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Abstract

Pancreatic adenocarcinoma is characterized by a complex tumor environment with a wide

diversity of infiltrating stromal and immune cell types that impact the tumor response to con-

ventional treatments. However, even in this poorly responsive tumor the extent of T cell infil-

tration as determined by quantitative immunohistology is a candidate prognostic factor for

patient outcome. As such, even more comprehensive immunophenotyping of the tumor

environment, such as immune cell type deconvolution via inference models based on gene

expression profiling, holds significant promise. We hypothesized that RNA-Seq can provide

a comprehensive alternative to quantitative immunohistology for immunophenotyping pan-

creatic cancer. We performed RNA-Seq on a prospective cohort of pancreatic tumor speci-

mens and compared multiple approaches for gene expression-based immunophenotyping

analysis compared to quantitative immunohistology. Our analyses demonstrated that while

gene expression analyses provide additional information on the complexity of the tumor

immune environment, they are limited in sensitivity by the low overall immune infiltrate in

pancreatic cancer. As an alternative approach, we identified a set of genes that were

enriched in highly T cell infiltrated pancreatic tumors, and demonstrate that these can iden-

tify patients with improved outcome in a reference population. These data demonstrate that

the poor immune infiltrate in pancreatic cancer can present problems for analyses that use

gene expression-based tools; however, there remains enormous potential in using these

approaches to understand the relationships between diverse patterns of infiltrating cells and

their impact on patient treatment outcomes.
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Introduction

Pancreatic cancer is commonly characterized by extensive desmoplastic stroma and an envi-

ronment that is poorly supportive of adaptive immune responses, yet like many other cancers,

the degree of T cell infiltrate in pancreatic tumors is correlated with patient outcome [1–4]. T

cells in pancreatic tumors face an array of suppressive mechanisms that can limit their ability

to control tumors, and it would be beneficial to understand the relationship between T cell

infiltration and the presence of other immune populations that positively or negatively regu-

late immune responses. For this reason, there is significant effort in the field to understand

and manipulate the complex immune environment of tumors.

Quantitative immunohistochemistry (IHC) has long represented the gold standard by

which tumor infiltrating immune populations can be assessed, and recent advances in multi-

spectral IHC combined with automated image analysis have made possible an unprece-

dented ability to map out the immune environment of tumors. However, these approaches

are limited by the availability and quality of antibodies, and complex multispectral panels

require extensive validation to confirm the specificity and selectivity of binding. Recently,

multiple groups have shown that the quantity of a diverse array of infiltrating immune cell

types in a specimen can be inferred based on characteristic gene expression patterns unique

to or enriched in specific cell types [5, 6]. In theory, a single RNA sequencing (RNA-Seq)

analysis of preserved tissue can provide an assessment of immune cell infiltration as well as

other information such as the cytokine and chemokine balance that may be regulating cell

entry and retention in the tissue, together with candidate features of the cancer cells that

orchestrate this environment. The addition of simultaneous whole exome sequencing can

permit comprehensive profiling of cancer driver mutations, immune targetable mutations,

as well as a personalized understanding of the patient’s immune profile [7, 8]. However, it

remains unclear whether IHC and gene expression-based immune assessment approaches

are highly concordant. For example, the utility of RNA-Seq in tumor profiling can be limited

by a range of unique factors including degradation of transcripts in excised human tissues

and by common tumor preservatives (e.g. formalin) and the ability to detect low-abundant

transcripts. The latter is of particular concern in pancreatic cancer, which can have a rela-

tively low infiltration of critical cell types such as CD8 T cells.

Thus far we are not aware of any studies that have directly compared IHC quantification

of immune infiltration to RNA-Seq-based analyses in pancreatic cancer. In this study we aim

to directly compare conventional IHC and gene expression-based approaches to characterize

the immune environment of pancreatic cancer. We hypothesize that RNA-Seq analysis can

provide a comprehensive alternative to quantitative IHC for immunophenotyping pancreatic

cancer. We performed RNA-Seq on a prospective cohort of 39 pancreatic adenocarcinoma

patient tumors with matched quantitative IHC, and evaluated approaches to quantify infil-

trating immune cells using gene expression data. We found limited agreement between IHC

and RNA-Seq analysis of infiltrating cells, however concordance was greatest when multiple

cell types were aggregated to identify a mixed population, such as CD3+ T cells from a com-

bination of CD4+, CD8+, and other cell types that express CD3. This aggregation may over-

come the limitation of low T cell-derived RNA transcripts in poorly-immune infiltrated

tumors. As an alternative, we identified gene signatures that were enriched in highly T cell

infiltrated tumors that are associated with increased disease-free survival in other patient

cohorts. These data demonstrate that immune infiltration remains an important predictor

of outcome in pancreatic cancer patients, and that RNA analysis can provide an important

addition to IHC data to understand the complexities of the immune environment that influ-

ence patient outcome.
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Methods

Quantitative immunohistology for infiltrating immune cells in pancreatic

cancer

We conducted a prospective cohort study of resectable pancreatic masses to determine which

immunologic parameters have prognostic value. All procedures were approved under Provi-

dence Portland Medical Center Institutional Review Board, with approval number IRB 10–

037, and patients provided written informed consent. We restricted our analysis to adult

patients who underwent surgical resection for pancreatic masses. Patients were recruited from

June 2010 to November 2014 at Providence Portland Medical Center in Portland, OR, where

the research was conducted. Inclusion criteria included patients 18 years or older who had

a diagnosis of a pancreatic or ampullary mass who were scheduled for surgical resection.

Patients had to be able to give informed consent and could not have a diagnosis of a prior

malignancy unless they were disease free for 10 years. We included patients who were subse-

quently determined to have other histologies. Demographics and survival of these patients

are outlined in Table 1. Prior studies on this cohort had identified a positive correlation

between CD3+ T cell infiltrate and overall survival by Multivariate Cox modeling and univari-

ate analysis [1], so this sample set was applied for additional genomic analysis. Additional

power calculations were not performed. Tumor infiltrating immune cells were quantified by

immunohistochemistry and quantitative digital image analysis for CD3+, CD68+, and CD8+

cells as previously described [1]. Infiltrating cells were quantified from whole slide digital

Table 1. Demographics of patients on the study.

Characteristic Data
Pancreatic Adenocarcinoma, n 75

Age,median (range), y 66 (25–87)

Male, n (%) 43 (57%)

Female, n (%) 32 (43%)

Neoadjuvant treated PDA, n 6

Age,median (range), y 61 (58–61)

Male, n (%) 3 (50%)

Female, n (%) 3 (50%)

Premalignant, n 13

Age,median (range), y 58 (28–79)

Male, n (%) 5 (38%)

Female, n (%) 8 (62%)

Benign, n 10

Age,median (range), y 53 (40–71)

Male, n (%) 5 (50%)

Female, n (%) 5 (50%)

Neuroendocrine, n 3

Age,median (range), y 61 (55–69)

Male, n (%) 2 (66%)

Female, n (%) 1 (33%)

Duodenal Adeonocarcinoma, n 1

Age,median (range), y 61

Male, n (%) 1 (100%)

Female, n (%) 0 (0%)

https://doi.org/10.1371/journal.pone.0238380.t001
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images scanned at 20x resolution (Leica SCN400). Regions of interest were defined with

Pathologist guidance using Definiens Tissue Studio (Definiens Inc), and the automated algo-

rithm used the immunohistology staining combined with nuclear counterstain to count total

cells and positive cells to report a marker positive cell density per mm2 tissue for each patient.

Primary outcome was overall survival.

RNASeq analysis of pancreatic cancer

Of the patients above with pancreatic masses, we randomly selected 39 patients with patholog-

ically diagnosed pancreatic adenocarcinoma with no neoadjuvant treatment and with matched

quantitative IHC for RNASeq. All subsequent analyses of IHC and RNASeq were performed

on unpretreated patients. A representative Hematoxylin and Eosin (H&E) stained slide for

each formalin-fixed paraffin-embedded (FFPE) tissue block specimen was reviewed by a

board-certified pathologist for tumor content and tumor-rich regions were identified for

microdissection. Blocks were matched but not in series with IHC sections. 5 μm thick

unstained sections on glass slides were processed for DNA and RNA purification by the Provi-

dence Molecular Genomics Laboratory. The FFPE tissue sections were deparaffinized using

Envirene (Hardy Diagnostics) followed by RNA extraction and purification using the Qiagen

AllPrep DNA/RNA FFPE kit. 85ng of input RNA was used to prepare sequencing libraries

using the Illumina TruSeq RNA Exome kit. Sequencing of the RNA Exome libraries was per-

formed on the Illumina HiSeq 4000 instrument at 2 x 75 read paired end configuration. Tran-

scripts were quantified using salmon-v.0.11.2 [9]. A matrix of gene expression values for all

patients analyzed in this study along with matched quantitative IHC are provided as a S1 Table.

Computational analysis of infiltrating cells and comparison of techniques

RNA-Seq-based cell type deconvolution was performed using xCELL (5) and CIBERSORT (6),

with TPM gene expression levels as input. xCELL was used to perform cell type enrichment
analysis from gene expression data for 64 immune and stroma cell types, whereas CIBERSORT

provides absolute and relative abundance of different immune cell types depending on the

specified gene set. In the present analysis, the LM22 signature provided by CIBERSORT was

applied. We also applied EPIC (10) and MCPcounter (11) to estimate the abundance of

immune cell population. EPIC estimates the proportions of Immune and Cancer cells by using

RNA-Seq-based gene expression reference profiles from immune cells and other nonmalig-

nant cell types found in tumors. MCPcounter quantifies abundance of tissue-infiltrating eight

immune and two stromal cell populations based on transcriptome profile.

Initial clustering of patients based on infiltrating cell types was performed using ClusterVis

[10]. Principal components are calculated as described in (6) using ClusterVis (7). Missing

data is assigned using Singular Value Decomposition with imputation iteratively until esti-

mates of missing values converge. Statistical significance of the resulting hierarchical clusters

were assessed using the sigclust2 R package [11]. Correlation between infiltrating cell types cal-

culated using RNA-Seq versus quantitative IHC was performed by generating a composite of

T cell and macrophage cell types determined by RNA-Seq for direct comparison to IHC popu-

lations (Table 2). Correlations between xCELL immune cell type enrichment and quantitative

IHC, as well as between CIBERSORT cell type abundances and quantitative IHC, were deter-

mined by Spearman Rank correlation.

Identification of genes associated with high and low T cell infiltration

Patients were categorized into high and low infiltration of CD3+ and CD8+ T cells according

to quantitative IHC and sub-categorized into those with high infiltration of both populations
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(CD3HICD8HI) versus low infiltration of both populations (CD3LOCD8LO). Using RNA-Seq

data from these patients, gene expression analyses were performed using a univariate two-sam-

ple T-test with a stringent false-positive threshold to identify genes significantly differentially

expressed (p<0.001) in our patients [12, 13]. These genes were mapped to known pathways

using the Reactome Functional Interaction network tool [14]. These genes were tested on the

TCGA Pancreatic Adenocarcinoma PanCancer Atlas [15] as a validation cohort using cBio-

portal [16, 17] where mRNA expression z-scores are compared to the expression distribution

of each gene in tumors that are diploid for this gene. To be classified as enriched for the gene

score the sample must have at least one gene that is 2 log fold overexpressed. Survival and

expression data exported to Graphpad Prism for survival comparison using log-rank tests.

Pre-calculated xCELL analysis of patients in the TCGA database were obtained from http://

xcell.ucsf.edu.

Statistical methods

Survival data were analyzed using Prism (Version 8.4.2, GraphPad Software, La Jolla, CA).

Overall survival of groups was compared using a log rank test for differences in Kaplan-Meier

survival curves. All cutoffs for high/low infiltration by RNA analysis use median values. Gene

expression analyses were performed using a univariate two-sample T-test with a stringent

false-positive threshold to identify genes significantly differentially expressed (p<0.001) [12,

13]. Correlations between immune cell type enrichment and quantitative IHC were deter-

mined by Spearman Rank correlation. To assess the statistical significance of correlation

between RNA-Seq-based cell type deconvolution and CD3, CD8 or CD68 immune cell types

determined by quantitative IHC, the composition of underlying cell types specified in Table 2

were randomly permuted. The number of cells that constitute a cell type were kept the same

between the true set and permuted set. Owing to the number of cell types estimated by xCELL

(64 different cell type populations) and CIBERSORT (22 different cell type populations), we

conducted 100 and 20 different random assignments of cell types, respectively, attributed to

the CD3, CD8 and CD68 IHC populations in Table 2. For each permutation, Spearman rank

correlation was computed between the random cell type assignments and quantitative IHC,

allowing for a level of statistical significance to be estimated for the true set with respect to all

permuted sets, thereby indicating whether the RNA-Seq-based cell type deconvolution meth-

ods are statistically significantly correlated with quantitative IHC. Additional correlations

between multiple variables were analyzed using Prism (Version 8.4.2) to calculate a Pearson

correlation coefficient. Statistical significance of hierarchical clusters were assessed using the

Table 2. Assembly of composite RNASeq-calculated populations to match cell types detected by IHC.

IHC populations CD3 CD8 CD68

CIBERSORT T.cells.CD8 T.cells.CD4.naive T.cells.CD8 Macrophages.M0

T.cells.CD4.memory.resting Macrophages.M1

T.cells.CD4.memory.activated T.cells.follicular.helper Macrophages.M2

T.cells.regulatory.Tregs T.cells.gamma.delta

xCELL CD4+ memory T-cells CD4+ naive T-cells CD8+ naive T-cells

CD8+ T-cells

CD8+ Tcm

CD8+ Tem

Macrophages

CD4+ T-cells CD4+ Tcm Macrophages M1

CD4+ Tem CD8+ naive T-cells Macrophages M2

CD8+ T-cells CD8+ Tcm

CD8+ Tem Tregs

Th1 cells Th2 cells

Tgd cells NKT

https://doi.org/10.1371/journal.pone.0238380.t002
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sigclust2 R package [11]. Differential gene expression analysis between CD3 Hi CD8 HI vs

CD3 Lo CD8 Lo RNA-Seq samples were carried out using DESeq2 [18]. We identified differ-

entially expressed genes, ranked them based on fold-change and p-value. This gene signature

was further used for gene set enrichment.

Results

We previously demonstrated that increased CD3+ T cell infiltrates in surgically resected pan-

creatic adenocarcinoma correlate with improved outcomes using a Cox proportional hazards

model, and remained prognostic by multivariable analysis [1]. By contrast, CD8+ T cell infil-

trates and CD68+ macrophage infiltrates did not correlate with outcome [1]. However, using

categorical variables of high or low CD3+, CD8+ and CD68+ cell numbers in tumors, we were

able to identify cutoffs that demonstrated that patients with high CD3+ T cells or high CD8+ T

cells exhibited improved survival, but again CD68+ macrophages did not correlate with sur-

vival (Fig 1a). To evaluate the complexity of the infiltrate in patient tumors, we performed

hierarchical cluster analysis. Initially, we used our broader dataset that included pancreatic

ductal adenocarcinoma (PDA) with and without neoadjuvant treatment, as well as benign

pancreatic masses, pre-malignant disease, neuroendocrine tumors, as well as a small number

of duodenal adenocarcinoma and gallbladder adenocarcinoma. Principal component analysis

was not able to distinguish these pathologies based on CD3+, CD8+ and CD68+ cell infiltrate

(Fig 1bi), and while cluster analysis tended to group benign and premalignant disease in poorly

infiltrated groups, there was not a clear classifier to distinguish PDA from other related pathol-

ogies (Fig 1bii). Prior studies have demonstrated that patients with the highest macrophage

proportions and lowest CD8+ T cell proportions exhibit worse outcome than those with lowest

macrophage proportions and highest T cell proportions [19]. We calculated the correlation

between CD3+, CD8+ and CD68+ cell infiltrate in patients with all pathologies and those with

PDA and found good correlation between CD3+ and CD8+ infiltrates, and poor, but not nega-

tive, correlation with T cells and CD68+ cell infiltrate (Fig 1c). To determine whether the

degree of CD68+ cell infiltrate impacted outcome for patients with high or low T cell infiltrates,

we tested the effect of CD68+ cell infiltrate with each T cell cutoff. For patients with PDA we

did not find an effect of macrophage infiltration on the survival benefit of CD3+ T cells (Fig

1di and 1dii) or CD8+ T cells (Fig 1diii and 1div). These data demonstrate that quantitative

immunohistology was able to identify good and poor outcome groups based on CD3+ and

CD8+ T cell infiltrate, but analyzing the degree of CD68+ macrophage infiltrate alone or in

combination with T cell infiltrates did not help refine outcome groups.

There are significant limitations in the use of CD68 as a sole marker of macrophages in

tumors [20], particularly in view of the diverging phenotypes macrophages can generate.

There is not a well-defined set of markers that is unique to distinct macrophage polarization

states that do not overlap with other cell types. Recently, a number of algorithms have been

developed that can analyze gene expression data to estimate the prevalence of the broad range

of cell types in a mixed tissue sample [5, 6, 21]. To evaluate whether gene expression analysis

could refine our understanding of the immune environment of pancreatic cancer we tested

two different approaches, CIBERSORT [6] and xCELL [5]. CIBERSORT has been most widely

applied, and provides an assessment of 22 of the most common immune cell types and some

information on the differentiation of CD4+ T cells and macrophages [6]. We performed

RNA-Seq on a subset of our PDA patients with quantitative IHC, and performed CIBERSORT

analysis of immune infiltration using the RNA-Seq data. We used a correlation analysis to

determine whether some cell types were co-regulated in the tumor, but there was little evi-

dence of correlation between the infiltration of different immune cell types in the tumor
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Fig 1. Analysis of patients by quantitative immunohistology. a) Quantitative analysis of infiltrating i) CD3+; ii) CD8+; and iii) CD68+

cells/mm2 tumor were used to set cutoff values of high/low infiltrates with significant impact on overall survival of patients with PDA.

Cutoffs used were approximately CD3 – 75th percentile; CD8 –median; CD68 –no significant cutoff found, 75th percentile shown. b)

Infiltrating CD8+, CD3+, and CD68+ cells across a range of pathologies was used to evaluate principal component analysis and clustering.

i) Unit variance scaling is applied to rows; SVD with imputation is used to calculate principal components. X and Y axis show principal

component 1 and principal component 2 that explain 56.7% and 30.5% of the total variance, respectively. Prediction ellipses are such that

with probability 0.95, a new observation from the same group will fall inside the ellipse. N = 123 data points. ii) Clustering of patients

according to infiltrates. Imputation is used for missing value estimation. Both rows and columns are clustered using Manhattan distance

and complete linkage. 3 rows, 123 columns. c) Pearson correlation coefficients for CD8, CD3 and CD68 infiltrating cells in i) all
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(S1 Fig). We performed cluster analysis on patients based on their immune infiltrates calcu-

lated by CIBERSORT (Fig 2ai), which appeared to identify a diffuse cluster of patients with

higher numbers of CD8 T cells and dendritic cells, but there was no strong statistical associa-

tion between these cell types and this analysis was not able to identify patient groupings with

significant differences in overall survival (not shown). To directly compare these CIBERSORT

calculated infiltrating cell types to the quantified immunohistology from the same samples, we

made three combined groups (Table 2): 1. CD3+ equivalent based on cell types that express

CD3 (Treg+CD4 populations+CD8+gd T cells); CD8+ equivalent (CD8); and CD68+ macro-

phage equivalent (MO+M1+M2). We then evaluated the correlation between infiltration

determined by CIBERSORT analysis of RNA-Seq versus quantified immunohistology. Both

CD3+ and CD8+ T cells showed a weakly positive correlation between the IHC and CIBER-

SORT assessments, but CD68 did not correlate well between histology and CIBERSORT (Fig

2b). Spearman’s rho computed between IHC and CIBERSORT relative cell type abundance

were 0.355, 0.308, 0.144 for CD3, CD8 and CD68 respectively. Notably, we see a number of

patients with no detectable infiltrating T cells or macrophages by CIBERSORT, who did have

detectable cells by histology. Since CIBERSORT is dependent on key RNA transcripts being

present amongst the RNA sequenced, we believe that at low cell infiltration this approach can

struggle to identify the RNA signature of rare infiltrating cells. To determine whether CIBER-

SORT infiltration of these key cell types predicted outcome, we similarly stratified patients

into high or low infiltration groups. We found that patients with high combined CD3+ equiva-

lent scores exhibited improved overall survival (p<0.05), but the CD8 and macrophage scores

were not able to discriminate patients with significantly different overall survival (Fig 2c).

These suggest that while CIBERSORT analysis can provide additional information on the

diversity of immune cells in tumors, it does not improve our ability to predict outcome over

quantitative histology. Since there is a general agreement between the assessment of total CD3

infiltrate by histology and CIBERSORT and each are associated with improved outcome in

patients, aggregating CIBERSORT T cell infiltration could be further tested as a prognostic fac-

tor in pancreatic cancer patients.

As an alternative approach xCELL can identify 64 different cell populations and composite

infiltration scores from RNA-Seq data [5]. We performed xCELL analysis of immune infiltra-

tion in pancreatic cancer and generated a correlation matrix to examine associations between

different cell types. Clear patterns emerged, with some tight clusters based around epithelial

cells or Th2 cells, and more broad groupings of co-regulated cells including Th1 cells, DC, M1

macrophages and CD8 T cells (S2 Fig). To determine whether these co-resident cells identified

unique patient populations, we clustered patients based on their immune infiltrate, identifying

patients with higher levels of CD8 T cells, DC, and M1 macrophages (Cluster A), and those

with higher levels of fibroblasts and endothelial cells to form a distinct cluster (Cluster B) (Fig

3a). Comparing the overall survival of patients in each cluster demonstrated there were no sig-

nificant differences between groups (Fig 3b). In view of the high correlation between specific

cell types resulting in apparent clusters, we investigated whether this was due to closely related

cells having overlapping genes that are included in the underlying gene signature. Using the

gene signatures that determine cell types in xCELL, we computed the percent match between

genes across all cell types (S3 Fig). These data demonstrated that most cells were defined using

a unique gene set. We did identify overlapping gene usage between related cell types such as

pathologies; ii) PDA. d) Overall survival of PDA patients with i) high or ii) low CD3+ infiltrates, and iii) high or iv) low CD8+ infiltrates

subdivided according to high or low CD68 infiltrates as determined in a). Number of patients on each arm of survival curves are shown

in grey.

https://doi.org/10.1371/journal.pone.0238380.g001
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Fig 2. Evaluation of CIBERSORT analysis of immune infiltration. a) Clustering of immune populations inferred using CIBERSORT

analysis of RNASeq of PDA patients. Rows are centered; unit variance scaling is applied to rows. Both rows and columns are clustered

using correlation distance and average linkage. 22 rows, 39 columns. b) The immune infiltrate score of all i) CD3+, ii) CD8+, and iii)

CD68+ equivalent cell populations (Table 2) determined by CIBERSORT compared to quantitative IHC from the same patient. Each

symbol represents one patient. c) Overall survival of patients with high versus low infiltrates of i) CD3+, ii) CD8+, and iii) CD68+

equivalent cell populations (Table 2) determined by median CIBERSORT infiltration. NS = not significant.

https://doi.org/10.1371/journal.pone.0238380.g002
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Fig 3. Evaluation of xCELL analysis of immune infiltration. a) i) Clustering of immune populations inferred using

xCELL analysis of RNASeq of PDA patients. Rows are centered; unit variance scaling is applied to rows. Both rows and

columns are clustered using correlation distance and average linkage. 60 rows, 39 columns. ii) overall survival of

patients in clusters A, B, C, and D. b) The immune infiltrate score of all i) CD3+, ii) CD8+, and iii) CD68+ equivalent

cell populations (Table 2) determined by xCELL compared to quantitative IHC from the same patient. Each symbol

represents one patient. c) Overall survival of patients with high versus low infiltrates of i) CD3+, ii) CD8+, and iii)

CD68+ equivalent cell populations (Table 2) determined by median xCELL infiltration. NS = not significant. d) Overall

survival of patients with high versus low i) immunescore, ii) stromascore, and iii) environment score using median

values as cutoffs.

https://doi.org/10.1371/journal.pone.0238380.g003
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DC subtypes or T cell subtypes; however, there were no significant gene overlaps between DC

and T cells, for example, that would explain their correlation. These suggest that the positive

correlation between the number of T cells and DCs in patient tumors is likely a result of the

presence of both cell types in the analyzed sample. To compare these calculated infiltrating cell

types to quantified immunohistology, we again made three combined groups: 1. CD3 equiva-

lent (Treg + all CD4 populations + all CD8 populations +gd T cells); CD8 equivalent (all CD8

populations); and CD68 macrophage equivalent (MO + M1 + M2) (Table 2). We evaluated the

correlation between cell infiltration assayed by xCELL analysis of RNA-Seq versus quantified

immunohistology. Each population showed a positive correlation between the two approaches;

however, many of the samples were calculated to have no CD8 T cells by xCELL, even in

patients with relatively abundant CD8 T cells as determined by immunohistology (Fig 3b). As

with CIBERSORT analysis, despite the positive correlation, the R2 value was not strong for

each cell type. Spearman’s rho computed between IHC and xCELL were 0.354, 0.307 and 0.144

for CD3, CD8 and CD68 respectively. We also evaluated whether infiltration of these cell types

impacted outcome, and we could not detect a cutoff that impacted overall survival (Fig 3c).

xCELL analysis does calculate three additional fields that integrate many of the infiltrating

cell features to generate an “immunescore”, a “microenvironment score” and a “stromascore”.

Such combined fields may have an advantage over individual cell types, particularly where the

cells are of low abundance. Broadly, the immunescore was correlated with T cell infiltration,

while the stromascore was correlated with fibroblast and endothelial cell infiltration (S3 Fig).

Patients with a high immunescore exhibited improved overall survival, but the stromascore

and the microenvironment score were not able to distinguish patient groups with improved

outcome. These data suggest that xCELL can provide a more complex understanding of the

immune cell diversity in tumors; however, there remain significant issues identifying the small

numbers of T cells infiltrating pancreatic adenocarcinoma. There may be a benefit in integrat-

ing multiple immune cell types through features such as the immunescore to identify tumor

environments indicative of improved outcome.

There are increasing numbers of methods to analyze cell infiltrates from RNA data. We

compared the additional methods EPIC [22] and MCPcounter [23] with the same dataset. The

MCPcounter assessment of T cell infiltration correlated well with the IHC CD3 infiltrate, but

all other analyses had poor correlation to IHC data (S4 Fig). To understand whether there was

agreement amongst the various RNA-based approaches, we analyzed the correlation between

the various infiltrating T cell populations assessed by CIBERSORT, xCELL, MCPcounter, and

EPIC. The correlation between the different approaches using the same RNA dataset was mod-

erate, but the closest correlations were found among CD4 T cell populations and relatively

poor correlations between CD8 T cell populations (S4 Fig). These data suggest that there are

significant differences between the RNA-based approaches and each has difficulty consistently

identifying CD8 T cell infiltrates in T cell poor tumors like pancreatic cancer.

To determine whether there is an alternative RNA signature of high T cell infiltration that

can be used in pancreatic tumors to infer T cell infiltration and assess outcome using RNA-Seq

samples, we identified genes that were enriched in tumors with both high CD3 and high CD8

infiltration or both low CD3 and low CD8 infiltration by quantitative IHC. Class comparison

of gene expression identified a subset of genes that were statistically associated with highly T

cell infiltrated tumors (Table 3, Fig 4a). As would be predicted, these included genes encoding

for CD3 as well as genes involved in T cell signaling such as FYN and LAT. Interestingly, the

gene set includes the immunotherapy target CTLA4 [24], as well as SLAMF6, which is a

marker of progenitor exhausted T cells [25]. To determine whether increased expression of

these genes were useful predictors of outcome in pancreatic cancer patients, we examined

expression of these genes in pancreatic adenocarcinoma patients in the TCGA database [15],
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Fig 4. Class comparison of TPM counts on patients with high T cell infiltrate and validation on TCGA cohort. a) Class

comparison of TPM counts was performed on patients with high CD3+ and high CD8+ infiltrates, as compared to patients with

low CD3+ and low CD8+ infiltrates using the cutoffs applied in Fig 1. Graph shows the clustering of 38 significant genes

(p<0.001). Genes enriched in poorly infiltrated tumors are highlighted in bold. b) The genes enriched in highly infiltrated

tumors were tested using the TCGA PanCan Pancreatic Adenocarcinoma cohort to identify patients with enriched RNA

expression of these genes. Graphs show i) overall survival and ii) disease-free survival for patients in each group. The number of

patients in each group is shown. c) Correlation matrix of the expression of the genes listed in a), and xCELL calculated cell

infiltration for the TCGA PanCan Pancreatic Adenocarcinoma cohort. Rows are centered; no scaling is applied to rows. Both

rows and columns are clustered using Manhattan distance and average linkage. 102 rows, 102 columns. Genes are highlighted

in Blue where positively correlated and Red when negatively correlated. Cell types are highlighted in Green.

https://doi.org/10.1371/journal.pone.0238380.g004
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and their effect on patient outcome. Initial analysis indicated that patients with increased

expression of the genes positively associated with T cell infiltration in our cohort had signifi-

cantly increased overall survival and disease-free survival. However, following curation of the

TCGA dataset according to Peran et al. [26] to remove mischaracterized tumors from the

cohort, overall survival was no longer significantly different, but disease-free survival was sig-

nificantly improved (Fig 4b). These data suggest that the geneset was identifying patients with

neuroendocrine tumors and the improved prognosis of these patients was influencing the

overall survival results in the uncurated dataset. To understand whether the geneset was associ-

ated with increased T cell infiltration, we obtained pre-calculated xCELL analysis of infiltrating

cells in these pancreatic cancer TCGA specimens (https://xcell.ucsf.edu), and examined the

correlation of each cell type with the expression of genes in our panel. To find potential pat-

terns of biological significance, we correlated the expression of the gene set with the infiltration

of immune cells across the TCGA cohort and performed clustering to gather co-regulated

genes and cells together. We discovered that as with our cohort, there was a strong correlation

between infiltrating T cells and dendritic cells in pancreatic tumors, and these correlated

closely with the expression of genes in our panel (Fig 4c). Macrophage and endothelial cell

infiltration did not correlate well with any of the genes in our panel, and smooth muscle cells,

keratinocytes, and epithelial cell infiltration correlated best with some of the genes that were

negatively associated with T cell infiltration, such as NEBL and HSP90AB1. These data indicate

that the gene signature associated with high T cell infiltration in our pancreatic cancer cohort

can similarly identify high T cell infiltration in other pancreatic cancer cohorts represented in

the TCGA database. Further studies are needed to understand whether these genes have func-

tional roles and are potential therapeutic targets.

Discussion

Despite the poor overall prognosis of pancreatic cancer, patients with high numbers of infil-

trating T cells as determined by quantitative immunohistology have improved outcome. To

understand the complexity of the tumor immune environment, we performed RNA-Seq and

evaluated gene expression-based analyses of tumor-infiltrating cells. We found that there were

limitations in current gene expression analyses of infiltrating immune cells, particularly where

overall infiltration was low. Both CIBERSORT and xCELL showed poor concordance with

IHC, and individual immune cell types identified by gene expression analysis had limited

prognostic value. This could be somewhat overcome by aggregating molecularly-identified

immune populations, for example into total T cell infiltrates, which showed some correlation

to quantitative immunohistology and could be predictive of outcome. To determine if we

could identify alternative molecular signatures of highly infiltrated tumors, we performed class

comparison of gene expression and identified a transcriptional pattern in pancreatic adenocar-

cinoma that had predictive value for disease-free survival in the TCGA cohort.

Immunohistology with validated antibodies is the gold standard for quantitative assessment

of infiltrating immune cells in cancer [27]. However, the diversity of cell types and limited

number of cell-type specific markers makes it difficult to accurately assess many infiltrating

cell types using histology. Flow cytometry is more able to address this diversity, using a series

of gates to distinguish cell subtypes expressing multiple overlapping markers; however, this

cannot be performed with archived tissues. The recent improvement in image analysis and

technological improvements in multiplex staining has permitted much more complex assess-

ment of tumors using immunohistology [28]. This is critical since many of our single markers

have limitations. For example, our study used CD68 as a well-validated marker for tumor asso-

ciated macrophages. However, there are significant limitations in the use of CD68 as a sole
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marker of macrophages in tumors [20], particularly in view of the diverging phenotypes mac-

rophages can generate. In particular, while there may be a spectrum of macrophage pheno-

types [29], the polarized M1 (classical) versus M2 (alternative) macrophage phenotype has

proven useful in discriminating macrophages that support versus suppress adaptive immunity

to tumors [30–33]. Therefore, the presence of macrophages does not necessarily indicate that

they generate immune suppression in the tumor.

The recent development of algorithms that can analyze gene expression data to estimate

the prevalence of the broad range of cell types in a mixed tissue samples, combined with the

increasing affordability of comprehensive genomic profiling of patient tumors, has opened

new avenues of research [21]. While gene expression data can provide a great deal of informa-

tion from small quantities of tissue, there are potential issues in estimating immune cell num-

bers in pancreatic tumors, since the abundance of some of these populations can be very low

even when they have prognostic significance. For example, xCELL gene signatures were identi-

fied using purified populations and validated on peripheral blood samples [5], which have a

very different immune cell abundance when compared to tumors. CIBERSORT was shown to

have superior performance to other approaches available at the time to assess immune infil-

trating cells from genomic data [6]; however, performance was limited when the target

immune populations represented fewer than 1% of the spiked mixture. Each approach pro-

vides valuable information on immune infiltration and may be sufficient to assess the environ-

ment of more abundantly infiltrated tumors. However, there are limitations based on the

number of RNA reads provided by each infiltrating cell in a bulk population. Immunohistol-

ogy has its own limitations, particularly those relating to epitope preservation through tissue

processing, and the difficulties in standardizing staining over time and between institutions. In

this study we set quantitative immunohistology as the gold standard for comparison; however,

standard sampling issues such as selection of an appropriate archived tissue block and the rele-

vance of a single 5μM section to the tissue as a whole can lead to inaccuracies that apply to

each approach. Novel technologies are emerging that incorporate the geographic information

of histology with comprehensive gene profiling, and have the potential to change how we

assess the immune complexity of tumors [34]. Further analysis of patients giving discordant

RNA and IHC data would be valuable to understand the impact of sampling versus other com-

plicating factors that could explain the variations.

The strength of genomic and other omic profiling is the wealth of data that can be extracted

simultaneously. Along with infiltrating cells, omic analyses can inform as to the mutational sta-

tus of the tumor [8] to identify immunotherapeutic targets [35], and identify expression of

inflammatory and chemokine markers that may dictate immune cell recruitment [36, 37].

Such analyses would be best combined with genomic analysis approaches that subdivide

patients according to novel molecular subtypes, some of which include tumor subtypes associ-

ated with higher immune infiltrates [38, 39]. However, further subdivision of patients will

require much larger cohorts to generate meaningful results. All of this can be performed on

very small quantities of patient material, at decreasing cost and with increasing speed. While

IHC-based multiplexing continues to increase the number of analytes that can be assessed on a

single tissue sample, this approach depends on the availability of high-quality validated anti-

bodies for each target. Unbiased sequencing-based approaches are to some degree future-

proofed against genes that may be of interest yet do not currently have reagents for IHC or

other analyses.

Further refinement of gene expression profiling for pancreatic adenocarcinoma and similar

poorly infiltrated tumors could have significant benefits in personalizing immunotherapy for

these recalcitrant tumors. For example, we show that CTLA4 is enriched in patients with high
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T cell infiltration and is part of the gene set that is associated with improved disease free sur-

vival. Antibodies targeting CTLA4 are an effective immunotherapy in some tumors [40], but

single agent anti-CTLA4 is not effective in patients with locally advanced and metastatic pan-

creatic adenocarcinoma [41]. In preclinical models of pancreatic adenocarcinoma, we simi-

larly found that anti-CTLA4 is ineffective as a single agent [42]. The combination of anti-

CTLA4 and radiation therapy is curative, but only where the host has good pre-existing immu-

nity to the tumor. Thus, gene expression profiling may help identify patient subsets with ade-

quate T cell infiltration that may benefit from immunotherapy combinations, and direct other

patients to novel interventions to improve their tumor immune environment prior to further

treatment.

Conclusions

While immunotherapy options are currently limited for patients with pancreatic adenocarci-

noma, these and other data showing an impact of immune infiltrates on patient outcomes sug-

gests we should continue to refine our understanding of the immune environment and pursue

immune therapies that are appropriate to the particular tumor environments of pancreatic

cancer. At present RNASeq-based analyses must take into account the poor overall infiltrate in

some tumor types to provide accurate assessments of the tumor environment.
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