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Abstract

Functional interconnections between brain regions define the “connectome” which is

of central interest for understanding human brain function. Resting-state functional

magnetic resonance (rsfMRI) work has revealed changes in static connectivity related

to age, sex, cognitive abilities and psychiatric symptoms, yet little is known how these

factors may alter the information flow. The commonly used approach infers func-

tional brain connectivity using stationary coefficients yielding static estimates of the

undirected connection strength between brain regions. Dynamic graphical models

(DGMs) are a multivariate model with dynamic coefficients reflecting directed tempo-

ral associations between nodes, and can yield novel insight into directed functional

connectivity. Here, we leveraged this approach to test for associations between

edge-wise estimates of direction flow across the functional connectome and age,

sex, intellectual abilities and mental health. We applied DGM to investigate patterns

of information flow in data from 984 individuals from the Human Connectome Pro-

ject (HCP) and 10,249 individuals from the UK Biobank. Our analysis yielded patterns

of directed connectivity in independent HCP and UK Biobank data similar to those

previously reported, including that the cerebellum consistently receives information

from other networks. We show robust associations between information flow and

age and sex for several connections, with strongest effects of age observed in the

sensorimotor network. Visual, auditory and sensorimotor nodes were also linked to

mental health. Our findings support the use of DGM as a measure of directed con-

nectivity in rsfMRI data and provide new insight into the shaping of the connectome

during aging.
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1 | INTRODUCTION

Although the rates and trajectories vary substantially between individ-

uals and cognitive domains (Ardila, 2007), normal aging is primarily

associated with a decline in most cognitive functions, including execu-

tive functions, attention, memory and perception (Riddle, 2007).

Numerous studies have established pronounced age-related differ-

ences in brain network connections (Betzel et al., 2014; Cassady

et al., 2019; Dørum et al., 2017; Geerligs, Renken, Saliasi, Maurits, &

Lorist, 2015; Grady, Springer, Hongwanishkul, McIntosh, &

Winocur, 2006; Maglanoc, Kaufmann, van der Meer, et al., 2019;

Meunier, Achard, Morcom, & Bullmore, 2009; Wang, Su, Shen, &

Hu, 2012). However, so far mostly age-related network changes have

been studied using static functional connectivity, where undirected

connectivity strengths are estimated from stationary coefficients and

assumed not to change short-term during the period of scan. Dynamic

functional connectivity (i.e., time-varying connectivity) has been stud-

ied to a lesser degree yet could yield new knowledge about connectiv-

ity direction, thereby supplementing approaches for static

connectivity with insight into the information flow of neural activity,

underlying processes related to cognitive functions and mental health

(Hutchison et al., 2013).

There are various approaches to estimate connectivity direction,

often divided into effective connectivity and directed functional con-

nectivity (Friston, Moran, & Seth, 2013). Effective connectivity refers

to the causal influence that one node exerts over another (Bielczyk

et al., 2019; Friston, 2011), while directed functional connectivity

(dFC) denotes information flow between nodes by estimating statis-

tical interdependence using measured blood-oxygen-level-

dependent (BOLD) responses (Bielczyk et al., 2019). Recent work

has provided evidence of changes in connectivity direction with age.

For instance, one study noted posture-related changes in effective

connectivity with elderly, compared to younger participants showing

higher effective connectivity between the prefrontal cortex (PFC)

and the motor cortex (MC) as measured using functional near-

infrared spectroscopy (fNIRS) while standing (Huo et al., 2018). Stud-

ies have also reported age-related psychomotor slowing with higher

effective connectivity (Michely et al., 2018), in addition to changes

in effective connectivity during resting-state functional magnetic

resonance imaging (rsfMRI) in certain areas of the brain of elderly

APOE ε4 carriers (Luo et al., 2019). It has also been shown that there

are alterations in effective connectivity in the prefrontal cortex dur-

ing emotion processing in individuals with autism spectrum disorders

(Wicker et al., 2008), and disrupted effective connectivity in patients

with externalizing behavior disorders (Shannon, Sauder, Beau-

chaine, & Gatzke-Kopp, 2009), schizophrenia (Schlösser et al., 2003)

and depression (Lu et al., 2012; Rolls et al., 2018). Others have inves-

tigated effective connectivity in rsfMRI in relation to psychedelics

and found evidence for alterations in cortico-striato-thalamic-cortico

loops in individuals given LSD (Preller et al., 2019). Changes in effec-

tive connectivity have also been observed in relation to episodic sim-

ulation and social cognition (Pehrs, Zaki, Taruffi, Kuchinke, &

Koelsch, 2018), as well as memory function in a neurodevelopmental

sample (Riley et al., 2018). However, we know little about how the

flow of information between different brain networks is altered

throughout life and how this affects the vulnerability for mental dis-

orders. Gaining such knowledge is of importance given the known

associations between age-related brain changes and mental disor-

ders (Kaufmann et al., 2019; Koutsouleris et al., 2013; Schnack

et al., 2016). In addition, it is unknown how sex differences contrib-

ute to differences in information flow. New statistical methods such

as Dynamic graphical models (DGM) allow us to examine the extent

to which developmental and age-related processes in the brain

change the connection between networks, and how this is associ-

ated with various factors such as sex, cognitive abilities and mental

health.

DGM has been proposed as an approach for estimating dFC in

rsfMRI data and to explore intrinsic functional connectivity in relation

to organization of brain functioning. DGM is a form of Dynamic

Bayesian Networks, that describes the instantaneous directed rela-

tionships between nodes (Bilmes, 2010; Schwab et al., 2018). As such,

it does not make assumptions based solely on lagged relationships

which can be highly influenced by the hemodynamic response, such

as for instance Granger Causality assumes. Further, DGM utilizes

dynamic linear models (DLMs) for each node or network to estimate

binary relationships. While DLMs are acyclic, the overall network can

be cyclic. From this, one can study the spatiotemporal arrangement of

links in the network, defined here as the directionality between a

node pair. Accordingly, this statistical method can give a meaningful

characterization of the dynamic connectivity between network nodes.

Initial implementation of the DGM approach in rsfMRI data from

mice (N = 16) showed information flow from CA1 and dentate gyrus

to the cingulate cortex, which is in line with studies that have used

viral tracers to examine the directed anatomical connectivity (Schwab

et al., 2018). Further, human rsfMRI data in Human Connectome Pro-

ject (HCP) subjects (N = 500) suggested consistent default mode net-

work (DMN) influence on cerebellar, limbic and auditory/temporal

networks, in addition to a stable mutual relationship between visual

medial (VM) and visual lateral (VL) networks (Schwab et al., 2018).

Accordingly, DGM is a promising method to further disentangle the

functional connectome. Here, we aimed to replicate findings from

Schwab et al. (2018) using independent data from the HCP (Van Essen

et al., 2013) and the UK Biobank (Sudlow et al., 2015). Further, we

aimed to investigate if there were associations between dFC and age,

sex, intellectual abilities and mental health measures, assessing mental

health as a continuum in healthy (undiagnosed) individuals. We tested

these associations for every connection of the directed network

(edge-level analysis), and on node-level by assessing associations with

network in-degree (the number of input connections for a given node)

and out-degree (the number of output connections for a given node).

Overall, we expected to find alterations in information flow to pre-

frontal areas with higher age as studies have shown large-scale reor-

ganization of the brain with pronounced effects in frontal regions

(Huo et al., 2018; Luo et al., 2019; Michely et al., 2018).
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2 | METHODS

2.1 | Study samples

HCP: The HCP consortium is funded by the National Institutes of

Health (NIH) led by Washington University, University of Minnesota,

and Oxford University. HCP is undertaking a systematic effort to map

macroscopic human brain circuits and their relationship to behavior in

a large population of young healthy adults (Van Essen et al., 2013).

HCP participants are drawn from a healthy population born in Mis-

souri, where a proportion of the subjects included are adult twins and

their nontwin siblings (Van Essen et al., 2013). The adult sample con-

sists of 1,200 subjects. Exclusion criteria include having siblings with

severe neurodevelopmental disorders, and documented neuropsychi-

atric or neurologic disorders. Furthermore, individuals with illnesses

such as diabetes or high blood pressure and twins born prior to

34 weeks' gestation and nontwins born prior to 37 weeks' gestation

were excluded (Van Essen et al., 2013). The participants went through

an MRI protocol, in addition to extensive behavioral assessment out-

side the scanner, in the domains of cognitive, emotional, motor, and

sensory functions (Van Essen et al., 2013). All participants provided

signed informed consent. Washington University Institutional Review

Board approved the study (Glasser et al., 2016).

UK Biobank: The UK Biobank initiative is a large-scale biobank

prospective cohort established by the Medical Research Council and

Wellcome Trust (Collins, 2012), and funded by the UK Medical

Research Council, Wellcome Trust, Department of Health, British

Heart Foundation, Diabetes UK, Northwest Regional Development

Agency, Scottish Government, and Welsh Assembly Government

(Sudlow et al., 2015). This population-based study examines the influ-

ence of genetic and environmental factors and the occurrence of dis-

ease in participants included in the age range of 40–69 years old,

recruited from 2006–2010, and were 45–80 years when they were

scanned in the years thereafter (Sudlow et al., 2015). The study has

recruited 500,000 subjects, where 100,000 are going to be included

as an MRI subgroup (Miller et al., 2016). Further, participants filled out

questionnaires about lifestyle, family, as well as medical history in

addition to completing a variety of physical measures (Sudlow

et al., 2015). In addition, a subset of participants filled in a mental

health questionnaire (MHQ) online. All participants provided signed

informed consent. UK Biobank was approved by the National

Research Ethics Service North West (ref 11/NW/0382, [Health

Research Authority, 2016]).

2.2 | MRI acquisition

MR data was collected by the study teams of HCP and UK Biobank.

HCP: MRI data from the HCP study was collected using a custom-

ized 3 T Siemens Skyra with a 32-channel receive head coil at

Washington University. rsfMRI data was collected for each subject

using a T2*-weighted BOLD echo-planar imaging (EPI) sequence with

the following parameters: repetition time (TR)/echo time (TE)/flip angle

(FA) = 720 ms/33.1 ms/52�; voxel size, 2.0 × 2.0 × 2.0 mm3, MB = 8,

BW = 2,290 Hz/Px, in-plane FOV = 208 × 180 mm, fat sat, 1,200 vol-

umes; scan time ≈ 15 min (Smith et al., 2013). A T1-weighted 3D

MPRAGE, sagittal sequence with the following pulse sequence parame-

ters was obtained: TR/TE/FA = 2.4 ms/2.14 ms/8�; voxel

size = 0.7 × 0.7 × 0.7 mm3, FOV: 88 × 224 × 224, iPAT = 2, scan

time = 7 min 40 s. The T1-weighted image was used for registration to

the EPI data in the present study. rsfMRI data were collected over

2 days divided into 4 rsfMRI sessions where the scanning session took

1 hr each of the days, including task fMRI (Glasser et al., 2016).

UK Biobank: MR data from the UK Biobank study was collected

with a 3 T standard Siemens Skyra using a 32-channel receive head coil

at Newcastle and Cheadle Imaging Centre in the UK. rsfMRI data was

collected for each subject using a T2*-weighted BOLD EPI sequence

with the following parameters: TR/TE/FA = 735 ms/39 ms/52�; voxel

size, 2.4 × 2.4 × 2.4 mm3, MB = 8, R = 1, no iPAT, fat sat, 490 volumes;

scan time = 6 min 10 s. A T1-weighted 3D MPRAGE, sagittal sequence

with the following pulse sequence parameters was obtained: TR/TE/

FA = 2.0 ms/2.01 ms/8�; voxel size = 1.0 × 1.0 × 1.0 mm3, FOV:

208 × 256 × 256, in-plane acceleration iPAT = 2, scan time = 5 min.

The T1-weighted image was used for registration to the EPI data in the

present study. The entire MRI protocol took 31 min in effective scan

time (Miller et al., 2016).

2.3 | MRI preprocessing

HCP: Processed HCP data was obtained from the HCP database

(https://ida.loni.usc.edu/login.jsp), where we downloaded the released

PTN 1200-subjects package. The HCP project processed the data

through their pipeline, which is specifically made for HCP high-quality

data (Glasser et al., 2013). Their preprocessing comprised image

processing tools, based on Smith et al. (2013), with minimal-

preprocessing according to Glasser et al. (2013). In addition, areal-fea-

ture-based alignment and the multimodal surface matching algorithm

was applied for inter-subject registration of the cerebral cortex

(Glasser et al., 2013; Robinson et al., 2014). Further, artifacts were

removed by means of FIX (FMRIB's ICA-based X-noisiefier, [Griffanti

et al., 2014; Salimi-Khorshidi et al., 2014]), and ICA (independent com-

ponent analysis, [Beckmann & Smith, 2004]) while dual regression

was used for further processing of timeseries, these steps are

described in more detail below. HCP structural data was manually

quality checked while the fMRI data went through a built in quality

control pipeline where estimates including voxel-wise temporal stan-

dard deviation (tSD), temporal SNR (tSNR), movement rotation and

translation were computed (Marcus et al., 2013). In addition, the BIRN

Human QA tool was used (Glover et al., 2012; Marcus et al., 2013).

One hundred and eighty-four subjects were reconstructed using an

earlier version of the HCP data reconstruction software, while

812 subjects were run through a later edition, and 7 subjects was

processed using a mixture of the two methods. Further, the data was

temporally demeaned and variance normalized (Beckmann &

Smith, 2004). Next, fMRI datasets were submitted to a group ICA, a

LUND ET AL. 4175

https://ida.loni.usc.edu/login.jsp


data driven analysis technique used to discover independently distrib-

uted spatial patterns that represent source processes in the data

(Beckmann & Smith, 2004). ICA extracts spatially independent compo-

nents, a set of spatial maps and associated time courses, by use of

blind signal source separation and linear decomposition of fMRI data

(McKeown et al., 1998; McKeown & Sejnowski, 1998). MIGP

(MELODIC's Incremental Group-PCA) from 468 subjects were used to

generate group-PCA that was used for the group-ICA utilizing FSL's

Multivariate Exploratory Linear Optimized Decomposition into Inde-

pendent Components (MELODIC) tool (Beckmann & Smith, 2004;

Hyvärinen, 1999), where 25 components were extracted and used for

further processing. ICA was applied in grayordinate space (Glasser

et al., 2013). Dual regression was applied to estimate specific spatial

maps and corresponding time series from the group ICA for each sub-

ject (Beckmann & Smith, 2004; Filippini et al., 2009). As Schwab

et al. (2018) reported a high degree of consistency in dFC patterns

between rsfMRI sessions, we included data from the first run in our

analysis and as follows this was used for further processing where

dual regression was applied.

UK Biobank: Processed data was accessed from the UK Biobank

study team under accession code 27412. The Biobank preprocessing

comprised image processing tools, largely acquired from FSL (http://

fsl.fmrib.ox.ac.uk), and complied with the pre-processing steps done

as part of the HCP pipeline, including motion correction using

MCFLIRT, grand-mean intensity normalization of the 4D dataset by a

single multiplicative factor, high pass temporal filtering and distortion

correction (Alfaro-Almagro et al., 2018). The EPI unwarping step

included alignment to the T1, where the unwarped data is written out

in native fMRI space, while the transform to T1 space is written out

independently (Alfaro-Almagro et al., 2018). Fieldmaps were utilized

as part of the melodic pipeline (Alfaro-Almagro et al., 2018). FMRIB's

Linear Image Registration tool (FLIRT) was used to register fMRI vol-

umes to the T1-weighted image (Jenkinson, Bannister, Brady, &

Smith, 2002; Jenkinson & Smith, 2001). Boundary based registration

(Greve & Fischl, 2009) was used in a final step to refine the registra-

tion of the EPI and structural image. The ICA + FIX and dual regres-

sion procedure corresponds to what we reported for HCP above. For

the UK Biobank sample, 4,100 fMRI datasets were submitted to a

group ICA, where 25 components where extracted from the ICA and

used for further analysis. A FIX classifier for UK Biobank imaging data

was hand trained on 40 Biobank rsfMRI datasets for removal of arti-

facts (Alfaro-Almagro et al., 2018). As for quality assessment, part of

the UK Biobank imaging pipeline entails assessment of the

T1-weighted images, which includes automated classification by use

of machine learning (Alfaro-Almagro et al., 2018). If a T1-weighted

image has been classified as having serious issues, the dataset has not

been used in this study.

2.4 | Included participant data

HCP: From the HCP data release, four subjects were excluded due to

missing information about mean relative motion and 15 individuals

were excluded due to missing information on cognitive or mental

health data, yielding data from a total of 984 individuals aged

22–37 years (mean: 28.7 years, SD: 3.71 years, 52.8% females) for the

analysis on all HCP subjects. Out of those, data from 495 individuals

were not included by Schwab et al. (2018) and were included for an

additional replication analysis (mean: 28.6 years, SD: 3.72 years,

49.5% females).

UK Biobank: From the UK Biobank data release, we started out

with 16,975 subjects, where we excluded subjects with a diagnosed

neurological or psychiatric disorder (N = 1,319) as well as 5,082 sub-

jects missing information on mean relative motion, cognitive and men-

tal health data, and 325 subjects that had a different number of

volumes than in the standard protocol, yielding data from a total of

10,249 individuals aged 45–80 years (mean: 62.8 years, SD:

7.35 years, 53.8% females).

2.5 | Network analysis

Based on our aim to replicate findings from Schwab et al. (2018) in

independent data, we chose the same model order as this study

(d = 25) for both HCP and the UK Biobank sample. In each sample, we

chose ten resting-state networks (RSNs) that had the highest spatial

correlation with the 10 RSNs reported by Smith et al. (2009), and in

line with the procedure used in Schwab et al. (2018). These RSNs

comprised default mode (DMN), cerebellar (Cer), visual occipital (VO),

visual medial (VM), visual lateral (VL), right frontoparietal (FPR), left

frontoparietal (FPL), sensorimotor (SM), auditory (Au), and executive

control (Ex) networks. The timeseries for the 10 RSNs were mean cen-

tered so that each timeseries for each node had a mean of zero.

Finally, utilizing the DGM package v1.7.2 in R we estimated dFC from

individual level RSN time series. RSNs will henceforth be referred to

as network “nodes” as we estimated temporal connectivity

between RSNs.

DGM is a graphical model with directed relationships between

nodes and time-varying connectivity strengths for rsfMRI data and is

a continuation of the Multiregression Dynamic Model (Costa

et al., 2015; Queen & Smith, 1993). DGM comprises a set of dynamic

linear models (DLMs), state space models that are linear and Gaussian

(West and Harrison, 1997). A single DLM is a directed acyclic graph

(DAG), however, the DGM as a set of DLMs are allowed to contain

cycles. In a DLM, the time series of a specified receiving node is

regressed on the time series from one or more other transmitter

nodes by deploying dynamic regression, where the directed relation-

ship corresponds to information flow from the transmitter node to

the receiver node (Schwab et al., 2018). Key steps of DGM include

applying random walk smoothness for modeling the underlying cou-

pling between time series, and deploying a Bayesian framework where

dynamic directed graphical models (which includes time-varying coef-

ficients for a set of transmitter nodes as covariates on a receiver node

[Schwab et al., 2018]), gives a binary view of coupling, where a dis-

count factor (δ) is given for each model. The “winning” model is

selected based on the model evidence (derived from log-likelihood of
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the observed time-series), indicating if there is an influence or not

from one transmitter node to a receiving node, and this resembles the

approach used in regression dynamic causal modeling (Frässle

et al., 2017).

2.6 | Statistical analysis

For both HCP and UK Biobank data, we performed logistic regression

for every connection of the directed network using directed connec-

tivity as the response variable and testing for associations with age,

age-orthogonalized age squared (age2, using the poly function in R),

sex, intellectual abilities, mental health, and motion taken together in

one model for each sample. In the case of UK Biobank where data

was acquired at multiple scanners, this model also included scanning

site as a covariate (see SI; SFig. 1–2, for additional analyses examining

possible multicollinearity between covariates included in the models).

Figure 3 and 5(a) show the coefficients for the covariates extracted

from the HCP - and the UK Biobank model per edge. We refer to this

as edge-level analysis. Furthermore, we assessed input and output

connections for a given network separately, to examine which nodes

in general send and receive information. Accordingly, we calculated

the number of output connections (denoted as out-degree) and the

number of input connections (denoted as in-degree) for a given node.

We refer to this as node-level analysis. We performed linear regres-

sion using this in-degree and out-degree as dependent variables and

the same independent variables as used on the edge-level. All

p-values were Bonferroni corrected for a number of 90 analyses on

the edge-level and for 10 analysis on the node-level, with an alpha

level of 0.05.

For the HCP data, we utilized the age-adjusted NIH Toolbox Cog-

nition Total Composite Score as a measure of cognitive abilities, which

includes test in the following subdomains: executive function, episodic

memory, language, processing speed and working memory (Barch

et al., 2013). The gender and age adjusted T-score of the Achenbach

Adult Self-Report, Syndrome Scales and DSM-Oriented Scale (ASR)

was used as a measure of mental health for the HCP participants. In

addition, we included the mean relative motion and the statistical

models tested in HCP thus included age, age2, sex, cognitive test per-

formance, mental health and motion.

For UK Biobank, we used the fluid intelligence score (UKB field:

20016, which consisted of the sum of the number of correct answers

given to 13 fluid intelligence items) where we controlled for age on

fluid intelligence before using the residuals in the analysis as a mea-

sure of cognitive abilities for participants in the UK Biobank sample.

Further, we inferred mental health by performing a principal compo-

nent analysis (PCA) on 14 items of the online MHQ available for

154,607 participants with less than 3 missing values on the included

items (Figure 1). We imputed missing values in R using the missMDA

package (Josse & Husson, 2016) and subsequently performed the

PCA using the “prcomp” function. The first PC, often referred to as

the p-Factor or pF (Caspi et al., 2013), explained 27.02% of the vari-

ance. This component related mostly to depression/anxiety items.

Given recent indications that psychopathology may not be explained

F IGURE 1 Principal component analysis (PCA) of mental health questionnaire from UK Biobank. We used the first two principal components
as proxies of general psychopathology, referred to as “pF” and “pF2”
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by a single dimension (Mallard et al., 2019), we also included the sec-

ond principal component, which explained 11.94% of the variance.

We refer to this component as pF2, and this component related

mostly to psychosis items. The statistical models tested in UK Biobank

thus included age, age2, sex, fluid intelligence, pF, pF2, motion and

scanning site.

3 | RESULTS

We uncovered the same pattern of dFC between networks as previ-

ously reported (Figure 2(a), Schwab et al., 2018), when using only

data from independent subjects that were not used in Schwab

et al. (2018) (Figure 2(b)) and likewise when using all available HCP

data (Figure 2(c)). The cerebellar and auditory network appeared to

be mostly a receiver in terms of directional information flow in the

network.

3.1 | Significant effects of sex and motion on
directed connectivity

Analysis of edge-wise associations of dFC with age, age2, sex, intel-

lectual abilities, mental health and motion in the full HCP sample

(N = 984) yielded significant effects after Bonferroni correction

(Figure 3). The findings show that compared to women, the VM in

men receives less information from other visual networks, VO and

VL (Figure 3; SI Tables 1a-b provides z-scores and corresponding p-

values). Furthermore, the DMN-VM and DMN-VL edges was found

to be less present in males, and the same pattern was found for the

Ex-SM edge. In addition, motion had significant impact on directed

connectivity between the Cer and VM and for the FPL-Ex edge,

whereas age, age2, intellectual abilities and mental health, were not

significantly associated with directed connectivity at the edge-

level.

3.2 | Node-level analysis reveals significant effects
of age2, sex and motion on directed connectivity

Next, we assessed out-degree and in-degree for networks. In line with

results from the edge-wise analyses, we found that sex was signifi-

cantly associated with out-degree (Figure 4(a)), with networks in gen-

eral sending less information in males compared to females. In

addition, there was a significant relationship between the VM node

and age2, where we observed a higher out-degree with higher age,

indicating that the VM node sends more information as an effect of

aging. Moreover, when looking at the in-degree (Figure 4(b)) we also

found significant effects of sex. Specifically, the VM, SM and Ex sends

less information to other nodes in males compared to females, the

same pattern as shown for sex effects and out-degree. In addition,

motion was also associated with out-and in-degree for the Cer and Ex

nodes. Further, we did not find an effect of age, cognition or mental

health on node-level.

3.3 | Similar investigations in older individuals
revealed effects of age, age2, sex, motion and scanner
on dFC

Next, we employed the same analysis approach using UK Biobank

data (age range: 45–80 years). We partly found similar patterns of

dFC between networks as previously reported by Schwab et al. (2018).

Whereas the characteristic of the Au network to have many input

connections as found in HCP data did not replicate, UK Biobank data

confirmed this pattern for the cerebellum, as well as a bidirectionality

of the VM-VL edge with these nodes having a reciprocal information

flow (Figure 5).

Edge-wise analysis of dFC alterations related to age, sex, cogni-

tion, psychopathology, motion and scanning site is illustrated in

Figure 5 (SI Tables 2a-e provides z-scores and corresponding p-values

for UK Biobank data).

F IGURE 2 Average directed connectivity matrices across subjects for HCP data showing the significant proportions of edges (binomial test,
5% FDR threshold, hypothesized probability p0 = .18) in (a) data previously reported by Schwab et al. (2018), (b) independent data, (c) all available
data (a + b; slight differences in sample size due to differences in exclusion criteria). The legend shows the 10 RSNs included in the analysis; VO,
visual occipital; DMN, default mode; VM, visual medial; VL, visual lateral; FPR, frontoparietal right; FPL, frontoparietal left; SM, sensorimotor; Cer,
cerebellum; Au, auditory; Ex, executive control network, where the y-axis indicates the sender node, while the x-axis refers to the same nodes but
here they are receivers
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We found a significant effect of age on edge-wise information

flow with a positive association for the VL, and cerebellar network,

with these nodes giving more information to the DMN with higher

age. Further, with higher age the DMN gives more information to the

VL and Cer network, while the Ex receives more information from the

FPR, FPL and the SM (Figure 5; see SI for further details). Moreover,

SM receives less information in general from the other nodes and this

node sends less information input in the information flow with the

cerebellar and auditory networks with higher age. In addition, VM

sends less information to the cerebellar network and there was also a

decrease in information flow from VO to FPL, VL-FPL, FPR-FPL, FPL-

FPR, and for the DMN and VL to the Au network. In addition, there

was an effect of age2, from Cer to the FPR node.

Also, there was widespread significant associations between dFC

and sex (Figure 5; see SI for further details), where the FPR, FPL, SM,

Cer, Au and Ex nodes in males more often receive information in general

from the other nodes compared to females. The opposite was found for

VO-VM, and there was bidirectional dFC between DMN and Cer with

reduced information flow in both directions observed in males. The

opposite reciprocal relationship was found between the DMN and VM,

with increased information flow present in males. Also, the DMN in

males received more often information input from Au and VO compared

to females, while the SM node in males more often sent information to

the VO. In addition, the VL received more information from the VO, SM

and Cer in males. The supplementary information covers results from

additional analyses of interaction effects (SFig. 5–6) and the impact of

scan duration between HCP and the UK Biobank sample (SFig. 3–4).

3.4 | Node-level analysis reveals significant effects
of age, age2, sex, mental health, motion and scanner in
directed connectivity

When looking at the out-degree, or the number of output connections

for a given node and the association with pF, we found that the visual

networks as well as the SM and Au showed a negative association,

with a higher number of output connections being related to a lower

degree of depressive/anxiety symptoms (Figure 6(a)). In addition,

males showed a stronger pattern of nodes sending more information

in general to the other networks compared to females. Also, in rela-

tion to age, the VO and VM had a negative association with out-

degree, while age2 in general had a positive association with more

output connections with higher age. Further, when estimating in-

degree, or the number of input connections for a given node, males

showed more marked receiver nodes than females for all the nodes,

with the exception of the VO and VM that did not show an effect of

sex (Figure 6(b)). There were likewise effects of both age and age2,

where specifically the FPR showed a positive association with age2,

while the same was found for age and Ex in addition to opposite

effects that were observed for the FPL, SM and Au and age. Motion

was found in general for all nodes in both node-level analysis, and

scanner also had a significant relationship with nodes in general

except for Au and VO (for assessment of the balance between in-

degree and out-degree see SI, SFig. 7–8).

Given that sex effects were wide-spread across nodes, we also

tested if sex effects were mostly global by accounting the analysis for

F IGURE 3 Directed connectivity matrices showing the effects of age (a), age2 (b), sex (c), intellectual abilities (d), mental health (e) and motion
(f) on directed connectivity. The analysis was performed in all available HCP data (N = 984, 22–37 years, df = 977). Significant edges following
Bonferroni correction are marked as X. The legend shows the 10 RSNs included in the analysis; VO, visual occipital; DMN, default mode; VM,
visual medial; VL, visual lateral; FPR, frontoparietal right; FPL, frontoparietal left; SM, sensorimotor; Cer, cerebellum; Au, auditory; Ex, executive
control network, where the y-axis indicates the sender node, while the x-axis refers to the receiving node. The colors reflect the z-value for the
corresponding effects where red indicates a positive association and blue a negative association
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the total number of edges per subject. We found that there were still

significant effects of sex on node-level. In HCP data, there were sig-

nificant effects for the in-degree of the Cer (t = 2.95, p = 3.2e-03),

while UK Biobank data showed significant effects in the out-degree

for the SM network (t = 5.51 p = 3.6e-08), DMN (t = −3.72 p = 2.0e-

04), and Ex (t = −3.66 p = 2.5e-04), in addition to in-degree for VO

(t = −4.81, p = 1.6e-06), VM (t = −4,28, p = 1.9e-05), FPL (t = 3.16,

p = 1.6e-03), Au (t = 2.90, p = 3.8e-03), and the Ex network (t = 4.27,

p = 2.0e-05).

4 | DISCUSSION

The aim of the current study was to test for associations between

dFC and age, age2, sex, cognitive abilities and mental health between

core brain networks after testing the reproducibility of the DGM

approach. We performed the analysis in healthy participants from two

large public cohorts that differed in their age range (HCP:

22–37 years, n = 984, UK Biobank: 45–80 years, n = 10,249) including

subjects displaying subclinical symptoms in psychiatric domains.

Accordingly, by utilizing these healthy samples in our analysis, we are

able to examine mental health on a continuum rather than treating it

as a static condition in the population.

Using the same HCP subjects as Schwab et al. (2018) initially

reported on, as well as independent HCP data, we replicated the pat-

terns of dFC between networks. As seen in Figure 2(a), there were

some minor differences from the patterns reported by Schwab

et al. (2018) that can be attributed to the difference in ICA decompo-

sitions, as we utilized data processed in a newer HCP pipeline release

than Schwab et al. (2018), where a different ICA decomposition was

included. However, the similar patterns with different decomposition

illustrate the robustness of the method. In addition, we investigated

dFC in UK Biobank data. Both the HCP and UK Biobank samples con-

firmed that the cerebellar network receives mostly rather than emits

information from several other networks. Further, the visual areas VM

and VL showed a bi-directionality in the information flow of their

F IGURE 4 (a) Out-degree
matrix with corresponding effects
of covariates age, age2, sex,
cognition, mental health, and
motion in HCP data (N = 984,
22–37 years, df = 977). (b) In-
degree matrix with corresponding
effects for the same covariates as in
panel (a). The colors reflect the t-

value for the corresponding effect
where numbers inside the boxes
indicate t-statistic and p-value, and
significant effects are marked with
a black border following Bonferroni
correction (p < .05)
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connectivity, with effects particularly pronounced in UK Biobank.

Whereas the previously reported patterns by Schwab et al. (2018)

where the auditory network mostly receives information from the

other network nodes replicated in the independent HCP analyses in

the present study, similar patterns were not observed in UK Biobank

data. These differences as well as the more symmetric findings in UK

Biobank data may be attributable to sample specific distinctions, such

as the differences in the age range or for instance dissimilarities in the

decomposition of networks, or differences between the preprocessing

pipelines used in the two samples.

We observed marked effects of age on dFC in UK Biobank sam-

ple. For example, the sensorimotor network generally received little

information from other networks with higher age in the 45–80 years

age range. This sensorimotor association with age is particularly inter-

esting given that apparent aging of the brain appears a key character-

istic in several common brain disorders (Hajek et al., 2019; Kaufmann

et al., 2019; Schnack et al., 2016), including schizophrenia, which has

repeatedly been associated with dysconnectivity of sensorimotor net-

works (Cheng et al., 2015; Kaufmann et al., 2015). Thus, it will be of

interest to delineate age trajectories of dFC in mental disorders in

future studies.

Moreover, the age effects were overall in the direction of

decreased reception with higher age. However, three connections

showed a bi-directional relationship with age with decreased connec-

tivity flow in both directions between these nodes (Cer-SM, Au-SM,

and FPL-FPR). Additionally, two connections of the DMN increased

bi-directionally with age (Cer-DMN, DMN-VL). Of note, increased

connectivity between the cerebellum and the DMN with age has pre-

viously been reported in a study comparing a group of young to a

group of old individuals using a static connectivity approach (Dørum

et al., 2017). While connectivity was lower in the young group during

rest, it was higher in the young group during task load (Dørum

et al., 2017), which is in line with the established decline of DMN vari-

ability in old age (Maglanoc, Kaufmann, Jonassen, et al., 2019;

Mowinckel, Espeseth, & Westlye, 2012). While direct comparisons

between results obtained with dFC and those with static connectivity

warrant caution given that they measure different properties of the

rsfMRI timeseries, these results may suggest that changes in direction

with age may also depend on task load. This will need to be explored

in future studies where task-fMRI could be used to constrain dFC to

specific states and task performance.

There were significant sex differences at the edge- and node-

level, where for instance males showed a stronger pattern of nodes

sending and receiving more information in general to the other net-

works compared to females in the UK Biobank sample. There was also

a pronounced effect of sex on dFC in the sensorimotor network in UK

Biobank data, with males showing a more marked pattern of dFC

compared to females on the edge-level. Prior research using static

functional connectivity estimates have reported increased connectiv-

ity in males in the sensorimotor network in resting-state (Scheinost

et al., 2015) and both increased and decreased down regulation

between males and females while participants were performing a

motor task (Lissek et al., 2007). There were also significant effects of

pF in relation to visual networks as well as the SM and Au, where a

F IGURE 5 (a) Average directed connectivity matrix showing significant proportion of edges (binomial test, 5% FDR threshold, hypothesized
probability p0 = .47), and corresponding effects of age, age2, sex, fluid intelligence, pF, pF2, motion and scanner for UK Biobank (N = 10,249,
45–80 years, df = 10,240). Significant edges following Bonferroni correction are marked as X. (b) Chord diagrams that show only the significant
effects of age, age2, sex, motion and scanner for the UK Biobank sample. The colors reflect the z-value for the corresponding effects where red
indicates a positive association and blue a negative association. The arrow heads in the circular plots indicate direction (receiver or sender)
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higher number of output connections was related to a lower degree

of depressive/anxiety symptoms. As such, our findings can comple-

ment static functional connectivity estimates and be of help in yield-

ing insight into how sex, age and psychiatric symptoms factor into

information flow of large-scale brain networks. Additionally, this can

give a better understanding of the connectome in general, and also in

relation to sex differences found in symptom onset and burden in

mental disorders.

In regards to the thresholding used in this method, the sparsity is

to some degree an artificially induced term and while it can reflect

that there is indeed no connection between two nodes, it can also

mean that there is no strong enough connection between two nodes.

Conceptually this makes a big difference from an anatomical stand-

point. However, if we think about it as a way of thresholding the data

to a degree that reveals strong patterns but dampens the noisier, less

clear patterns, it conceptually reminds of the procedure in regular

static functional connectivity analysis where regularization is deployed

to dampen low correlations and to pronounce strong ones. Another

aspect to consider, is that the relatively limited number of nodes

included in this analysis may have hampered the detection of sending

nodes and as such future analyses deploying more fine-grained net-

work parcellations is warranted.

Whereas our results revealed distinct effects of age, age2, and sex

on dFC on edge-level, and age, age2, sex, and pF on the node-level,

none of our analyses identified significant relations with individual dif-

ferences in cognitive test performance, and we did not find a signifi-

cant association of mental health on dFC in the HCP sample or for

pF2 in the UK Biobank sample. Of note, we here studied variations in

mental health in healthy individuals, where effects may be subtle com-

pared to studies including patient data. For example, studies looking

at differences between healthy individuals and patients with psychiat-

ric disorders have observed alterations in connectivity direction

F IGURE 6 (a) Out-degree
matrix with corresponding effects
of covariates age, age2, sex, fluid
intelligence, pF, pF2, motion and
scanner for UK Biobank
(N = 10,249, 45–80 years,
df = 10,240). (b) In-degree matrix
with corresponding effects for the
same covariates as in panel (a). The

colors reflect the t-value for the
corresponding effect where
numbers inside the boxes indicate
t-statistic and p-value, and
significant effects are marked with
a black border following Bonferroni
correction (p < .05)
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(Lu et al., 2012; Rolls et al., 2018; Schlösser et al., 2003; Shannon

et al., 2009; Wicker et al., 2008). Another factor that may have con-

tributed to the lack of associations with mental health in the current

study may be inherent in the tools taken to assess mental health. The

MHQ in UK Biobank was taken a long time after the scanning and it

may thus not be a solid marker of the state at the participants' time of

scanning. Likewise, due to differences in available data, we used dif-

ferent approaches for measuring mental health, estimating two princi-

pal components in UK Biobank and utilizing a sum score in the HCP

data. The NIH Toolbox Cognition Total Composite Score used in HCP

cuts across various cognitive domains and as such may not be sensi-

tive to specific higher-order networks, and could indicate why we did

not find an association between intellectual abilities and information

flow between networks. However, studies have shown that there is

an association with subdomains of this test and effective connectivity

in nodes such as the frontoparietal network (Harding, Yücel, Harrison,

Pantelis, & Breakspear, 2015). Also, the ASR item used to measure

psychiatric and life function in HCP may not be specific enough as it

represents a sum score of a range of domains extending to depression

and anxiety, aggressive behavior, attentional problems and hyperac-

tivity, personality traits, psychotic and abnormal behavior, risk taking

and impulsivity, somatic complaints, and substance use.

4.1 | Limitations

The current study does not come without limitations. The data was

processed in different pipelines and we thus chose not to analyze the

two samples together as would have been of interest for studying age

effects across the lifespan. While we observed various patterns across

the two independent cohorts, there were also marked differences that

might be partly attributable to confound effects, such as variability in

the ICA decompositions, scanning site and motion.

A major challenge in estimating directed functional connectivity

has been the influence of regional differences in hemodynamic lags

(Chang, Thomason, & Glover, 2008; Wei, Liao, Yan, He, & Xia, 2017).

Granger Causality, a time domain approach which was widely used

before for estimating directed functional connectivity, has been criti-

cized for being highly influenced by such lags (Smith et al., 2011).

DGM reflects instantaneous relationships and does not solely con-

sider lagged relationships like Granger Causality does. To find out

how DGM is influenced by differing hemodynamic lags in various

brain regions, Schwab et al. (2018) examined how lags in the hemody-

namic response could potentially influence the DGM estimation of

directed functional connectivity by simulating systematic lags of the

hemodynamic response and found DGM performed well in these net-

work simulations. It was observed that large lags that are still physio-

logically plausible do not introduce spurious relationships with DGM

as may be expected with Granger causality, however, sensitivity of

DGM can drop to detect such relationships.

Moreover, DGM estimates binary connections, which may have

rendered the association analyses less sensitive. In addition, DGM

requires high-quality fMRI data with a low TR and benefits from a

high number of observations. The long scan duration needed to

acquire such data may have increased the chance that participants

may fall asleep while they are being scanned. This is especially a chal-

lenge for the HCP project where participants are in the MRI scanner

for a long time period (Glasser et al., 2018; Liu et al., 2018). Finally, as

noted above, the lack of strong variations in mental health in these

healthy samples may have limited the ability to identify associations

with mental health measures. Future research, involving patients with

psychiatric disorders may reveal if and how information flow is associ-

ated with disorders or related to specific symptoms.

5 | CONCLUSIONS

In conclusion, using independent rsfMRI data from HCP as well as the

UK Biobank samples we replicated several of the directed connectiv-

ity patterns from the original HCP analysis (Schwab et al., 2018). In

particular, we observed a marked characteristic of the cerebellar net-

work to receive information from many other networks, and found a

bi-directionality in the information flow between the visual areas VM

and VL. Further, there was widespread age and sex effects on infor-

mation flow, where strong age effects where observed in the sensori-

motor network. In addition, we found associations of mental health

on information flow for the sensorimotor network as well as the visual

and auditory nodes. Our findings support the use of DGM as a mea-

sure of directed connectivity in rsfMRI data and uncovered new

insight into the shaping of the connectome in aging. Future studies

should examine dFC in other samples and look at directional changes

in connectivity in relation to clinical populations and in broader age

ranges.
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