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Abstract

Although current antiretroviral therapies (ART) are successful in controlling HIV-1 infection,

a stable viral reservoir reactivates when ART is discontinued. Consequently, there is a

major research effort to develop approaches to disrupt the latent viral reservoir and enhance

the immune system’s ability to clear HIV-1. A number of small molecules, termed latency

reversal agents (LRAs), have been identified which can reactivate latent HIV-1 in cell lines

and patients’ cells ex vivo. However, clinical trials have suggested that combinations of

LRAs will be required to efficiently reactivate HIV-1 in vivo, especially LRAs that act syner-

gistically by functioning through distinct pathways. To identify novel LRAs, we used an

image-based assay to screen a natural compound library for the ability to induce a low level

of aggregation of resting primary CD4+ T cells from healthy donors. We identified celastrol

as a novel LRA. Celastrol functions synergistically with other classes of LRA to reactivate

latent HIV-1 in a Jurkat cell line, suggesting a novel mechanism in its LRA activity. Addition-

ally, celastrol does not appear to activate resting CD4+ T cells at levels at which it can reacti-

vate latent HIV-1. Celastrol appears to represent a novel class of LRAs and it therefore can

serve as a lead compound for LRA development.

Introduction

Although current antiretroviral therapies (ART) are successful in suppressing HIV-1 replica-

tion in most individuals, cessation of ART results in reemergence of HIV-1 from a latent viral

reservoir, thereby requiring a lifetime ART regime [1,2]. The best described viral reservoir is

that of long-lived memory CD4+ T lymphocytes which contain a transcriptionally silent but

replication-competent virus integrated in the human genome [3]. Infected macrophages may

also serve as a reservoir of latent virus, although the significance of the macrophage reservoir is

uncertain [4–6]. Despite its effectiveness, multiple toxicities are associated with ART, especially

in the aging population. Long-term ART is associated with osteoporosis, renal and metabolic

diseases, and HIV-associated neurocognitive deficits [7–9]. Because of these issues with ART,
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there is a major effort to develop approaches to disrupt the latent viral reservoir and allow the

immune system to clear HIV-1. It is hoped that this strategy, termed “shock and kill,” can lead

to a functional cure of infection. The “shock” involves the development of strategies to selec-

tively stimulate cells that harbor a latent virus so that RNA Polymerase II (RNAP II) is acti-

vated to transcribe the integrated virus, leading to the production of viral antigens that can be

recognized by the immune system. The “kill” involves the immune system’s ability to recognize

and clear cells that express viral antigens.

A number of small molecules have been identified that function as latency reversal agents

(LRAs) in CD4+ T cell lines and patient cells ex vivo [reviewed in [10–12]]. One class of LRAs

are PKC agonists which function through activation of NF-κB and the subsequent stimulation

of RNAP II transcription via the NF-κB sites in the viral long terminal repeat (LTR) sequences.

These PKC agonists include prostratin, bryostatin and ingenol derivatives [13–16]. Another

class of LRAs are histone deacetylase inhibitors (HDACis) which act by blocking deacetylation

of histones, thereby relieving a repressive chromatin state for the viral LTR. HDACi’s shown

to reactivate latent HIV-1 include vorinostat, panobinostat, and romidepsin [17–19]. JQ1 is an

additional LRA that functions by binding to BRD4 and thereby activating CDK9/Cyclin T1 in

the P-TEFb complex so that the kinase can be targeted by the HIV-1 Tat protein to activate

RNAP II elongation [20–22]. The PKC agonist prostratin and the HDACi’s vorinostat and

panobinostat also have activities that stimulate CDK9/Cyclin T1 [23,24].

Clinical trials, which have evaluated the ability of a single LRA to reactivate latent HIV-1 in

patients, have been disappointing, as no single LRA has been able to reduce the size of the

latent reservoir in vivo [reviewed in [10,12]]. These failures have led to the notion that combi-

nations of LRAs are required to efficiently reactivate HIV-1 in vivo, especially LRAs that func-

tion through distinct pathways which synergize to activate latent virus [10,25,26]. Therefore,

the identification of LRAs that function through novel pathways is an important research goal.

An important property of any LRA is the absence of significant T cell activation, an activity

that may induce systemic inflammation.

In an effort to identify new LRAs, we used an image-based assay for compounds that mini-

mally activate primary CD4+ T cells isolated from healthy donors. We used this assay to screen

a natural compound library and identified celastrol, a pentacyclic terpenoid, as a novel LRA.

Celastrol functions synergistically with bryostatin, HDACi’s, and JQ1 in latency reactivation,

suggesting a novel mechanism in its LRA activity. Additionally, celastrol does not appear to

activate resting CD4+ T cells and it therefore can serve as a lead compound for LRA

development.

Methods

Cell lines and HIV-1 infections

The Jurkat cell line 2D10 [27] was obtained from Dr. Jonathan Karn and the Jurkat 1G5 [28]

was obtained from the NIH AIDS Reagent Program (cat. no. 1819). Cells were cultured in

RPMI supplemented with 10% fetal bovine serum (FBS). Jurkat cells were infected with either

HIV-1 NL4-3 or HIV-1 NL4-3ΔEnv/Vpr (deleted for env and vpr genes). Celastrol (0.4 μM) or

DMSO control were added at the time of infection. At 17 hours post-infection, cultures were

washed with fresh medium and incubated with celastrol (0.4 μM) or DMSO for 24 hours; cell

extracts were then prepared for immunoblot analyses.

Antibodies

Antisera used are: CD25 (catalog no. 12-0259-42, eBioscience), CD69 (catalog no. 11-0699-41,

eBioscience), PARP (Catalog no. 95425, Cell Signaling), Cyclin T1 (catalog no. sc-10750, Santa
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Cruz Biotechnology), β-actin (catalog no. sa135600204; Sigma), phosphoNF-κB p65, (Ser536,

catalog no. 3033S, Cell Signaling), pCDK9 (Thre186, catalog no. 2549, Cell Signaling), Hsp90

(catalog. no. sc-69703, Santa Cruz Biotechnology), NF-κB p65 (catalog. no. sc-109, Santa Cruz,

Biotechnology), CDK9 (catalog no. sc-484, Santa Cruz Biotechnology).

Chemicals

Chemicals used are JQ1 (synthesized by Dr. Damian Young, Baylor College of Medicine), Vor-

inostat (SAHA; Selleckchem, catalog no. MK0683)), Romidepsin (FK228; Selleckchem, catalog

no. S3020), Bryostatin (Sigma, catalog no. 83314), Z-VAD-FMK (Selleckchem, catalog no.

S7023).

CD4 T cell isolation

Resting CD4+ T cells were isolated from healthy donors (Gulf Coast Regional Blood Center,

Houston, TX) using the RosetteSep human CD4+T cell enrichment cocktail [STEMCELL tech-

nologies, catalogue number (cat. no.) 15062]; activated cells were removed using CD30

Microbeads (Miltenyi Biotec, cat. no. 130-051-401).

Natural compound library

The natural compound library was purchased from Selleckchem (catalog no. L1400) and con-

tained 173 natural products.

Image-based screen

6 x 106 CD4+/CD30- cells purified from healthy blood donors were resuspended in 20 ml

RPMI 1640 medium with 10% FBS and IL-2 at a final concentration of 30 U/ml. Cells were

seeded onto duplicate 384-well glass bottom culture plates (Greiner Bio-One, catalog. no.

789836) in which the natural compound library had been distributed in duplicate at a final

concentration of 10 μM per compound. DMSO was distributed in duplicate wells in each plate

used as a negative control; PMA (Sigma, catalog. no. 781856) plus ionomycin (Sigma, catalog.

no. I3909) were used together as positive control in duplicate wells at final concentrations of

10 ng/ml and 1 μM, respectively. The 384-well plates were incubated at 37˚C for two days. Fol-

lowing the incubation, the culture plates were spun at 1,000 rpm for one minute before fixa-

tion. Cells were fixed for 30 minutes at room temperature by adding an 8% paraformaldehyde

(EMS) solution in PBS directly to each well to prevent cell detachment. After a brief PBS rinse,

cells were incubated with a DAPI solution (1μg/ml) for 10 minutes followed by a final PBS

wash.

Image acquisition was performed on an IC200 high-throughput microscope (Vala Sciences)

using a Nikon PlanApo 10X/0.45 objective. DAPI signal was acquired in 6 image fields per

well, and a cell aggregation index was quantified for each well using a custom-made MATLAB

script. The aggregation index was defined for each well as the number of DAPI positive pixels

from cell aggregates divided by the total number of DAPI positive pixels. The DAPI signal was

first segmented after local background subtraction by intensity thresholding using the Otsu

method, and the total number of DAPI positive pixels was counted. The resulting objects were

then further filtered by size, and objects smaller than 20 pixels (corresponding to the size of 2

to 3 T cells) and larger than 5,000 pixels (most likely autofluorescent non-specific particles)

were removed, and the number of DAPI positive pixels from the resulting cell aggregates was

determined for the well and divided to the total number of DAPI pixels to obtain the aggrega-

tion index. Compounds with an aggregation index greater than 0.08 in at least 3 of the 4
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replicates were selected as potential hits, and cell aggregation was manually confirmed by

visual inspection of the images.

Results

Identification of celastrol as an LRA in an image-based screen

Activation of resting CD4+T cells results in cellular aggregation through induction of surface

molecules such as LFA1 and ICAM1 [29]. We reasoned that compounds with LRA activity

might minimally activate resting CD4+ T cells and this could result in cellular aggregation that

could be detected by automated microscopy. We therefore used aggregation of primary CD4+

T cells as the readout in an image-based screen of a natural compound library consisting of

173 compounds. To account for potential confounding effects of donor variability, we used

resting CD4+ cells from two healthy blood donors in the screen. Cells were incubated in

384-well dishes for 24 hours in the presence of 10 μM of natural compounds, with DMSO as a

solvent control and PMA + ionomycin as a positive control. After the 24-hour incubation,

cells were cytospun onto the wells, fixed, and analyzed by automated microscopy (Fig 1A).

Quantitation of aggregation indicated that the natural compound celastrol induced a limited

amount of aggregation of CD4+ T cells from both donors (Fig 1B). Celastrol is a pentacyclic

terpenoid isolated from the plant Tripterygium wilfordii (Fig 1C). A number of biological activ-

ities have been associated with celastrol, including anti-oxidant, anti-tumor, anti-inflamma-

tory, and anti-obesity activities [30–33]. Additionally, celastrol has been reported to reduce

HIV-1 Tat induced inflammation in astrocytes [34] and inhibit Tat stimulation of RNAP II

transcription of the HIV-1 genome [35].

Fig 1. Image-based screen of natural compound library. A. Images of resting CD4+ T cells treated with PMA + ionomycin (positive control), DMSO

(negative control), and celastrol (10 μM). B. Scatter plot showing the aggregation index of each compound duplicates in the 2 replicate plates. Positive

control replicates are in purple, DMSO negative control replicates in black, inactive compounds in grey and potential hits, namely rutsecarpine,

celastrol and oridonin in green, red and blue, respectively. C. Structure of celastrol. D. Jurkat 2D10 cells were treated with the indicated concentrations

of celastrol for 24 hours. Reactivation of HIV-1 was quantified by flow cytometry analysis of eGFP expression (left panel); cell viability was quantified by

flow cytometry using Vi-Cell (Beckman Coulter). The data presented in Fig 1D are representative of more than three biological replicate experiments.

https://doi.org/10.1371/journal.pone.0244771.g001
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To determine if celastrol can function as an LRA, the Jurkat 2D10 CD4+ T cell line was

treated with a range of celastrol concentrations. This cell line contains a latent HIV-1 virus

that expresses an eGFP reporter protein that allows quantitation of viral reactivation. We

observed that 0.4 μM and 0.8 μM celastrol reactivated virus in approximately 7% and 10% of

cells, (Fig 1D). Cytotoxicity was evident at 0.8 μM celastrol and resulted in loss of viability in

50% of cells. These data indicate that our image-based screen did identify a natural compound,

celastrol, with HIV-1 latency reactivation activity in the Jurkat 2D10 cell line.

Celastrol synergizes with other LRAs

The known properties of celastrol do not provide reliable clues as to what pathway is involved

in its LRA activity. We therefore investigated whether celastrol could function additively or

synergistically with four well-characterized LRAs: JQ1, vorinostat, romidepsin, and bryostatin.

JQ1 activates P-TEFb, vorinostat and romidepsin are HDACi’s, and bryostatin is a PKC ago-

nist. An additive activity for celastrol and an LRA would indicate that the two compounds act

through the same pathway, while a synergistic activity would indicate that the compounds act

through distinct pathways.

We treated 2D10 cells with 400 nM of celastrol and sub-optimal concentrations of the four

LRAs and quantified viral reactivation at 24 hours post-treatment (Fig 2). Although 400 nM

celastrol had limited reactivation activity by itself, it enhanced the reactivation activity of each

of the four other LRAs. To determine whether celastrol displayed synergistic activity with the

LRAs, we calculated the Bliss synergy scores [36] for 0.4 μM celastrol plus JQ1 (0.2 μM), Bryos-

tatin (0.2 ng/ml), Vorinostat (0.4 μM), or Romidepsin (20 nM); these Bliss score were 13.2, 8.4,

19.9, and 13.8, respectively, indicating synergism between celastrol and each of these LRAs.

Fig 2. Reactivation of latent HIV-1 with combinations of celastrol and well-characterized LRAs. Jurkat 2D10 cells were treated with 0.4 μM celastrol plus

0.2 μM JQ1, 400 nM vorinostat, 20 nM romidepsin, or 0.2 ng/ml bryostatin. Reactivation of latent HIV-1 was quantified by flow cytometry analysis of eGFP

expression at 24 hours post-treatment. Cell viability was quantified by Vi-Cell (Beckman Coulter). Bliss synergy scores for 0.4μM celastrol plus JQ1 (0.2 μM),

Bryostatin (0.2 ng/ml), Vorinostat (0.4 μM), or Romidepsin (20 nM) were 13.2, 8.4, 19.9, and 13.8, respectively. The data presented in Fig 2 are representative

of more than three biological replicate experiments.

https://doi.org/10.1371/journal.pone.0244771.g002
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These data suggest that the mechanisms of HIV-1 latency reactivation by celastrol is distinct

from that of JQ1 vorinostat, romidepsin and bryostatin. Celastrol may therefore represent a

novel class of LRA.

Celastrol reactivation of latent HIV-1 is Tat independent

We utilized the 1G5 Jurkat cell line to determine if the HIV-1 Tat protein is required for the

LRA activity of celastrol. This cell line has an integrated HIV-1 LTR that drives expression of

firefly Luciferase and does not contain the Tat protein [28]. IG5 cells were treated with either

DMSO (solvent control) or 400 nM celastrol plus a range of concentrations of vorinostat,

romidepsin, JQ1, or bryostatin. Luciferase expression was quantified at 24 hours post-treat-

ment (Fig 3). Celastrol alone induced only modest levels of Luciferase expression, but it dis-

played a synergistic effect when used in combination of with each of the LRAs. The data

presented in Fig 3 indicate that the LRA activity of celastrol does not require Tat. Additionally,

these data further support the conclusion that celastrol may represent a novel class of LRA as it

displays synergistic activity with each of these well-characterized LRAs.

Celastrol does not activate resting CD4+ T cells

Celastrol was identified in our image-based screen as a compound that caused limited aggrega-

tion of resting CD4+ T cells (Fig 1). We examined the activation markers CD25 and CD69 to

determine whether celastrol induced significant amounts of T cell activation. Resting CD4+ T

cells isolated from three donors were treated with 400 nM celastrol, 200 nM JQ1, 400 nM vori-

nostat, 20 nM romidepsin, and 0.2 ng/ml bryostatin. We evaluated 400 nM celastrol as this

concentration has little cytotoxicity and it synergizes with other classes of LRAs. CD25 and

CD69 levels were examined by flow cytometry at 24 hours post-treatment (Fig 4). Celastrol did

Fig 3. Reactivation of latent HIV-1 by combination of celastrol and LRAs in Jurkat 1G5 T cell line. 1G5 cells were

treated with DMSO or 400 nM celastrol plus the indicated concentrations of vorinostat, romidepsin, JQ1, or bryostatin.

Cell extracts were prepared at 24 hours post-treatment and Luciferase expression was normalized to amount of protein

in cell extracts. Data are from three biological replicate experiments.

https://doi.org/10.1371/journal.pone.0244771.g003
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not induce CD25 or CD69 in resting cells from the three donors. CD25 was induced by bryos-

tatin, while CD69 was induced by romidepsin and bryostatin. These data suggest that celastrol

has limited effects on T cell activation, despite its identification in our image-based screen by

induction of resting CD4+ T cell aggregation. However, we used 10 μM celastrol in our screen,

a concentration that may have effects on cellular aggregation.

Celastrol LRA activity does not require apoptosis

Celastrol has been reported to induce apoptosis in several transformed cell lines [37]. We used

cleavage of PARP1 as an assay to determine if celastrol induced apoptosis in 2D10 and primary

CD4+ T cells (Fig 5). Concentrations of celastrol up to 1 μM had little effect on PARP1 cleav-

age, while 2 μM induced cleavage of the majority of PARP1 in Jurkat 2D10 cells (Fig 5A). In

primary CD4+ T cells, 50 nM celastrol concentrations induced low levels of PARP1 cleavage

and 800 nM celastrol caused total PARP1 cleavage in donor 63 (Fig 5B). Purified CD4+ cells

from three additional donors were treated with 400 nm celastrol or 200 nm JQ1 and PARP1

cleavage was examined at 24 hours post-treatment (Fig 5C). Modest PARP1 cleavage was

observed in cells from donor 72, while only low levels were observed in cells from the other

two donors. These data indicate that celastrol induces apoptosis in both Jurkat and primary

CD4+ T cells, albeit at relatively high concentrations.

Interestingly, Cyclin T1, a component of the Tat co-factor P-TEFb, was strongly down-reg-

ulated at 1 μM and 2 μM of celastrol in Jurkat 2D10 cells (Fig 5A). Cyclin T1 contains a PEST

sequence at its carboxyl terminus which may be targeted for proteasome-mediated proteolysis

[38]. Celastrol has also been shown to inhibit NF-κB activation through inhibition of IκB

Fig 4. Celastrol does not activate resting CD4+ T cells. Resting CD4+ T cells were isolated from three healthy donors

and treated with 400 nM celastrol, 200 nM JQ1, 400 nM vorinostat, 20 nM romidepsin, or 0.2 ng/ml bryostatin for 24

hours. Expression of CD25 and CD69 was quantified by flow cytometry.

https://doi.org/10.1371/journal.pone.0244771.g004
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kinase [39,40]. We observed that levels as low as 0.05 μM celastrol did inhibit NF-κB as indi-

cated by loss of p65 Ser536 phosphorylation (Fig 5B and 5C).

Induction of apoptosis has been reported to reactivate latent HIV-1 [37]. To determine if

the LRA activity of celastrol involves induction of apoptosis, we used Z-VAD-FMK to inhibit

apoptosis in celastrol-treated Jurkat 2D10 cells. Rather than inhibiting latency reactivation,

Z-VAD-ZMK increased reactivation by celastrol, suggesting that apoptosis induced by celas-

trol impairs latency reactivation (Fig 6). We conclude that the LRA activity of celastrol does

not require induction of apoptosis.

Effects of celastrol on HIV-1 infected cells

To examine effects of celastrol on HIV-1 replication, we infected celastrol-treated (0.4 μM) or

DMSO-treated Jurkat CD4 T cells with either HIV-1 wild type NL4-3 virus or the NL4-3 virus

deleted for the env and vpr genes. Cell extracts were prepared at two days post-infection and

viral and cellular proteins were analyzed in immunoblots. As expected, celastrol enhanced

apoptosis as indicated by increased PARP1 cleavage. Cyclin T1 and CDK9 levels were reduced

slightly in celastrol-treated cells relative to β-actin. Despite this reduction in cellular factors

required by the viral Tat protein to activate RNA Polymerase II elongation of the viral genome,

Fig 6. Inhibition of celastrol-induced apoptosis increases reactivation of latent HIV-1. Jurkat 2D10 cells were

treated with DMSO or the indicated concentration of celastrol and at 24 hours of treatment cell viability was quantified

by Vi-Cell (Beckman Coulter) and eGFP expression was quantified by flow cytometry.

https://doi.org/10.1371/journal.pone.0244771.g006

Fig 5. Induction of apoptosis and inhibition of NF-κB by celastrol. A. Jurkat 2D10 cells were treated with DMSO or the indicated concentration of

celastrol; mock-treated cells did not receive any treatment. Cell extracts were prepared at 24 hours post-treatment and the indicated proteins were

analyzed in an immunoblot. B. Resting CD4+ T cells from two healthy donors were treated with DMSO or the indicated concentration of celastrol. Cell

extracts were prepared at 24 hours post-treatment and the indicated proteins were examined in immunoblots. C. Resting CD4+ T cells from three healthy

donors were treated with DMSO, 400 nm celastrol or 200 nM JQ1. Cell extracts were prepared at 24 hours post-treatment and the indicated proteins

were examined in immunoblots.

https://doi.org/10.1371/journal.pone.0244771.g005
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p24 levels were higher in celastrol-treated cells than the DMSO control cells. This is consistent

with the finding shown in Fig 3 that celastrol activates viral gene expression by a Tat-indepen-

dent mechanism. The data presented in Fig 7 demonstrate that celastrol stimulates viral gene

expression during productive infections. It is notable in Fig 7 that celastrol appears to inhibit

cleavage of gp160 (lanes with NL4-3 virus) by mechanisms that remain to be determined.

Discussion

Our image-based screen of a natural compound library identified celastrol as a novel LRA

when assayed in the Jurkat 2D10 cell line. Our screen utilized aggregation of resting primary

Fig 7. HIV-1 infection of celastrol-treated cells. Jurkat cells were treated with 0.4 μM celastrol or DMSO at the time

of infection with either wild type HIV-1 NL4-3 or NL4-3ΔEnv/Vpr (deleted for env and vpr genes). At 17 hours post-

infection, cultures were washed with fresh medium and further incubated with celastrol (0.4 μM) or DMSO for 24

hours; cell extracts were then prepared and the indicated proteins were analyzed in an immunoblot. The digital protein

images were quantified relative to β-actin by Photoshop. A complete biological replicate experiment as that shown was

performed with similar results.

https://doi.org/10.1371/journal.pone.0244771.g007
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CD4+ T cells as the assay to screen compounds used at final concentrations of 10 μM (Fig 1).

However, in our characterization of celastrol’s LRA activity, we observed that a concentration

of 400 nM celastrol displays LRA activity without induction of the T cell activation markers

CD69 and CD25 (Fig 4). At 400 nm concentrations, celastrol also has synergistic reactivation

activity with a P-TEFb activator (JQ1), two HDACi’s (vorinostat and romidepsin), and a PKC

agonist (bryostatin), suggesting that celastrol LRA activity functions through a pathway dis-

tinct from these three LRAs (Fig 2). Although induction of apoptosis can reactivate latent

HIV-1 [37], celastrol LRA activity is unlikely to involve apoptosis as the low concentrations of

celastrol that reactivate latent HIV-1 do not induce apoptosis as measured by PARP1 cleavage

(Figs 2, 3 and 5). Additionally, an inhibitor of apoptosis enhances celastrol LRA activity (Fig

6), further suggesting that induction of apoptosis is not involved in this LRA activity. Celastrol

LRA activity is Tat-independent as it can activate expression from the HIV-1 LTR in the

absence of Tat, as well as synergize with other classes of LRAs in the absence of Tat (Fig 3).

We investigated the LRA activity of celastrol in the CCL19 primary CD4+ T cell model of

HIV-1 latency [41]. However, we observed that under the experimental conditions, celastrol

displayed cytotoxicity that prevented conclusions about its LRA activity. In the CCL19 proto-

col, cells are cultured for five days, unlike the T cell activation experiment shown in Fig 4 in

which the primary CD4+ T cells were cultured for 24 hours. The CCL19 protocol involves

HIV-1 infection and culturing cells in the presence of CCL19. Either the extended time in cul-

ture or the HIV-1 infection conditions in the CCL19 model may sensitize primary CD4+ T

cells to cytotoxic effects of celastrol. Additionally, celastrol has been reported to inhibit HIV-1

Tat activation of viral gene expression directed by the viral LTR in the U937 cell line [35], a

finding that is in contrast to the data presented here. It is possible that different experimental

conditions or the use of U937 cells in the previous study may account for these differences. In

general agreement with our study is the previous report that celastrol suppressed Tat activation

of pro-inflammatory genes through inhibition of NF-κB [34].

Celastrol LRA activity is clearly Tat-independent, as it can activate viral gene expression in

the 1G5 cell line that does not express Tat. Interestingly, high levels of celastrol induced the

degradation of Cyclin T1 in Jurkat 2D10 cells (Fig 5A). Cyclin T1 contains a PEST sequence at

its carboxyl terminus and this sequence may be targeted for proteasome-mediated proteolysis

by high levels of celastrol [38]. Induction of NF-κB by celastrol is unlikely to be involved in

LRA activity, as celastrol has been reported to inhibit NF-κB [32]. In agreement with this, we

observed that celastrol reduces the phosphorylation level of the 65 kDa subunit of NF-κB in

Jurkat 2D10 cells (Fig 5). In summary, our image-based screen has identified celastrol as a nat-

ural compound that appears to be a new class of LRA and may serve as a lead compound for

LRA development. The mechanisms involved in celastrol LRA activity remain to be

determined.
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