�0.447 (310�4 s�1).

For DL1 = 346 mm2 s�1, k6:–53.1<k6<�0.813 (310�4 s�1).

i3) BBs located at the interface of L1a nanostructures could be accessible to sequestering by unassem-

bled molecules (L0) to yield oligomer counterparts L1i until remaining matter of L1a dimensions is

consumed; the generated L1i particles participate in a further step i2.

i2) superficial molecules on pre-existent and/or generated L1i particles could be sequestered by free BBs to

produce L1i counterparts at a lower degree of oligomerisation; these L1i products are susceptible to either

progressive leaching of their components (releasing of L0) or to splitting into unassembledmolecules due to

their inherent instability, in both scenarios, the released L0 components may participate in further seques-

tering cycles with other L1i located at the surroundings. In the process, free molecules are responsible for

triggering the destruction of both level 1 forms and thus, a decreased local concentration of the same,

whereas in parallel, the L0 molecules consumed in each reaction are replenished to the medium.

Examples: The six isolated level 1 nanostructures observed by TEM in Figure 4C which are smaller than the

average size measured in Figure 4D indicate that they are potentially unstable because of their reduced

local concentration. However, the coexistence of free molecules in solution (e.g. free molecules detected

by DOSY at Co in Figure S2) together with the in-phase drop in concentration between level 1 and B

observed in Figure 6E (for L1i) and Figure S16A (for L1a), where [B]local>>[L1a]local or [B]local>[L1i]local, sug-

gest that the relatively higher concentration of morphogen B should catalyse local depletion of level 1

through physical interactions between both components. According to molecular modelling of L1i parti-

cles with a low degree of oligomerisation (Figures 5A, S10, and S11 and our analysis of the interactions

in acetone), it is expected that throughout the sequestering process from their larger counterparts,

H-bonding played a similar leading role as in the stabilisation of L1i during its formation via self-assembly.

Moreover, according to the solvation vs. aggregation energy profile in Figure 5C, the rise in the aggrega-

tion energy component for the L1a/L1i range (towards less exothermic values) is less marked than the

drop in the solvation energy component at the same interval and direction (towards more exothermic

values). This suggests that at these regimes, highly solvated/more concentrated free molecules could

participate with a higher probability andmore actively in interfacial sequestering to yield smaller oligomers

which gain on solvation energy component at the expense of parent L1 particles.

k7. Positive feedback from hierarchy level 1 (L1a and/or L1i) to morphogen B via three alternative routes

occurring either individually or simultaneously: two-reaction route i3/i2, one-reaction route i3 and one-re-

action route i2.

For DL1 = 107 mm2 s�1, k7:0.00173<k7<0.00904 (310�4 s�1).

For DL1 = 346 mm2 s�1, k7:0.769<k7<12.8 (310�4 s�1).
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i3) if the local concentration of BBs in the form of L1a surpasses the local concentration of L0, the level 1

nanostructures exposed to these conditions could spontaneously carry out a leaching process where

free molecules are released to the surroundings, and smaller L1i counterparts are obtained as a by-

product; the latter may or may not participate in a further step i2.

i2) if the local concentration of pre-existent and/or generated L1i exceeds the concentration of L0, L1i
particles could go on with the leaching process to produce L1i counterparts at a progressively lower de-

gree of oligomerisation. In the process, additional free molecules are constantly released to the me-

dium (increase in L0 concentration) by the presence of level 1 structures.

Examples: The in-phase periodic rise in concentration of level 1 and morphogen B at a local level in Fig-

ure 6E (L1i) and Figure S16A (L1a) where [L1a]local>>[B]local or [L1i]local>[B]local, denotes that the increased

concentration of morphogen B is determined by a higher availability of level 1 structures which give birth

to the first ones; in such process, a progressive leaching mechanism is the most probable route. This sce-

nario is supported by Figure 5C, where instability in self-assembly arises in a natural manner as long as the

degree of oligomerisation decreases for both L1 forms, due to an energetic trade-off between solvation

and aggregation which predominantly yields L0.

k8. Positive feedback frommorphogen A (L2) to hierarchy level 1 (L1a and/or L1i) via three alternative routes

occurring either individually or simultaneously: one-reaction route i1, two-reaction route i1/a3, and three-

reaction route i1/i2/a1.

For DL1 = 107 mm2 s�1, k8:0.712<k8<2.24 (310�4 s�1).

For DL1 = 346 mm2 s�1, k8:0.0479<k8<1.23 (310�4 s�1).

i1) generation of L1i nanostructures originated from kinetically unstable L2 particles could spontane-

ously be carried out through a leaching process where level 1 particles are released to the surroundings,

as long as precursor L2 particles gain enough local stability to maintain their hierarchy level, so as to

avoid a total degradation of the same; depending on the local conditions, leached L1i may or may

not participate in either i2 or a3 as a further step, however, in this step, a higher concentration of level

1 (inhibited form) is triggered by the only presence of level 2.

a3) if the local conditions are favourable, the previously leaked L1i structures may proceed with a spon-

taneous self-coalescence to yield level 1 counterparts with a higher oligomerisation degree (L1a). As an

overall result, concentration of level 1 (activated form) is also risen by L2.

i2) if L1i particles expelled through i1 are exposed to locally unfavourable conditions that promote their

kinetic instability, they may spontaneously split into their components; this process promotes a tran-

sient increase in free molecules which participate in a further step a1.

a1) the transient rise in concentration of free molecules produced during i2 under unstable conditions

favours their rapid (and dynamic) assembly into L1a particles. The global result of this route is also an

increased concentration of level 1 (activated form) started by L2.

Examples: The bursting process observed in Figure 4C indicates that L1i particles may be produced from L2

precursors without destruction of the latter. Either the assembly of free molecules or the coalescence of L1i
structures to yield higher degrees of oligomerisation (e.g. L1a) is viable according to molecular modelling

results; such process can be carried out starting from an oligomerisation degree as low as n1 = 2

(Figures 4E, 5A, S9, and S11) to rapidly produce more-stable particles with n1 R 8 (Figure 5C). This process

is driven at the first stages by H-bonding between portion b in 1, but, as oligomerisation increases, vdW and

p-p interactions through portion a are increasingly playing as the leading motive force. The in-phase pe-

riodic rise in concentration of level 1 and morphogen A at a local level in Figure 6E (L1i) and Figure S16A

(L1a) where [A]local>[L1]local, indicates an activation of L1 by the higher concentration of morphogen A.

k9. Positive feedback from hierarchy level 1 (L1a and/or L1i) to morphogen A through two possible routes

taking place either individually or simultaneously: two-reaction route a3/a2 and one-reaction route a2.

For DL1 = 107 mm2 s�1, k9:0.00139<k9<0.00387 (310�4 s�1).

For DL1 = 346 mm2 s�1, k9:0.119<k9<0.813 (310�4 s�1).
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a3) depending on the local conditions, coalescence of L1i particles could produce level 1 versions in pro-

gressively higher oligomerisation degrees at L1a. These local conditions might be favoured at high L1i
concentration values. The L1a products participate in a further step a2.

a2) L1a nanostructures which are either pre-existent or produced in a previous step a3, could generate L2

particles if their local concentration is high enough so as to facilitate their successive assembly. In the

process, L2 concentration is increased by level 1 hierarchy whether in its inhibited or its activated

version.

Examples: The reassembly process observed in Figure 4C indicates that free level 1 nanostructures are

responsible for the formation of L2 bodies as long as their local concentration is high enough so as to

trigger the process (e.g. their spatial distribution is constrained to a reduced region). Formation of L2

from level 1 nanostructures and the coalescence of L1i into L1a are also demonstrated by molecular model-

ling (Figures 4E, 5B, and S11), where p-p and vdW interactions through portion a in 1 play a leading role

(agonistic signalling). Either activated or inhibited level 1 structures carry out an activation task on

morphogen A, according to numerical simulation results in Figure 6E (for L1i) and Figure S16A (for L1a);

in these results, the in-phase periodic oscillations in both concentrations show that a locally increased

amount of level 1 sharply triggers a higher concentration of level 2. The overall process is synergistically

connected to the opposite direction feedback, where A activates level 1 (k8).

k10. Negative feedback from morphogen B to morphogen A through a two-reaction route: i1/i2.

For DL1 = 107 mm2 s�1, k10:–0.018305<k10 (310�4 s�1).

For DL1 = 346 mm2 s�1, k10:–0.375<k10 (310�4 s�1).

i1) BBs located at the interface of L2 particles could be accessible to sequestering by unassembled mol-

ecules (L0) to yield oligomer counterparts L1i. This process continues until remaining matter of L2 di-

mensions is consumed and only L1i are present at a local level; in the process, destruction of L2 derives

into a decreased local concentration of the same; the generated L1i particles participate in a further

step i2.

i2) the local concentration conditions and low degree of oligomerisation of the previously formed L1i struc-

tures facilitate their destabilisation and further splitting into free molecules which are released to the sur-

roundings. In the process, L0 molecules consumed during the first step are replenished to the diffusible

pool, whereas local concentration of L2 is depleted as a result of its interaction with free molecules.

Examples: As in the mechanism for k2 at the 2-node RD network scenario, the size reduction trend in L2 to

values close to L1 observed for progressive dilutions in Figure 4A, in addition to the bursting process

observed in Figure 4C and the Gaussian trend in Figure 4D indicate that A is depleted via release of

L1i particles to the environment. In this regard, since L1i structures possess a low degree of oligomerisa-

tion, their transient stabilisation is mainly led by H-bonding through portion b in 1, according to molec-

ular modelling (Figures 5A and S11 and the analysis of the interactions in acetone), therefore, it is ex-

pected that the sequestering process might be also driven by this non-covalent interaction

(antagonistic signalling). However, as long as the produced L1i particles remain at low local concentra-

tions, the trade-off occurring in solvation and aggregation energetics (Figure 5C) compromises their sta-

bility, thus displacing equilibria to their splitting product L0. Similarly, the analysis on the solvation vs. ag-

gregation energy curves in Figure 5C also shows that the increase in aggregation energy for the L2/L1i
range (to less exothermic values) is not as steep as the drop in solvation energy at the same range and

direction (to more exothermic values). This suggests that upon local dilution regimes, highly solvated/

more concentrated free molecules could participate with a higher probability and more actively in inter-

facial sequestering to yield smaller oligomers which gain on solvation energy component at the expense

of; parent L2 particles. As shown in Figures 6E and S16A, the in-phase periodic drop in concentration of A

and B where [A]local<<[B]local suggests that the higher availability of B triggers an interaction process be-

tween both morphogens which also drives the inhibition of A. In addition, the smaller size of the six L1

structures in Figure 4C (which appear isolated from the rest of particles), suggests that these bodies are

potentially unstable if remain distant from other L1 or L2 bodies (i.e. if the local concentration of L1 or L2

is relatively lower); this situation can be explained by the in-phase drop in concentration of all the diffus-

ible components A, B and L1 in Figures 6E and S16A, where the ratio [B]local>[L1]local>[A]local could
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indicate that free molecules produced during the splitting of L1i, avoid a scenario with a more marked

depletion of B.

Solvation energies on supramolecular clusters

We were able to estimate semi-quantitative solvation energies with respect to the SMD method by

leveraging on the Dreiding force field for geometry optimisations and energy calculations. ESP-mapped

atomic charges obtained by DFT with the PBE(DTS)/TNP with COSMO solvation proved to yield the best

accuracy and were used throughout all our studies. We found that the molecular silverware procedure

(MSP) provides excellent results when combined with the selected forcefield and coordination numbers

are adequately converged.

The method for calculation of solvation energies is performed as follows:

1) Generated optimised geometries and atomic charges for both the solute and the solvent, labelled as

‘screen’ and ‘base’ in the procedure, respectively.

2) The number of iterations (Ni) in theMSP step depends on the relative sizes of the Base and the Screen

andmust be determined for each generation. As an example, we show the sweep fromNi= 30 toNi=

350. We emphasise that extensive tests proved that three runs at Ni = 30, 50 and 150 represent an

adequate compromise, saving computation time while providing coordination numbers within 0.2

units from more exhaustive sampling tests. As seen in Table S1 and Figure S21, the coordination

number (CN) at infinite Ni is obtained by simple extrapolation. In that example, the extrapolated

CN = 22.5.

3) Three mixing runs must be performed with rigorous sampling. We propose Ni = 30, with 106 energy

samples and an energy bin width of 0.02 kcal/mol with the selected FF. These parameters were

adequate for the entire set of particles studied but must be critically selected based on the deviation

of individual results from the average. This step yields the average energy value for Base + Screen

interaction, EBS.

4) Solvation energy is obtained as DEsolv = EBS 3 CN.

For generations 8, 9 and 10 (256, 512 and 1024 molecules), we leveraged on the linear relationship between

aggregate size and the weighted solvation energy as observed in Figure 5C. We thus performed a linear

extrapolation as shown in Figure S22 that afforded information about the earlier generations. Weighted

solvation energy is inversely proportional to the number of molecules per aggregate at earlier generations.

This behaviour is useful to assess the system at later generations and larger aggregate sizes.

We estimated the weighted solvation energies for generations 8, 9 and 10, represented in Figure 5C as hol-

low triangles, by applying this simple linear model. All solvation energies obtained are condensed in

Table S2, expressed in kcal/mol.

Aggregation energies on supramolecular clusters

Aggregation energies were obtained through the molecular silverware methodology. Due to the additivity

of this protocol, total aggregation energies ET
n were calculated additively for all generations (number of

molecules, n1 > 1) by application of the general Equation 7:

ET
n = EMS

n +Nn

Xn� 1

m = 1

�
1

Nm

�
EMS
m (Equation 7)

In Equation 7, n is the target generation,m are lower generations,N is the number of molecules for a given

generation and EMS is the molecular silverware energy term. Naturally, there is no aggregation energy for

generation 0, whereas for generation 1 it is simply the Base + Screen interaction energy EMS
1 . Thus, this for-

mula is useful only for higher generations. The corresponding energy values for all generations are in

Table S3.

From these values, the total and weighted aggregation energies can be derived straightforwardly and are

shown in Table S4 and Figure 5. All energies in both tables are expressed in kcal/mol.

ll
OPEN ACCESS

32 iScience 25, 104545, July 15, 2022

iScience
Article



QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of micrographic data fromOM, FFT, CLSM and HRTEM, was performed by direct inspec-

tion and manual collection of points and/or length values and/or graphical thresholds and/or maximum in-

tensity trajectories using the ImageJ tools Measure, Analyze Particles, Histogram, Distribution, and Plot

Profile, as provided within the 1.50b version; graphical thresholds in the annular spots from FFT repre-

sented the rim of the ring’s edges located at both, the internal and the external circumferences, where

the intensity values dropped to a minimum equivalent to the background baseline value; maximum inten-

sity trajectories in the annular spots from FFT typically represented the midpoint circumference located be-

tween the two graphical thresholds mentioned earlier. Statistical analysis of surface profile data from AFM

was carried out by manual collection of distances between crests from data achieved with XEI package at

the sampled trajectories. Average values reported in Figures 3G, 3I, and 4D, are arithmetic means of a set of

values in a sampling number (N); central values indicated for FFT in Figures 1B, 3D, 6F, 6G, S1F, S1G, and

S16B, are the maximum intensity trajectories in the annular spots as explained before; tolerance values in

the figures are either range limits dictated by the graphical thresholds (Figures 1B, 3D, 6F, 6G, S1F, S1G,

and S16B), standard deviation - s.d.- of a set of values in a sampling number -N- (Figures 3I and 4D), or con-

fidence intervals (CI) at the indicated degrees of freedom (n) for N = n+1, under a t-distribution scheme

(Figure 3G), as pointed out in each panel. CI values are reported for p < 0.02, as described accordingly.

Gaussian curve approximations in Figures 3I and 4D represent the normal distribution fit for the shown his-

tograms at the found arithmetic mean values, s.d. andN, as indicated in the respective figure panels. Size of

N was chosen by visual inspection and represented the total number of collectable elements in the sample

(Figures 3G, 3I, and 4D) or the number of collectable points that rendered a constant arithmetic mean value

and simultaneously met the respective graphical criteria mentioned earlier (Figure 3D).
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