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Abstract: Alzheimer’s disease (AD) is a progressive neurological disorder that affects 50 million
people. Despite this, only two classes of medication have been approved by the FDA. Therefore,
we have planned to develop therapeutics by multitarget approach. We have explored the library of
2029 natural product-like compounds for their multi-targeting potential against AD by inhibiting
AChE, BChE (cholinergic pathway) MAO-A, and MOA-B (oxidative stress pathway) through in silico
high-throughput screening and molecular dynamics simulation. Based on the binding energy of these
target enzymes, approximately 189 compounds exhibited a score of less than −10 kcal/mol against all
targets. However, none of the control inhibitors exhibited a binding affinity of less than −10 kcal/mol.
Among these, the top 10 hits of compounds against all four targets were selected for ADME-T analysis.
As a result, only F0850-4777 exhibited an acceptable range of physicochemical properties, drug-
likeness, pharmacokinetics, and suitability for BBB permeation with high GI-A and non-toxic effects.
The molecular dynamics study confirmed that F0850-4777 remained inside the binding cavity of
targets in a stable conformation throughout the simulation and Prime-MM/GBSA study revealed that
van der Waals’ energy (∆GvdW) and non-polar solvation or lipophilic energy (∆GSol_Lipo) contribute
favorably towards the formation of a stable protein–ligand complex. Thus, F0850-4777 could be a
potential candidate against multiple targets of two pathophysiological pathways of AD and opens
the doors for further confirmation through in vitro and in vivo systems.

Keywords: Alzheimer’s disease; multitarget; molecular dynamics simulations; natural-like com-
pounds; virtual screening

1. Introduction

Neurological disorders including Alzheimer’s disease (AD) have a significant nega-
tive impact on the mental, psychological, physical, and economic health of patients and
their caregivers [1,2]. Almost 50 million people are affected globally from Alzheimer and
other dementias [2]. AD is the second leading cause of death among high-income coun-
tries, and the seventh leading cause of death worldwide, ranking sixth in Saudi Arabia
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(currently over 130,000 cases) [3,4]. Patients with AD exhibit memory loss, agitation, dys-
phoria, apathy, aberrant motor behavior, problems with speaking or writing, and cognitive
impairments [1].

Alzheimer’s disease has a very intricate etiology, and several reports have hypoth-
esized that the four major pathophysiological pathways (oxidative stress, amyloid-beta
pathway, tau pathway, and cholinergic pathway) are responsible for the progression of
AD [5–11]. These pathways include the formation of senile plaques through amyloid-beta
(Aβ) plaque deposition [8], the agglomeration of neurofibrillary tangles after tau neu-
rofibrillary degeneration [12], the disruption of cholinergic activity [11], and oxidative
stress [10,13].

Oxidative stress is promoted by an increased production of hydrogen peroxide
through the catalytic action of monoamine oxidases (MAO-A and MAO-B) on the pri-
mary amine deamination of major neurotransmitters [13], which results in tissue damage,
especially in brain cell and disrupts the blood–brain barrier, which could lead to AD [10]. It
has also been well established that during AD, there is deterioration of cholinergic neuron-
rich regions, resulting in the decline of acetylcholine (ACh) levels, which are believed to
be associated with memory loss, agitation, and apathy [11,14]. Moreover, cholinesterase
enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), have been
found to further decrease the concentration of acetylcholine (ACh) by hydrolyzing it [8,9].

Until now, the US Food and Drug Administration (FDA) has approved two classes
of medications to treat AD: (1) cholinesterase inhibitors (donepezil, galantamine, and
rivastigmine) and (2) an NDMA receptor antagonist (memantine). However, although
these drugs relieve some symptoms and have beneficial effects on cognition and function,
they do not treat neuropsychiatric symptoms and do not slowdown or stop the progression
of the disease. Moreover, these medications have several side effects including nausea,
vomiting, loss of appetite, headache, constipation, confusion, and dizziness [15,16].

At present, there is a lack of disease-modifying medications or a complete cure for AD.
The enzymes that promote the pathways responsible for the progression of AD include
AChE, BChE, MAO-A, and MOA-B, which would need to be targeted individually or in
combination [5,6,17–21]. Advances in computing have recently allowed for the develop-
ment of various cheminformatics approaches for the faster screening and optimization of
bioactive compounds through enzyme inhibition [22–27].

Since nature has an endless resource of bioactive compounds, it would be econom-
ical and safe to obtain bioactive moieties to produce novel multitarget agents against
Alzheimer’s disease [18,28]. Due to the popularity and therapeutic potential of natural
products and their derivatives, Life Chemicals Inc. have recently developed proprietary of
synthetic compounds, namely, natural product-like compounds, based on cheminformatics
and substructure searches (www.lifechemicals.com). However, a “one disease, one target,
one drug” strategy is limited by its inability to completely cure complex diseases, such as
neurodegenerative diseases or mood disorders [29,30]. These limitations have driven us
to explore the development of therapeutics using multiple targeted approaches aimed at
several different pathological cascades of AD simultaneously.

In the present study, we explored a library of natural product-like compounds for
their multi-targeting (AChE, BChE, MAO-A, MOA-B) potential against AD through in
silico high-throughput screening and ADME-T analysis. Furthermore, the validation of
the best hit via molecular dynamics simulation was also conducted. To the best of our
knowledge, this study is the first to explore this library of natural product-like compounds
for multi-targeting against AD.

2. Results and Discussion
2.1. Virtual Screening Analysis

Although the process of drug discovery is time-consuming and expensive, new drugs
are needed to fulfill unmet clinical needs [31]. The number of drug or lead-like molecules
available in different databases is estimated to be as high as 1 × 1024. Moreover, the
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structures of potential drug target molecules are increasingly being added to the Protein
Data Bank on a regular basis. Thus, to deal with such a large number of molecules and to
assist in the drug discovery process, computer-aided drug discovery techniques, such as in
silico virtual screening, play a significant role owing to their faster speed and lower cost
compared to in vitro high-throughput screening [32]. In the present study, we employed in
silico virtual screening, molecular docking, and molecular dynamics simulation to identify
a novel inhibitor against multiple targets of Alzheimer’s disease such as AChE, BChE,
MAO-A, and MAO-B.

All natural-like compounds in the library and three control inhibitors (Tacrine, Harmine,
and Safinamide) against the target proteins (AChE, BChE, MOA-A, and MOA-B) were
subjected to docking analysis, generating 10 binding combinations. Based on the bind-
ing energy (∆G), 189 out of 2029 compounds exhibited binding energy score of −10 to
−12.9 kcal/mol, −10 to −12.6 kcal/mol, and −10 to −13.6 kcal/mol against AChE, BChE,
and monoaminoxidases, respectively. The control inhibitors, such as Tacrine, exhibited
a binding affinity of −8.5 kcal/mol and −8.4 kcal/mol against AChE and BChE, respec-
tively. Harmine got binding affinity of −8.7 kcal/mol for MOA-A and Safinamide showed
−9.5 kcal/mol of binding affinity against MOA-B. Among these 189 compounds, the top
10 hits of compounds against all four targets were selected (Table 1) for further analysis.

Table 1. Molecular docking scores of best hit natural product-like compounds against AChE, BChE,
MAO-A and MAO-B.

S. No. ID
Number

Targets/
Formula

Docking Energy (kcal/mol)

AChE
(1acj)

BChE
(4bds)

MAO-A
(2z5x)

MAO-B
(2v5z)

1 F0870-0001 C24H15NO6 −12.9 −12.6 −11.5 −13.6
2 F1094-0205 C26H23NO4 −12.9 −11 −10.8 −12.6
3 F3293-0320 C22H13NO7 −12.4 −11.1 −12.3 −13.4
4 F1094-0201 C26H19NO4 −12.3 −11.2 −12.3 −11.5
5 F0850-4777 C24H18O5 −12.2 −10.7 −13.6 −12.5
6 F3385-6048 C27H21NO8 −12.2 −11.1 −13.2 −12.6
7 F1094-0200 C25H17NO4 −12.1 −11.2 −11 −13.2
8 F1865-0198 C23H15NO6 −12 −10.9 −12.6 −13.3
9 F3139-1101 C24H16O4 −12 −10.3 −12.4 −13.6

10 F3139-1218 C26H18O6 −11.8 −10.4 −12.9 −13.3
11 Tacrine C13H14N2 −8.5 −8.4 ND ND
12 Harmine C13H12N2O ND ND −8.7 ND
13 Safinamide C17H19FN2O2 ND ND ND −9.5

ND: Not determined.

2.2. Prediction of Physicochemical, Pharmacokinetics Properties, Drug-Likeness, and Toxicity
Potentials

Natural product-like compounds’ physicochemical properties drug-likeness and phar-
macokinetics were evaluated using the SwissADME tool [33]. Among the top 10 hits
analyzed against targets of Alzheimer’s disease (AChE, BChE, MOAA, and MOAB), five
compounds (F0870-0001, F3293-0320, F3385-6048, F1865-0198, and F3139-1218) were found
to be unsuitable for BBB permeation. However, all of the compounds had a molecular
mass of less than 500 g/mol, showed high gastrointestinal absorption, and showed zero
violation of Lipinski’s rule. Moreover, five other compounds (F1094-0205, F1094-0201,
F0850-4777, F1094-0200, and F3139-1101) were found to be suitable for BBB permeation
including the acceptable range of other parameters (Table 2). Considering the analyzed
physicochemical properties and absorption potential, further toxicological investigation
was carried out and found that only three compounds (F0850-4777, F3293-0320, and F3385-
6048) exhibited no toxicity for all the tested parameters (Table 3). The results showed that
F0850-4777 (3-(2-methoxyphenyl)-4-oxo-4H-chromen-7-yl 4-methylbenzoate) has a higher
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affinity towards all the target proteins and found acceptable range of physicochemical prop-
erties, drug-likeness, and pharmacokinetics (Figure S1). This confirmed its amelioration
of Alzheimer’s disease and was selected for molecular docking and molecular dynamics
simulation analysis.

Table 2. Physicochemical properties, drug-likeness, and pharmacokinetics of best hit natural product-like compounds.

Pharmacokinetics Physicochemical Properties Drug-Likeness

S. No. ID Number BBB-P GI-A MW Clog-
P HBA HBD RB TPSA L-V FSP3

1 F0870-0001 NO High 413.37 3.29 7 2 3 113.77 0 0.04
2 F1094-0205 YES High 413.47 6.32 5 0 3 59.75 0 0.3
3 F3293-0320 NO High 403.34 3.25 7 0 6 119.4 0 0.04
4 F1094-0201 YES High 409.43 5.79 5 0 2 59.75 0 0.15
5 F0850-4777 YES High 386.39 4.51 5 0 5 65.74 0 0.08
6 F3385-6048 NO High 487.46 4.99 9 0 6 96.67 0 0.18
7 F1094-0200 YES High 395.4 5.48 5 0 2 59.75 0 0.12
8 F1865-0198 NO High 401.37 5.34 6 0 5 102.37 0 0.04
9 F3139-1101 YES High 368.38 5.12 4 0 5 56.51 0 0

10 F3139-1218 NO High 426.42 4.45 6 0 5 78.88 0 0.07

Molecular weight (MW), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), rotatable bonds (RB),
cLogP value (clogP), topological polar surface area (TPSA), Lipinski’s rule violation (L-V), human gastrointestinal absorption (GI-A),
blood–brain barrier permeation (BBB-P) and fraction Csp3 (FSP3).

Table 3. Toxicity potential of 10 hits compounds.

S. No. Compound Mutagenic Tumorigenic Reproductive
Effect Irritant

1 F0850-4777 None None None None
2 F0870-0001 None None Low None
3 F1094-0200 None None High None
4 F1094-0201 None None High None
5 F1094-0205 None None High None
6 F1865-0198 None None High None
7 F3139-1101 None None None High
8 F3139-1218 None None High None
9 F3293-0320 None None None None

10 F3385-6048 None None None None
Toxicity assessment has been performed by DataWarrior tool.

2.3. Molecular Docking Analysis

Based on the virtual screening against a library of natural product-like compounds,
F0850-4777 has been identified as the most potent inhibitor against multiple targets (AChE,
BChE, MAO-A, and MAO-B) of AD. Further analysis by molecular docking between F0850-
4777 and target proteins enabled us to closely examine the amino acid residues and the
nature of interactions responsible for the formation of a stable protein–inhibitor complex.
The interactions of F0850-4777 with the active site of AChE, BChE, MAO-A and MAO-B
are shown in Figures 1–4, respectively.
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(A) Position of F0850-4777 and Safinamide in MAO-B. (B) Interactions between MAO-B and Safi-
namide. (C) Superimposed image of F0850-4777 and Safinamide in MAO-B. (D) Interactions between
MAO-B and F0850-4777.
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2.3.1. Analysis of the Interaction between AChE and F0850-4777

Acetylcholinesterase (AChE) is an essential enzyme that catalyzes the hydrolysis of
acetylcholine, which is critical for memory and cognition [34]. The inhibition of AChE activ-
ity is a major therapeutic intervention in the treatment of Alzheimer’s disease (AD), which
is characterized by cholinergic deficiency. The majority of the drugs approved for the treat-
ment of AD, such as Tacrine, donepezil, and rivastigmine, are AChE inhibitors [15,16,35].
The inhibitors of AChE activity bind to its catalytic active site (CAS), characterized by
the presence of a long, narrow, and hydrophobic gorge, harboring a catalytic triad of
Ser200, Glu327, and His440 [36]. The residues Trp84 and Phe330 play a significant role
in stabilizing the transition state during the catalytic reaction. Furthermore, it has been
recently demonstrated that a secondary noncholinergic function of AChE, associated with
the peripheral anionic site (PAS), is involved in the pathogenesis of AD. PAS is formed
by aromatic amino acid residues such as Tyr70, Asp72, Tyr121, Trp279, and Tyr334 lining
the rim of the gorge [37]. Through its PAS, AChE co-localizes with Aβ peptide deposits in
patients with AD and forms a stable Aβ-AChE complex, which in turn promotes fibrilloge-
nesis and aggregation [38,39]. Thus, these observations suggest that both the CAS and PAS
of AChE can be targeted as therapeutic interventions for AD.

In the present study, molecular docking analysis between AChE and F0850-4777
revealed that the ligand was bound to the central active site cavity of AChE (Figure 1).
The binding pose of F0850-4777 at the active site of AChE was further compared with
the binding mode of a control ligand, that is, Tacrine. Both F0850-4777 and Tacrine were
found to occupy the same site located in the deep cavity of AChE (Figure 1A,B). The AChE-
Tacrine complex was stabilized by one conventional hydrogen bond between the Lig:NH
and Arg289:O atoms. In addition, five hydrophobic interactions (with Tyr121 and Trp279)
and eight van der Waals’ interactions (Tyr70, Glu278, Leu282, Phe288, Phe290, Ser291,
Phe331, and Tyr334) further stabilized the AChE-Tacrine complex (Figure 1C). Conversely,
the AChE-F0580-4777 complex was mainly stabilized by hydrophobic interactions. F0850-
4777 formed one Pi-Sigma interaction with Phe330, three Pi-Pi stacked interactions with
Trp84 and Tyr121, five Pi-Pi T-shaped interactions with Tyr121, Phe330 and Tyr334, and two
Pi-alkyl interactions with Tyr121 and Trp279 (Figure 1D and Table S1). In addition, several
amino acid residues, such as Tyr70, Gly118, Glu199, Glu278, Phe290, Phe331, His440,
Gly441, Ile439, and Tyr442 formed van der Waals’ interactions. It should be noted that
F0850-4777 interacts with many CAS residues of AChE, including Trp84, Phe330, and
His440, and PAS residues of AChE, such as Tyr121, Trp279, and Tyr334. Interestingly, the
amino acid residues of AChE commonly interact with F0850-4777 as well as Tacrine includes
Tyr121, Glu278, Trp279, Phe290, and Phe331. Moreover, the docking energy and the
corresponding binding affinity were estimated to be −8.5 kcal mol−1 and 1.72 × 106 M−1

for the AChE-Tacrine interaction, respectively, and −12.2 kcal mol−1 and 8.87 × 108 M−1

for the AChE-F0850-4777 interaction, respectively. The binding affinity of F0850-4777 for
AChE was approximately 515.7-fold higher than that of the control inhibitor Tacrine and
RMSD value between best pose of Tacrine and F0850-4777 was found to be 1.345 Å.

2.3.2. Analysis of the Interaction between BChE and F0850-4777

Butyrylcholinesterase (BChE), also known as pseudocholinesterase, is responsible for
the hydrolysis of choline esters (e.g., butyrylcholine, succinylcholine, and acetylcholine)
and non-choline esters (e.g., cocaine, acetylsalicylic acid, and heroin) [40,41]. BChE is a
multifaceted enzyme expressed in different regions of neurons; it co-regulates cholinergic
neurotransmission and is also partially involved in the development of the nervous sys-
tem [42–46]. The fact that the biochemical properties of BChE are altered in AD makes it a
potential target for use in therapeutic interventions [47–50]. Structurally and functionally,
BChE is similar to AChE, which has a catalytic serine buried in a deep gorge. The catalytic
triad of BChE is formed by Ser226, His438 and Glu352 [51]. The anionic site of BChE
contains Trp82, which interacts with the cationic quaternary nitrogen of choline [52]. In
addition, Asp70 and Tyr332 guide the positively charged substrates such as butyrylcholine
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to the active site located at the bottom of the gorge [53]. Furthermore, Leu286 and Val288,
which line the acyl pocket within the active site gorge, hold the acyl group of choline in
place during catalysis [52]. The acyl pocket of BChE is larger due to the presence of amino
acid residues with smaller site chains (Leu286 and Val288) compared to the AChE acyl
pocket lining Phe330.

Evaluating the interaction between BChE and F0850-4777 along with the control
inhibitor (Tacrine) confirmed that both ligands occupied a similar position inside the
binding cavity of BChE (Figure 2A,B). The BChE-Tacrine complex was stabilized by one
conventional hydrogen bond between Lig:NH and the active site residue His438:O atoms.
In addition, Tacrine formed four Pi-Pi stacked hydrophobic interactions with Trp82, and
two Pi-Pi stacked interactions with His438. In addition, there were two Pi-alkyl (with Trp82
and Trp430) and one alkyl hydrophobic interaction with Ala328. Furthermore, the BChE
and Tacrine complex was stabilized by six van der Waals interactions with Gly116, Glu197,
Tyr332, Gly439, Tyr440, and Met437 (Figure 2C). Conversely, the BChE and F0850-4777
complex was stabilized by one carbon hydrogen bond with the Ser287:O atom, and seven
hydrophobic interactions with Trp82, Pro285, and Tyr332 (Figure 2D and Table S2). In
addition, several amino acid residues such as Asp70, Gly116, Tyr128, Glu197, Thr284,
Ser287, Ala328, Phe329, His438, Gly439, and Tyr440 formed van der Waals’ interactions. It
is worth noting that F0850-4777 interacts with some of the important amino acid residues
of BChE such as Asp70, Trp82, and His438. Interestingly, the amino acid residues of
BChE commonly engaged in interactions with F0850-4777 and Tacrine includes Trp82,
Gly116, Glu197, Ala328, His438, Gly439, and Tyr440. Moreover, the docking energy and the
corresponding binding affinity were estimated to be −8.4 kcal mol−1 and 1.45 × 106 M−1

for the BChE-Tacrine interaction, respectively, and −10.7 kcal mol−1 and 7.04 × 107 M−1

for the BChE-F0850-4777 interaction, respectively. We found that the binding affinity of
F0850-4777 for BChE was approximately 48.6-fold higher than that of the control inhibitor
Tacrine and RMSD value between best pose of Tacrine and F0850-4777 was found to be
1.401 Å.

2.3.3. Analysis of the Interaction between Monoamine Oxidases and F0850-4777

Monoamine oxidases A and B (MAO-A and MAO-B) are located on the outer mem-
brane of mitochondria. They catalyze the oxidation of amines to imines, which are then
hydrolyzed non-enzymatically to the corresponding aldehydes or ketones [54]. MAO-A me-
tabolizes serotonin, dopamine, and norepinephrine, whereas MAO-B oxidizes dopamine,
benzylamine, and phenylethylamine [55,56]. MAO-B has also been reported to form a
neurotoxin (1-methyl-4-phenyl-pyridinium), which causes Parkinson’s disease, from 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine [57]. Thus, monoamine oxidases are excellent
targets for the development of novel therapeutics against Parkinson’s, Alzheimer’s, and
other neurodegenerative diseases.

Structurally, MAO-A and MAO-B share 70% identical amino acid sequences, and both
contain an FAD-binding domain, a substrate-binding domain, and a membrane-binding
domain [58,59]. The catalytic sites of both monoamine oxidases are mainly hydrophobic
and are lined with aromatic and aliphatic amino acid residues. A conserved lysine residue
(Lys305 in MAO-A and Lys296 in MAO-B) interacts with a water molecule, which is
attached to the N5-atom of the flavin co-factor [60]. The amino acid residues Tyr407 and
Tyr444 in MAO-A, and Tyr398 and Tyr435 in MAO-B are conserved in all MAOs and are
located on opposite sides of the covalently bound substrates and inhibitors [61,62]. It has
been shown that these tyrosine residues orient the substrate for oxidation, or enhance the
nucleophilicity of the amine [63].The selectivity of these enzymes in substrate binding
sites is defined by the presence of Ile335 in MAO-A and Tyr326 in MAO-B [64]. Another
difference between the two enzymes is the size of the substrate-binding site. In MAO-A,
the volume of the substrate-binding site is 400 Å3, whereas in MAO-B, there is a smaller
hydrophobic “entrance cavity” positioned between the surface and main substrate-binding
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site. Depending on the substrate, the two cavities in MAO-B are fused together because of
the rotation in Ile199 to form a larger cavity of 400 Å3 [60].

Analysis of the Interaction between MAO-A and F0850-4777

Molecular docking analysis between MAO-A and F0850-4777 revealed that the ligand
was bound to the central active site cavity of MAO-A (Figure 3). The binding pose of F0850-
4777 at the active site of MAO-A was further compared with the binding mode of a control
ligand, that is, Harmine. Both F0850-4777 and Harmine were found to occupy the same
site located in the deep cavity of MAO-A (Figure 3A,B). The MAO-A-Harmine complex
was stabilized by two carbon hydrogen bonds (Gly67:CA-Lig:O and Lig:C-Gly443:O), and
five hydrophobic interactions with Tyr407 and Tyr444. In addition, Harmine formed eight
van der Waals’ interactions with Ala68, Tyr69, Ile180, Asn181, Gln215, Met350, Phe352,
and Met445 to further stabilize the MAO-A-Harmine complex (Figure 3C). Conversely,
the MAO-A and F0850-4777 complex was stabilized by one conventional hydrogen bond
(Tyr407:HH-Lig:O) and one carbon hydrogen bond (Lig:C-Tyr69:O). In addition, F0850-4777
formed three Pi-Pi stacks (Tyr407 and Tyr444), and seven Pi-alkyl hydrophobic interactions
(with Val210, Cys323, Ile335, Leu337, and Met445). In addition, F0850-4777 formed two
Pi-Sulfur interactions with Cys323 and Cys406 (Figure 3D and Table S3). Furthermore, the
MAO-A-F0850-4777 complex was stabilized by van der Waals’ interactions with several
amino acid residues such as Arg51, Thr52, Gly67, Ala68, Ile180, Phe208, Gln215, Met350,
Phe352, Gly443, and Glu446. Interestingly, the amino acid residues of MAO-A commonly
interacted with F0850-4777 and Harmine with Gly67, Ala68, Tyr69, Ile180, Gln215, Met350,
Phe352, Tyr407, Gly443, and Tyr444. Moreover, the docking energy and the corresponding
binding affinity were estimated to be −8.7 kcal mol−1 and 2.40 × 106 M−1 for the MAO-
A-Harmine interaction, respectively, and −13.6 kcal mol−1 and 9.44 × 109 M−1 for the
MAO-A-F0850-4777 interaction, respectively. The binding affinity of F0850-4777 for MAO-
A was approximately 3933.33-fold higher than that of the control inhibitor Harmine and
RMSD value between best pose of Harmine and F0850-4777 was found to be 1.840 Å.

Analysis of the Interaction between MAO-B and F0850-4777

An insight into the interaction between MAO-B and F0850-4777 along with the control
inhibitor (Sulfinamide) confirmed that both the ligands occupied a similar pose inside the
binding cavity of MAO-B (Figure 4A,B). The MAO-B-Sulfinamide complex was stabilized
by two conventional hydrogen bonds (Lig:H-Leu171:O, and Lig:H-Gln206:OE1). In addi-
tion, Sulfinamide formed two Pi-Sigma hydrophobic interactions with Leu171:CD2, and
Tyr398 along with one Pi-Pi T-shaped interaction with Tyr326, and two Pi-alkyl interactions
with Ile199 and Ile316. In addition, there was one Pi-Sulfur interaction with Cys172:SG.
Furthermore, the MAO-B and Sulfinamide complex was stabilized by ten van der Waals’
interactions with Tyr60, Pro104, Trp119, Leu164, Leu167, Phe168, Ile198, Gly205, Phe343,
and Tyr435 (Figure 4C). Conversely, the MAO-B and F0850-4777 complex was stabilized
by one conventional hydrogen bond with Tyr435, and two carbon hydrogen bonds with
Tyr60, and Gly434 (Figure 4D and Table S4). In addition, F0850-4777 formed two Pi-Sigma
hydrophobic interactions (with Leu171:CD2 and Ile199:CA), two Pi-Pi-stacked interactions
with Tyr398, one Pi-Pi T-shaped interaction with Tyr326, two Pi-Pi stacked interactions
with Tyr398, one Pi-alkyl interaction with Tyr326, and two alkyl interactions with Leu171
and Ile199. Moreover, F0850-4777 also formed three Pi-Sulfur interactions with Cys172:SG,
Cys397:SG, and Met436:SD residues. Several amino acid residues, such as Arg42, Gly58,
Ser59, Phe168, Ile198, Gln206, Phe343, and Glu437, were found to form van der Waals’
interactions. Interestingly, the amino acid residues of MAO-B commonly engaged in the
interaction with F0850-4777 as well as Sulfinamide were Tyr60, Phe168, Leu171, Cys172,
Ile198, Ile199, Gln206, Tyr326, Phe343, Tyr398, and Tyr435. Moreover, the docking en-
ergy and the corresponding binding affinity were estimated to be −9.5 kcal mol−1 and
9.28 × 106 M−1 for the MAO-B-Sulfinamide interaction, respectively, and −12.5 kcal mol−1

and 1.47 × 109 M−1 for the MAO-B-F0850-4777 interaction, respectively. We found that
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the binding affinity of F0850-4777 for MAO-B was approximately 158.41-fold higher than
the control inhibitor Sulfinamide and RMSD value between best pose of Sulfinamide and
F0850-4777 was found to be 2.880 Å.

2.4. Analysis of Molecular Dynamics Simulation
2.4.1. Root Mean Square Deviation (RMSD) Analysis

In molecular dynamics simulations, the measurement of RMSD provides an estimate
of the stability and dynamic nature of the protein–ligand complex. RMSD is measured
as the deviation in the structure of a protein or protein–ligand complex from its initial
pose, which eventually gives an insight into the stability of protein–ligand complex during
simulation. Here, we report the behavior of RMSD of AChE, BChE, MAO-A, and MAO-
B alone or in complex with F0850-4777 during molecular dynamics simulation under
physiological conditions (Figure 5). The RMSD of AChE and BChE in the absence of
F0850-4777 increased sharply for the initial 2 ns, and then stayed consistent for the rest
of simulation, while the RMSDs of AChE-F0850-4777 and BChE-F0850-4777 complexes
fluctuated within the acceptable limits throughout the simulation (Figure 5A,B). Moreover,
the RMSD of MAO-A and MAO-B in the absence of F0850-4777 fluctuated slightly during
0–15 ns, and thereafter remained constant for the remaining simulation time, while the
RMSDs of MAO-A and MAO-B in the presence of F0850-4777 followed a consistent path
throughout the simulation (Figure 5C,D). The average RMSD values of AChE, BChE,
MAO-A, and MAO-B in the absence and presence of F0850-4777 estimated during 20–
100 ns were 2.33 ± 0.16 Å, 2.08 ± 0.12 Å, 1.70 ± 0.09 Å, 1.98 ± 0.10 Å, 2.15 ± 0.11 Å,
2.06 ± 0.07 Å, 5.81 ± 0.34 Å, and 5.33 ± 0.41 Å, respectively. It is worth noting that none
of the fluctuations in RMSD were more than the acceptable limit of 2.0 Å. These results
suggest that the overall structures of target enzymes (AChE, BChE, MAO-A, and MAO-B)
did not change significantly due to the binding of F0850-4777, and the protein–ligand
complexes remained stable throughout the simulation.
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2.4.2. Root Mean Square Fluctuation (RMSF) Analysis

During molecular dynamics simulation, the measurement of protein RMSF is signifi-
cant to access the local conformational changes in the side chains of a protein occurred due
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to ligand binding. In this study, we monitored the RMSF of F0850-4777 bound with AChE,
BChE, MAO-A, and MAO-B (Figure 6A). It is generally observed that the residues at the
N and C-terminal or loop regions display higher fluctuations. The average RMSF values
of AChE, BChE, MAO-A, and MAO-B in the presence of F0850-4777 were 0.98 ± 0.06 Å,
0.79 ± 0.04 Å, 1.04 ± 0.09 Å, and 1.16 ± 0.11 Å, respectively. These results indicate that
the RMSF of AChE, BChE, MAO-A, and MAO-B did not deviate significantly in the pres-
ence of F0850-4777 and the average values remained within the acceptable limits, thereby
indicating that the overall conformation of target proteins was conserved.
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2.4.3. Analysis of Radius of Gyration (Rg) and Solvent Accessible Surface Area (SASA)

The dependency of radius of gyration (Rg) and solvent accessible surface area (SASA)
of a ligand on simulation time give information about the behavior of the ligand inside the
binding pocket of the enzyme. The Rg values describe the RMSD of an atom’s width from
the common center of mass. The Rg may also be used to determine whether the complex
remains folded during the MD simulation. The variation in Rg of F0850-4777 bound with
different proteins (AChE, BChE, MAO-A, and MAO-B) as a function of simulation time
is presented in Figure 6B. The results show that the Rg values of different protein–ligand
systems fluctuated within the acceptable limit throughout the simulation. The average Rg
values of AChE, BChE, MAO-A, and MAO-B bound with F0850-4777 were estimated as
5.23 ± 0.28 Å, 5.21 ± 0.24 Å, 5.25 ± 0.19 Å, and 5.24 ± 0.27 Å, respectively.

The solvent accessible surface area (SASA) measures the exposure of a protein to
the solvent, thereby indicating if the protein is in native conformation upon the binding
of a ligand. Here, we measured SASA of target proteins AChE, BChE, MAO-A, and
MAO-B bound to F0850-4777 (Figure 6C). It is evident that the SASA of AChE-F0850-4777,
BChE-F0850-4777, MAO-A-F0850-4777, and MAO-B-F0850-4777 complexes varied slightly
with the acceptable limits. The average SASA values of F0850-4777 bound with AChE,
BChE, MAO-A, and MAO-B were 185.4 ± 5.63 Å2, 110.0 ± 4.39 Å2, 19.6 ± 1.01 Å2, and
250.7 ± 4.73 Å2, respectively. These results suggest that F0850-4777 remained inside the
binding cavity of AChE, BChE, MAO-A, and MAO-B in a stable conformation.
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2.4.4. Secondary Structure Analysis

The interaction between a ligand and protein often leads to changes in the protein’s
secondary structural elements (SSE). Thus, evaluating the variation in SSE during simu-
lation is critical to verify the establishment of a stable complex between the ligand and
protein. In this study, we monitored the variation in the total SSE (α-helix + β-sheet) of
AChE, BChE, MAO-A, and MAO-B in the presence of F0850-4777 during the simulation
(Figure 7: Panel I). We found that the total SSE of AChE, BChE, MAO-A, and MAO-B
in complex with F0850-4777 was 40.09 ± 2.62 % (α-helix: 26.92 ± 2.41 % and β-sheets:
13.17 ± 1.03 %), 38.71 ± 3.43 % (α-helix: 26.57 ± 2.76 % and β-sheets: 12.14 ± 2.04 %),
42.33 ± 3.12 % (α-helix: 25.81 ± 2.59 % and β-sheets: 16.52 ± 1.74 %), and 40.87 ± 2.63 %
(α-helix: 25.94 ± 2.12 % and β-sheets: 14.93 ± 1.55 %), respectively. It is worth noting that
the SSE of all the targeted proteins in combination with F0850-4777 remained consistent
throughout the simulation, suggesting a stable interaction between proteins and ligand.
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2.4.5. Contact between F0850-4777 and Target Proteins

The formation of a stable protein and ligand complex was established by determining
the total number of contacts formed between them during the simulation (Figure 7: Panel
II). It is clear that during simulation, the total number of contacts between F0850-4777 and
AChE, BChE, MAO-A, and MAO-B varied between 2–13, 2–13, 1–12, and 0–9, respectively.
On average, AChE, BChE, MAO-A, and MAO-B formed 7, 6, 6, and 4 contacts with F0850-
4777 respectively. These results confirmed that F0850-4777 remained in the binding pockets
of target proteins throughout the simulation.

The overall interaction between target proteins and F0850-4777 over the simulation
was also determined and represented in Figure 8. We found that the interaction between
AChE and F0850-4777 through amino acid residues such as Tyr70, Asp72, Tyr121, Trp279,
Phe290, Phe330, Phe331, and Tyr334 remained consistent throughout the MD simulation
(Figure 8A). Similarly, the interaction between BChE and F0850-4777 through Met81, Trp82,
Leu286, Phe329, Tyr332, and His438 remain intact during the MD simulation (Figure 8B).
The amino acid residues of MAO-A forming a stable contact with F850-4777 during MD
simulation were Tyr407, Tyr444, and Lys520 (Figure 8C). Furthermore, the interaction
between MAO-B and F850-4777 through amino acid residues such as Leu171, Tyr188,
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Ile198, Gln206, Lys296, Tyr326, Tyr398, and Tyr435 remain stable throughout the MD
simulation (Figure 8D). Furthermore, the stability of ligand inside the binding pocket of
their respective protein targets was evaluated by monitoring RMSF of the ligand, as shown
in Figure S2. It was observed that none of the RMSF values exceeded 2 Å, confirming the
stability of the protein–ligand complexes.
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ΔEMM 
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ΔGSolGB 

ΔGSelf  

contact 
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ΔGSA 

or 
ΔGSol_Lipo 

ΔGPacking ΔG or ΔGBind 
ΔGCoulomb ΔGvdW ΔGCovalent 
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Lipo, and ΔG or ΔGBind stands for minimized molecular mechanics energy, coulomb energy, van der Waals’ energy, covalent 
binding energy, solvation energy, energy due to self contact, energy due to H-bonds, lipophilic energy, and binding en-
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3. Materials and Methods 
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The three-dimensional coordinates of the target enzymes (AChE, BChE, MAO-A and 
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Figure 8. Interactions of F0850-4777 with (A) AChE, (B) BChE, (C) MAO-A, and (D) MAO-B.

2.4.6. Analysis of Free Energy (Prime-MM/GBSA) Calculations

Free energy calculation by Prime-MM/GBSA is an accurate method to evaluate
protein–ligand stability in the presence of a solvent. In this study, the Prime-MM/GBSA of
targeted proteins and F0850-4777 was calculated and the results are presented in Table 4.
As evident from Table 4, AChE has the lowest ∆GBind energy (−30.35 ± 3.28 kcal mol−1),
followed by MAO-B (−29.38 ± 2.99 kcal mol−1), BChE (−23.39 ± 3.07 kcal mol−1), and
MAO-A (−20.64 ± 2.93 kcal mol−1). Principally, van der Waals’ energy (∆GvdW) and
non-polar solvation or lipophilic energy (∆GSol_Lipo) contribute favorably towards the for-
mation of a stable protein–ligand complex, while covalent (∆GCovalent) and polar solvation
energies (∆GSolv or ∆GSolGB) oppose the formation of a stable protein–ligand complex.

Table 4. Free energy calculation of targeted proteins and F0850-4777 complexes using Prime/MM-GBSA.

Proteins
∆EMM ∆GSolv or

∆GSolGB
∆GSelf-contact ∆GH-bond

∆GSA
or ∆GSol_Lipo

∆GPacking ∆G or ∆GBind∆GCoulomb ∆GvdW ∆GCovalent

AChE 1.25 ± 0.87 −19.24 ± 1.52 0.65 ± 0.05 6.18 ± 0.54 0 −0.16 ± 0.04 −15.81 ± 1.22 −3.22 ± 0.28 −30.35 ± 3.28

BChE −0.54 ± 0.04 −20.17 ± 1.41 1.16 ± 0.06 9.65 ± 0.69 0 0 −13.49 ± 1.07 0 −23.39 ± 3.07

MAO-A −6.14 ± 0.39 −17.21 ± 1.19 3.79 ± 0.06 12.71 ± 1.06 0 −1.20 ± 0.03 −11.65 ± 0.08 −0.94 ± 0.03 −20.64 ± 2.93

MAO-B −3.97 ± 0.23 −17.80 ± 1.14 −0.05 ± 0.01 9.39 ± 0.57 0 −0.18 v −16.28 ± 1.09 −0.49 ± 0.02 −29.38 ± 2.99

All the energies are in kcal mol−1. ∆EMM, ∆GCoulomb, ∆GvdW, ∆GCovalent, ∆GSolv or ∆GSolGB, ∆GSelf-contact, ∆GH-bond, ∆GSA or ∆GSol_Lipo,
and ∆G or ∆GBind stands for minimized molecular mechanics energy, coulomb energy, van der Waals’ energy, covalent binding energy,
solvation energy, energy due to self contact, energy due to H-bonds, lipophilic energy, and binding energy, respectively.

3. Materials and Methods
3.1. Hardware and Software Used

The three-dimensional coordinates of the target enzymes (AChE, BChE, MAO-A
and MAO-B) were downloaded from the PDB database (http://www.rcsb.org/pdb/).
PyRx-Python Prescription 0.8 [65] using Autodock-Vina [66] with the Lamarckian genetic
algorithm as a scoring function was used for molecular docking. Molecular interactions

http://www.rcsb.org/pdb/
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for the best scoring ligand were separately analyzed by Discovery Studio 2020 (BIOVIA)
software package. Molecular dynamics was performed on an Intel Xenon workstation-
E3-1245-8C, 3.50 GHz processor with 28 GB RAM. The workstation was powered by a
NVIDIA Quadro P5000 GPU card. Desmond (Shchrodinger-2020, LLC, NY, USA) was
employed to conduct molecular dynamics simulation.

3.2. Ligands Preparation

The natural product-like compound library from Life Chemicals (www.lifechemicals.com)
was screened to identify novel inhibitors of the targeted enzymes. The library contains
2029 compounds (accessed November 2020). The ligands were downloaded in sdf format
and converted to Autodock suitable pdbqt format along with density function theory (DFT)
optimization of the minimum energy conformer using the inbuilt function in PyRx. The
energy of all the ligands was minimized in PyRx using universal force field (UFF).

3.3. Protein Target Preparation

The three-dimensional coordinates of AChE (PDB Id: 1ACJ), BChE (PDB Id: 4BDS),
MAO-A (PDB Id: 2Z5X), and MAO-B (PDB Id: 2V5Z) were downloaded from the PDB
database (http://www.rcsb.org/pdb/). The target proteins were prepared for molecular
docking by native ligand and non-essential water molecules, assigning hydrogen polarities,
calculating Gasteiger charges to protein structures, and converting protein structures from
the pdb file format to pdbqt format. Energy minimization and geometry optimization of
all structures were performed using a built-in tool in PyRx. Subsequently, the targeted
proteins were exploited for the binding pockets from crystal structures and were further
evaluated using the Uniprot.

3.4. Molecular Docking

Molecular docking was performed using the PyRx-Python 0.8 virtual screening tool
coupled with AutoDock 4.2, employing the Lamarckian genetic algorithm method [67,68].
All of the ligands were individually docked with each of the targeted enzymes as sep-
arate docking runs. The grid dimensions for AChE were selected through discovery
studio visualizer (BIOVIA) from the attributes of docked ligand (control inhibitor) in
its specific target protein and set to 60 × 60 × 60 Å centered at 4.6 × 70.1 × 65.9 Å,
whereas grid dimensions for BChE, MAO-A, and MAO-B were set to 33 × 33 × 33 Å
centered at 140.1 × 122.2 × 38.9 Å, 126 × 126 × 126 Å centered at 30.9 × 28.8 × 14.9 Å,
and 126 × 126 × 126 Å centered at 53.5 × 147.8 × 24.4 Å, respectively, as discussed in
previous reports [69,70]. The results were clustered according to the root-mean-square
deviation (RMSD) criterion and in the current study we selected the ligands with lower
than 3Å RMSD modes between the best docked pose of natural product-like compound
and reference inhibitor. The docking was performed with the “exhaustiveness” set to 8.
All other docking parameters were set to the default values of the software. The binding
affinity (Kd) of ligands for the target enzyme was calculated from the binding energy (∆G)
using the following relation [71,72]:

∆G = −RT lnKd (1)

where R and T were the Boltzmann’s gas constant and temperature respectfully.
The ligands with the minimum binding energy were selected for further analysis. The

best pose of each “protein–ligand complex” was generated and analyzed using Discovery
Studio 2020 (BIOVIA).

3.5. Prediction of Physicochemical, Pharmacokinetics Properties, Drug-Likeness, and Toxicity
Potentials

About the 10 top best hits from the total 2029 compounds were analyzed against
cholinesterases and monoamine oxidases were assessed for their physicochemical proper-
ties, drug-likeness, and pharmacokinetics using the SwissADME (http://www.swissadme.ch)

www.lifechemicals.com
http://www.rcsb.org/pdb/
http://www.swissadme.ch
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web-based tool. The tool was used to assess the molecular weight, the number of hydrogen
bond donors and acceptors, rotatable bonds, cLogP value, topological polar surface area,
Lipinski’s rule violation, human gastrointestinal absorption (HIA), and blood–brain barrier
(BBB) permeation to finalize the bioactive compound for further computational analy-
sis [33]. The fraction of sp3 carbon atoms (Fsp3), a key factor for drug-likeness, was also
analyzed through SwissADME [73]. Moreover, various aspects and effects of the toxicity,
including the tumorigenicity, mutagenicity, and irritability of the selected compounds,
were also tested using the Orisis Datawarrior tool [74]. In the Orisis Datawarrior tool’s
analysis, the predicted toxicity values were depended on comparing the precalculated
investigated molecules with the tested molecule’s structures.

3.6. Molecular Dynamics (MD) Simulation

MD simulation of the best scoring ligand was performed in complex with their
respective targeted enzymes (AChE, BChE, MAO-A, and MAO-B) in triplicates using
“Desmond (Schrodinger-2020, LLC, NY, USA)” as described earlier [26,75]. The protein–
ligand complex obtained in the AutoDock Vina is imported to the Maestro interface of
the Schrodinger’s software. Prior to MD simulation, the protein–ligand complex was
optimized by adding missing hydrogen atoms, assigning proper protonation state of
the ligand and other parameters using Protein preparation wizard. The protein–ligand
complex was placed at the center of an orthorhombic box, keeping a distance of at least
10 Å from the sides of the box. TIP3P water molecules were added to solvate the simulation
box, and proper counterions were also added to neutralize the system. The physiological
conditions were mimicked by adding 150 mM NaCl. The energy of the whole system was
minimized with 2000 iteration and convergence criteria of 1 kcal/mol/Å, using OPLS3e
forcefield. The production MD simulation run was performed for 100 ns employing NPT
ensemble at 298 K and 1 bar. Temperature and pressure were maintained with the help
of Nose-Hoover Chain thermostat and Matrtyna–Tobias–Klein barostate [76,77]. A 2 fs
time step was fixed, and at every 10 ps, energies and structures were documented in
the trajectory. The parameters such as root mean square deviation (RMSD), root mean
square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA),
secondary structure analysis, and protein–ligand interactions were analyzed to establish
the stability of protein–ligand complexes. The results are presented as mean ± standard
deviation of the three independent experiments.

3.7. Free Energy (Prime-MM/GBSA) Calculations

The binding free energy of each protein–ligand complex was estimated using Prime
module (Schrodinger, LLC, NY, USA) employing the MM-GBSA approach, as described
previously [75,78]. In this approach, free energy was computed on the final 10 ns MD
simulation trajectories, once equilibration had been reached. Briefly, first, the docked
complexes were subjected to local optimization through molecular mechanics (MM) in
Prime, and then their energies were minimized with OPLS-AA (2005) force field with the
generalized Born surface area (GBSA) continuum solvent model. The binding free energy
(∆GBind) is estimated as:

∆GBind = ∆EMM + ∆GSolv_GB + ∆GSA (2)

∆EMM = EComplex −
(

EProtein + ELigand

)
(3)

where EComplex, EProtein, and ELigand are the respective values of minimized energies of
protein–ligand complex, protein, and ligand.

∆GSolv_GB = GSolv_GB (Complex) −
(

GSolv_GB (Protein) + GSolv_GB (Ligand)

)
(4)

where GSolv_GB (Complex), GSolv_GB (Protein), and GSolv_GB (Ligand) are the respective values of
free energies of solvation of protein–ligand complex, protein, and ligand.
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∆GSA = GSA (Complex) −
(

GSA (Protein) − GSA(Ligand)

)
(5)

where GSA (Complex), GSA (Protein), and GSA (Ligand) are the respective values of surface area
energies of protein–ligand complex, protein, and ligand.

In the Prime-MM/GBSA method, the free energy is calculated as:

∆GBind = ∆GCoulomb + ∆GvdW + ∆GCovalent + ∆GH−bond + ∆GSol_Lipo + ∆GSolv_GB + ∆GPacking + ∆GSelf−contact (6)

4. Conclusions

Using high-throughput screening and the molecular dynamics simulation study, we
concluded that the F0850-4777 compound, out of 2029 natural product-like compounds,
showed the best binding affinity against all the four targets and exhibited the finest drug-
likeness, pharmacokinetics and physiological properties which can cross the BBB as well
as high absorption through GI tract with non-toxic potential. The findings of this study
suggest that the F0850-4777 can be a potential candidate against multiple-targets of two
pathophysiological pathways pertaining to AD. In this study, neuroprotective potentials
of candidate drug were explored only via in silico approaches and open the window for
confirmation of its therapeutic efficacy through in vitro and in vivo systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14090937/s1, Table S1: Molecular docking parameters for the interaction of target protein,
acetylcholinesterase with F0850-4777 and their respective control ligands; Table S2: Molecular dock-
ing parameters for the interaction of target protein, butyrylcholinesterase with F0850-4777 and their
respective control ligands; Table S3: Molecular docking parameters for the interaction of target pro-
tein, monoamine oxidase-A with F0850-4777 and their respective control ligands; Table S4: Molecular
docking parameters for the interaction of target protein, monoamine oxidase-B with F0850-4777 and
their respective control ligands; Figure S1: (A) structure of F0850-4777 (3-(2-methoxyphenyl)-4-oxo-
4H-chromen-7-yl 4-methylbenzoate), (B) acceptable range (pink color region) for pharmacokinetics
properties of F0850-4777, (C) description of BOILED-Egg image for F0850-4777 to predict gastroin-
testinal absorption (HIA) and brain penetration (BBB); Figure S2. RMSF of ligand (F0850-4777) inside
the binding pocket of their respective protein targets.
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