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Background: The abuse of methamphetamine (MA) worldwide has gained international

attention as the most rapidly growing illicit drug problem. The classification and treatment

response prediction of MA addicts are thereby paramount, in order for effective

treatments to be more targeted to individuals. However, there has been limited progress.

Methods: In the present study, 43 MA-dependent participants and 38 age- and

gender-matched healthy controls were enrolled, and their resting-state functional

magnetic resonance imaging data were collected. MA-dependent participants who

showed 50% reduction in craving were defined as responders to treatment. The present

study used the machine learning method, which is a support vector machine (SVM), to

detect themost relevant features for discriminating and predicting the treatment response

for MA-dependent participants based on the features extracted from the functional

graph metrics.

Results: A classifier was able to differentiate MA-dependent subjects from normal

controls, with a cross-validated prediction accuracy, sensitivity, and specificity of 73.2%

[95% confidence interval (CI) = 71.23–74.17%), 66.05% (95% CI = 63.06–69.04%),

and 80.35% (95% CI = 77.77–82.93%), respectively, at the individual level. The most

accurate combination of classifier features included the nodal efficiency in the right

middle temporal gyrus and the community index in the left precentral gyrus and cuneus.

Between these two, the community index in the left precentral gyrus had the highest

importance. In addition, the classification performance of the other classifier used to

predict the treatment response of MA-dependent subjects had an accuracy, sensitivity,

and specificity of 71.2% (95% CI = 69.28–73.12%), 86.75% (95% CI = 84.48–88.92%),

and 55.65% (95% CI= 52.61–58.79%), respectively, at the individual level. Furthermore,

the most accurate combination of classifier features included the nodal clustering

coefficient in the right orbital part of the superior frontal gyrus, the nodal local efficiency

in the right orbital part of the superior frontal gyrus, and the right triangular part of the

inferior frontal gyrus and right temporal pole of middle temporal gyrus. Among these,

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2021.583950
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2021.583950&domain=pdf&date_stamp=2021-03-03
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:junliu123@csu.edu.cn
https://doi.org/10.3389/fpsyt.2021.583950
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.583950/full


Yan et al. Methamphetamine Identification and Response Prediction

the nodal local efficiency in the right temporal pole of the middle temporal gyrus had the

highest feature importance.

Conclusion: The present study identified the most relevant features of MA addiction

and treatment based on SVMs and the features extracted from the graph metrics and

provided possible biomarkers to differentiate and predict the treatment response for

MA-dependent patients. The brain regions involved in the best combinations should be

given close attention during the treatment of MA.

Keywords: methamphetamine dependence, support vector machine, classification, treatment response, graph

metrics

INTRODUCTION

Abuse of the synthetic psychostimulant, methamphetamine
(MA), has gained international attention as the most rapidly
growing illicit drug problem worldwide (1). In the 2017
World Drug Report, ∼37 million people have become
addicted to MA. MA abuse is usually accompanied by various
health consequences, such as depression, anxiety, psychosis,
cardiovascular disease, and human immunodeficiency virus,
hepatitis B virus, hepatitis C virus that are spread by blood and
sex behaviors due to the social environmental factor of MA
use. Besides, a variety of secondary social costs were found,
such as disruptions to family, school and work life, and violent
behavior and drug-related crime (2, 3). Furthermore, frequent
MA use can alter the release and activity of monoaminergic
neurotransmitters, dopamine, norepinephrine, and serotonin
and other unknown mechanisms on the central nervous system
(CNS), which can be called neurotoxicity (4). The MA-induced
harm on CNS further results in significant psychiatric withdrawal
symptoms. Typical psychiatric symptoms include persecutory
delusions, auditory hallucinations, and loss of insight that
difficultly distinguish from some mental illnesses such as
schizophrenia, and MA-induced withdrawal symptoms usually
include anhedonia, hypersomnia, irritability, anxiety, aggression,
and intense cravings for MA (5, 6). In general, the severity of
these clinic symptoms depends on the amount of MA consumed.

MA abuse is termed as brain-based diseases given the
neural mechanisms and clinical performance of MA use (7–
9), which imply that the brain should contain information
about an individual’s current disease status and prognosis
(10). At present, the diagnosis of drug use disorders mainly
relies on descriptive signs and symptoms, according to the
fourth or fifth edition of the Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV or DSM-5) criteria, in which
a single “methamphetamine use disorder” with an added
severity specification was listed (11). However, MA addicts,
especially those with less severe symptoms, may deliberately
mislead about the diagnosis because of their resistance to
treatment. Therefore, an objective method to help diagnose
MA addiction at the individual level is worth exploring. On
the other hand, although there are many treatments available
currently, few yielded convincing results of MA dependence
(12, 13). At present, treatments of MA abuse are mainly
based on two types: psychosocial treatments and pharmacologic

treatments. Commonly used psychosocial treatments include
cognitive behavioral therapy (14), contingency management (15,
16), motivational interviewing (17), and so on. Meanwhile,
researchers explored many medications of MA treatment that
frequently target dopaminergic, serotonergic, GABAergic, and/or
glutamatergic brain pathways such as dexamphetamine (18,
19), methylphenidate (20, 21), naltrexone (22, 23), topiramate
(24, 25), and so on. Therefore, it makes sense to predict the
therapeutic effect before treatment, in order to allow doctors
to identify the optimal treatment plan at the individual level.
In this study, we defined MA-dependent participants with 50%
reduction in craving as responders to treatment.

MA abuse was found to be associated with structural and
functional alterations of the brain. In a study that used functional
magnetic resonance imaging (fMRI), Zhang et al. researched
the resting-state functional connectivity (RSFC) between seeds
[region of interest (ROI)] selected with a higher value of
ReHo and the whole-brain voxels and found different RSFC
performance when compared with healthy controls (HCs) (26).
Furthermore, in the studies conducted by Kohno et al. (27, 28),
the midbrain and dorsolateral prefrontal cortex were chosen
as ROIs, referring to previous research results. Kohno et al.
reported that MA addicts differ from HCs in many ROI-
related RSFCs, such as RSFC between the midbrain and caudate.
These studies selected different ROIs based on different research
aims, eventually presenting different results. Hence, RSFC based
on ROI selection could not reveal the full spatial patterns
of brain changes, and more suitable methods for determining
differences in neural network activity are needed. Graph–theory–
based complex network analysis is a non-invasive MRI-based
tool that provides a powerful framework for examining the
topological properties of brain networks and with no need for
ROI selection. With this method, the nodes represent the brain
regions, and the edges represent the anatomical or functional
connections (FCs) among brain regions (29–32). The present
study comprehensively examined the graph theoretical properties
of the network structure after MA abuse, because it is unclear
which graph metric is the most neurologically informative.

Equipped with machine learning techniques, researchers
could make progress in identifying and predicting the treatment
response for patients at the individual level. The support vector
machine (SVM) is a multivariate pattern classification algorithm
based onmachine learning, and this could iteratively improve the
performance in uncovering the relationships between variables
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by training classifiers (33). SVMs determine the hyperplane to
separate multivariate features of two classes, allowing samples
to be well-divided into two groups (such as patients and control
groups). In studies that applied SVMs to identify MA-dependent
patients, researchers have used features, including arterial spin
labeling (34), task state fMRI data (35), heart rate extracted
from MA-induced electrocardiogram (36), and differentially
expressed genes (37). Compared to these methods, the present
study selects features from various graph metrics. These graph
metrics described the characteristics of brain networks from
various aspects and comprehensively captured the functional
information of the brain.

The present study aims to develop possible biomarkers for
MA diagnosis and treatment prediction on an individual level,
so that it provides a deeper understanding of the addiction
and treatment of MA from the perspective of diagnosis and
treatment prediction based on the graph–theory analysis and
SVMs. The results of the present study represent an important
step toward the development of traditional tools in imaging
diagnostic identification, as well as the personalized treatment
approaches for MA abstinence treatment in the future.

MATERIALS AND METHODS

The present study was carried out in accordance with the Drug
Clinical Trial Management Regulations and approved by the
Ethics Committee of the Second Xiangya Hospital of Central
South University, which make decisions based on the Helsinki
Declaration and International Ethical Guidelines for Biomedical
Research Involving Human Subjects. An informed consent was
obtained from each patient.

Patient Population
In the present study, 43 MA-dependent participants (31.81 ±

8.50 years old, 28 males) and 38 age- and gender-matched HCs
(35.21 ± 7.84 years old, 25 males) were recruited. The MA
participants were collected from three drug rehabilitation centers
in Hunan Province. In China, drug addicts are forced to receive
treatment in the drug rehabilitation center for at least 2 years.
During this period, they have no access to any drugs. In our study,
MA participants were also forced to serve a 2-year sentence at the
rehabilitation center. All MA patients volunteered to participate
in the experiment and were compensated for their time with
1-month reduction of their sentence. All subjects reported a
detailed drug use history during the face-to-face interview.
MA addicts were included with positive urine test for MA,
negative urine test for other drugs, and the diagnosis of addiction
based on the DSM-IV. Subjects who had comorbid or history
of psychiatric illness (e.g., schizophrenia and major depression
unrelated to drug withdrawal), neurological disorder (e.g.,
multiple sclerosis, Parkinson disease, other primary degenerative
brain diseases, and any brain infections or neoplasms), head
trauma, or major chronic medical illnesses (e.g., diabetes,
uncontrolled hypertension, and heart disease) were excluded. In
addition, subjects with pregnant or contraindications to MRI
(e.g., metallic, electronic devices, or implants) were excluded.
Patients who met the aforementioned criteria were involved in

the present study. HCs were recruited throughWeChat, QQ, and
poster with the same inclusion and exclusion criteria applied for
MA users.

Information on the demographics was gathered before
the brain imaging was performed (e.g., age, gender and
educational attainment). Furthermore, the Fagerström Test
for Nicotine Dependence (FTND) and the Alcohol Use
Disorder Identification Test (AUDIT) were collected to evaluate
for cigarette smoking and alcohol use. The severity of
present MA craving was measured before the fMRI, with the
Methamphetamine Craving Questionnaire (MCQ) adapted from
the Heroin Craving Questionnaire.

All MA subjects underwent two examinations. The first
examination was performed from 1 week to 1 month after
abstinence (MA1 group), and the second examination was
performed at ∼1.5 years after abstinence (MA2 group). During
this abstinence period, MA-dependent participants had no access
to anything related to MA and received different types of drug
treatment, including only traditional Chinese medicine (n= 12),
only antidepressants and antianxiety medications (n = 10), both
of these (n= 19), and placebo (n= 2) for 2 months after the first
MRI examination. Before each MRI examination, these patients
completed the MCQ.

MRI Data Acquisition and Preprocessing
All MRI data were acquired using a 3-T Siemens Skyra MRI
scanner (Magnetom Skyra, Siemens, Germany) equipped with
a 32-channel head coil. The structural T1-weighted three-
dimensional magnetization-prepared rapid acquisition with
gradient echo was acquired with the following parameters: 176
sagittal slices, slice thickness = 1mm, gap = 0mm, field of view
(FOV) = 256 × 256mm, repetition time (TR) = 1,450ms, echo
time (TE) = 2.03ms, inversion time (TI) = 900ms, flip angle =
30◦, and voxel size= 1× 1× 1 mm3.

Resting-state functional MRI scans were acquired using the
following parameters: 36 axial slices, thickness = 4mm, FOV =

220× 220mm, TR= 2,000ms, TE= 30ms, flip angle= 80◦, and
225 volumes. All subjects were placed in the supine position with
eyes open and foam padding between their head and the head coil
to minimize head motion.

The resting-state fMRI data were preprocessed using the
DPABI (version 3.0, http://rfmri.org/dpabi) software, which
include the slice timing, realignment, spatial normalization,
regression, smoothing, and filter. For functional image
preprocessing, the first 10 volumes were discarded to avoid signal
instability. Slice timing was conducted to correct the remaining
volumes, and head realign was used to reject abnormal subjects
who had more than 2mm of motion or 2.0◦ of rotation. The
realigned images were transformed to the Montreal Neurological
Institute standard space using the DARTEL algorithm. Then,
the signals were regressed out, including the global signal,
cerebrospinal fluid signal and white matter signal, and the 24
head motion parameters. Afterward, the images were smoothed
with the Gaussian kernel using the full width at half maximum
of 6mm and bandpass temporal filtered (0.01–0.1Hz) to reduce
the low-frequency drift and physiological high-frequency noise,
including the breath and heartbeats (26).
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Calculation of Graph Metrics
A total of 15 graph metrics were calculated using the GRETNA
software (version 2.0.0, https://www.nitrc.org/projects/gretna/),
which included seven global network metrics: clustering
coefficient, shortest path length, global efficiency, local efficiency,
assortativity, synchronization, and hierarchy, and eight nodal
network metrics: nodal clustering coefficient, nodal shortest path
length, nodal efficiency, nodal local efficiency, degree centrality,
betweenness centrality, community index, and participant
coefficient. The Anatomical Automatic Labeling template was
used to extract the average time series of the blood oxygen
level–dependent (BOLD) signals in each brain region. There
were 90 regions across the whole brain. Next, the correlation
between each pair of the regional time series of the BOLD
signal was calculated as FCs, resulting in 4,005 (90 × 89/2)
FC values, excluding the self-correlation. Then, these FCs were
used to calculate the graph metrics for each subject, with a
sparsity threshold ranging from 0.05 to 0.50, in steps of 0.05.
For features extracted from graph metrics, each subject has
one value with the whole brain for global network metrics and
90 values with 90 brain regions for nodal network metrics.
Afterward, these features were reduced into the top features in
dimension that could be entered into the SVMs also with the
same sparsity threshold.

Statistical Analysis
The statistical analysis was performed on the graph metrics (7
× 1 + 8 × 90, 727 features) to extract the top features using the
GRETNA software. General linearmodel was performed between
the MA1 group and HC group, with education level, FTND,
and AUDIT as the covariables. Repeated-measures analysis of
variance (ANOVA) was performed between the MA1 group
and MA2 group for each graph metric. A strict false discovery
rate of 0.05 was applied to the analysis results as the multiple-
comparisons correction. Then, features that significantly differed
between groups were considered as the top features and entered
into the SVMs. The top features that differed between the
MA1 group and HC group were extracted from these two
groups and entered into the classifier for identifying those with
MA addiction. In addition, another classifier for predicting the
treatment response received top features extracted from theMA1
group, which differed between the MA1 group and MA2 group.

SVM-Based Classification
Two classifiers were conducted with one for investigating the
best top feature combination to differentiate patients from
controls and the other for investigating the best top feature
combination to predict the treatment response of MA addicts.
This was performed using the SVMs implemented in the
LIBSVM classification library (38, 39). The adopted linear kernel
allowed for the interpretation of the weight vector (i.e., the
relative importance of each feature in the classifier). Then, the
weight vectors were subsequently used to rank the importance of
the features in identifying MA. The SVMs were initially trained
using all top features derived from the graph metrics. In order to
identify the most informative feature, the least important feature
(in terms of weight vector) was removed after each round of

SVM training, and a new SVM was trained with the remaining
features. This process was repeated until only a single feature
remained. The accuracy of the classifier was recorded at each
stepwise removal. Leave-one-out cross-validation was used, in
which one subject was iteratively left out as the testing target, and
the remaining samples were used to train the SVMs. Each SVM
was repeated for 1,000 times (40, 41).

A patient was termed as a responder if the MCQ scores
exhibited a 50% decrease or more. The percentage drop of the
MCQ score was calculated, as follows:

d =
MCQfirst-MCQsecond

MCQfirst
. (1)

According to the value of d, the MA-dependent participants
were divided into two groups: responder group and non-
responder group. Then, the SVM was used to classify whether
the MA-dependent participant would be a responder after the
abstinence treatment.

RESULTS

Patient Population
In the process of image preprocessing, nine MA-dependent
participants and three HCs could not survive from the
realignment, ultimately resulting in the involvement of 34 MA-
dependent participants and 35 HCs in the present study. The
demographic characteristics of the MA and HC groups are
presented in Table 1. Among the 34 MA-dependent participants,
there were 21 responders and 13 non-responders, and their
demographic characteristics are presented in Table 2.

Classification Performance of
MA-Dependent Patients
After the general linear model was performed, 23 top features
remained, and all these top features were entered into the
SVMs. Through the stepwise removal of the top features, the
investigators were able to arrive at an optimal combination,
which identified patients in 73.2% [95% confidence interval
(CI) = 71.23–74.17%] of the cases (Table 3A). The progressive
removal of the first 20 top features (in order of increasing feature
importance) increased the classification accuracy, and this was
the result of the reduced overfitting in SVMs. The most accurate
combination of classifier features included the nodal efficiency in
the right middle temporal gyrus (MTG.R), and the community
index in the left precentral gyrus (PreCG.L) and cuneus (CUN.L),
in which the community index in PreCG.L had the highest
importance. The SVM accuracy decreased when additional top
features were added or subtracted from the optimal combination.
The accuracy and evolved top features of each SVM are shown in
Figure 1.

Classification Performance of Treatment
Response Prediction
After the ANOVA was performed, 12 top features remained, and
all these top features were entered into the SVMs. Through the
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TABLE 1 | Clinical characteristics of the participants (mean ± SD or median [IQR]).

Characteristics MA1 (n = 34) MA2 (n = 34) HC (n = 35) T value P-value

Age (years) 32.62 ± 8.80 — 35.14 ± 7.94 −1.25 0.22

% Male 58.8 — 62.9 0.12 0.81

Education level (years) 8.87 ± 2.49 — 11.19 ± 2.78 −3.65 0.001

Duration of MA use (years) 4 (2.88,6.75) — — — —

Average abstinence (days) 21.5 (8.75,45.25) 406.50 (331.75,447.50) — 5.09 <0.001

FTND 4.74 ± 2.29 — 2.34±2.55 −4.10 <0.001

AUDIT 3.5 (0,8) — 0 (0,3) −2.62 0.009

MCQ 55.50 (5.50,61.00) 25.50 (0,32.25) — −4.78 <0.001

TABLE 2 | Demographic characteristics of the responders and non-responders of

MA-dependent participants [mean ± SD or median (IQR)].

Characteristics Responders (n = 21) Non-responders (n = 13) P-value

Age (years) 30.81 ± 8.27 35.54 ± 9.15 0.13

% Male 92.31% 61.9% 0.002

Education level

(years)

9.28 ± 1.74 8.19 ± 3.35 0.22

FTND 4.71 ± 2.41 4.76 ± 2.16 0.95

AUDIT 4 (0,8) 3 (0,9) 0.85

TABLE 3A | Individual identification of MA-dependent patients.

N patients

(N HC)

Accuracy Sensitivity Specificity

69 (35) 73.2% (95% CI:

71.23–74.17%)

66.05% (95%

CI 63.06–

69.04%)

80.35% (95%

CI: 77.77–

82.93%)

stepwise removal of the top features, the investigators were able
to arrive at an optimal combination, which identified patients
in 72.2% (95% CI = 69.28–73.12%) of the cases (Table 3B).
The progressive removal of the first eight top features (in order
of increasing feature importance) increased the classification
accuracy. The most accurate combination of classifier features
included the nodal clustering coefficient in the right orbital part
of superior frontal gyrus (ORBsup.R), the nodal local efficiency
in ORBsup.R, the right triangular pat of the inferior frontal
gyrus (IFGtriang.R), and right temporal pole of the middle
temporal gyrus (TPOmid.R). Among these, the nodal local
efficiency in TPOmid.R had the highest feature importance.
Figure 2 presents the accuracy and evolved top features of
each SVM.

In order to further validate the classification performance (i.e.,
generalization) of the classifiers, these results were then replicated
in a separate test group of patients including 10 MA-dependent
patients (four responders and six non-responders) and 10 HCs.
These features differentiated the independent test data with the
accuracy, sensitivity, and specificity of 67.7% (95% CI = 65.7–
69.69%), 61.7% (95%CI= 58.69–64.81%), and 73.65% (95%CI=
70.82–76.48%), respectively, and predict the responders with the

accuracy, sensitivity, and specificity of 67.2% (95% CI = 65.40–
69.40%), 58.2% (95% CI = 55.1–61.36%), and 76.2% (95% CI
= 73.35–79.05%).

DISCUSSION

In the present study, the investigators filtered informative
features about MA addiction and treatment by the training of
classifiers using the SVM combined with the graph metrics,
which could provide possible biomarkers to identify and predict
the treatment response for MA-dependent patients at the
individual level.

In the classifier for identifying MA-dependent patients, it
was found that the combination of nodal efficiency (MTG.R),
community index (PreCG.L), and community index (CUN.L)
exhibits the best performance. In the graph theory, the nodal
efficiency for a given node characterizes the efficiency of the
parallel information transfer of that node in the network and
quantifies the importance of this node for the communication
within the network (42). In addition, the community index
indicates which community or modularity a given node belongs
to. Changes in the community index generally suggest the
changes of locally connected clusters or modules implicated
in specialized information processing (43). Both of these were
used to describe the location and efficiency of nodes in the
information transfer. As for the regions observed in present
study, the middle temporal gyrus was previously described as
the dorsal visual streams that encoded the spatial information
among objects (44). A previous study also reported an activation
in response to less complex visual images in the posterior
right middle temporal gyrus when healthy adult participants
received MA, and it was concluded that MA may change the
relative sensitivity of higher-order sensory processing (45). The
precentral gyrus is well-recognized as the primary motor cortex,
and this was reported to have a reduced activation, when
compared to HCs, in performing the emotion-matching task
with fearful non-face images (46). The reduced gray matter of
the left precentral gyrus was consistently observed in study of
Hall et al. (47). In addition, Van Hedger et al. (48) reported
the greater activation in the bilateral cuneus when exploring
the neural responses correlated to the visual–auditory stimuli
paired with MA in healthy people. These three brain regions
were all involved in the sensory and emotion processing. The
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FIGURE 1 | The identification of MA-dependent patients using the graph metrics. The vertical color bar represents the relative feature importance of all top features

when used together in training the SVM to differentiate MA-dependent patients. The stepwise removal of the least influential feature was repeated until a single top

feature remained. At each stage of the feature removal, the accuracy of the retrained SVMs was recorded above the color bars. The most influential feature

combination was outlined in red, which included the top features highlighted in red.

altered nodal efficiency or community index of these regions may
affect the correction and efficiency of information translation and
damage the integrity of sensory and emotional pathway. These
abnormalities are partly correlated to the negative emotions and
hallucinations of MA patients. Interestingly, these present results
mainly revealed the sensory and emotion processing-related
brain regions, instead of the dopaminergic reward circuits (49),
providing support to the possibility that sensory effects could also
become conditioned (50). Furthermore, it was speculated that
the diagnosis of MA is more closely correlated to the sensory
and emotion function and that the combination of features
mentioned above could be a potential subjective predictable
biomarker for MA abuse.

TABLE 3B | Individual prediction of responders to the abstinence treatment of

MA-dependent patients.

N patients

(N responders)

Accuracy Sensitivity Specificity

34 (21) 72.2% (95% CI =

69.28–73.12%)

86.75% (95% CI

= 84.48–88.92%)

55.65% (95% CI

= 52.61–58.79%)

On the other hand, in the classifier for predicting the
responders of MA-dependent patients, the investigators
found that the combination of nodal clustering coefficient
(ORBsup.R), nodal local efficiency (ORBsup.R), nodal local
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FIGURE 2 | The prediction of responders of MA-dependent patients to abstinence treatment using graph metrics. The vertical color bar represents the relative feature

importance of all top features when used together in training an SVM to differentiate the responders of MA-dependent patients. The stepwise removal of the least

influential top feature was repeated until a single top feature remained. At each stage of the feature removal, the accuracy of the retrained SVMs was recorded above

the color bars. The most influential feature combination was outlined in red, which included the top features highlighted in red.

efficiency (IFGtriang.R), and nodal local efficiency (TPOmid.R)
performed best. The nodal clustering coefficient of a given node
describes the range or amount of potential connections that
the closest neighbors of the node actually have and measures
the likelihood that its neighborhoods are connected to each
other (51, 52). In addition, the nodal local efficiency is the
global efficiency computed on the neighborhood of the node
and measures how efficient the communication is among the
first neighbors of this node when it is removed (43). Both
metrics describe the importance of nodes in brain networks,

and changes of these, usually in mean disordered network
functions. The activation of the orbitofrontal cortex and the
temporal poles is correlated to empathy ability. Kim and
colleagues (53) reported hypoactivation in the orbitofrontal
cortex and temporal poles in MA abusers relative to healthy
subjects during empathy progression. This may be correlated
to the lower levels of dopamine D2 receptor availability and
decreased dopamine transporter density in the orbitofrontal
cortex and temporal poles in the MA abusers (54, 55). During
the social interaction, empathy plays a pivotal role that enables
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the understanding of others’ thoughts well and predicts their
future actions, allowing for better social communication.
Disordered empathy in MA abusers could reduce impairments
in social interactions that contribute to stress, which may
increase the negative mood states and the risk of relapse. In
addition, Paulus et al. (56) suggested that the integrity of the
orbitofrontal cortex is important for decision-making when
the results are uncertain. Similarly, the inferior temporal cortex
has been considered to be involved in the brain networks
of decision-making (57). Using a two-choice prediction task
with fixed error rates, Stewart et al. (58) reported the reduced
activation in the inferior temporal cortex, which is suggestive
of reduced attentional resources allocated to decision making.
These provide insight into the nature that MA abusers, who
usually ignore the risk factors of drug use, exhibit compulsive
drug use behavior. Taken together, these present results suggest
that better treatment may improve the impaired network
function of the orbitofrontal cortex, temporal poles, and
the inferior temporal cortex, rehabilitating patient’s ability
of empathy and decisions making, to some extent. Improved
interpersonal communication could further improve the patient’s
negative mood status, making MA withdrawal smoother. The
restoration of decision-making ability also enables patients
to make choices that are better for their own health. The
present study also provides a starting point for studying the
recovery mechanism of brain regions damaged by MA and a
new thought about therapeutic targets from the perspective of
treatment prediction.

Several considerations need to be taken into account with
respect to the interpretation of these present findings. First, the
sample size of the present study was limited because of the
inherent challenges in recruitment of MA dependents. Usually,
the machine learning method needs a large sample size to obtain
good classification results. Hence, the smaller sample size in the
present study may have had an impact the classification accuracy.
A larger sample replication would strengthen the generalizability
of the present methods and allow for the full exploration of the
parameter and feature space. Moreover, because of the limited
sample size in different treatment groups, we were not able
to distinguish between different treatment groups. Second, The
MA and HC groups differed by not only MA use but also
education, nicotine, and alcohol use. Although we have removed
them as covariables when we performed general linear model
between these two groups, it would be difficult to claim that
the classifier is only differentiating based on MA use. Third,
future studies may go beyond defining responders to treatment
by those who showed 50% reduction in craving and, instead,
use abstinence criteria. This was not possible in our study
because of the strict abstinence policy of the rehabilitation centers

from which we drew our participants. Finally, the individual
identification of MA-dependent patients was merely based on a
sample that included MA-dependent patients and HCs. Hence,

patients should be collected in future studies who experience
first-episode psychosis in association with conditions other than
MA, such as heroin or cocaine.

CONCLUSION

The present study identified the most relevant features of
MA addiction and treatment based on SVMs and the features
extracted from the graph metrics and provided possible
biomarkers to differentiate and predict the treatment response
for MA-dependent patients. Brain regions involved in the
best combinations need to be given close attention during
the treatment of MA. The present study provides a step
toward the individualized identification and treatment response
prediction of MA-dependent patients, laying a basis for precision
medicine approaches.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of the Second Xiangya
Hospital of Central South University. The patients/participants
provided their written informed consent to participate in
this study. Written informed consent was obtained from the
individual(s) for the publication of any potentially identifiable
images or data included in this article.

AUTHOR CONTRIBUTIONS

JLiu conceived of the study. RY contributed to study design
and manuscript modification. CY and XY performed analysis
and drafted the manuscript. WY, JLuo, and FT performed data
collection. SH performed data processing and statistical analysis.
All authors revised the manuscript and have read and approved
the final version of the manuscript.

FUNDING

This work was partially supported by National Natural Science
Foundation of China (81671671 and 61971451), the Key R & D
projects in Hunan Province (2019SK2131).

REFERENCES

1. Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer

WG. et al. Methamphetamine use: a comprehensive review of molecular,

preclinical and clinical findings. Drug Alcohol Depend. (2013). 129:167–

79. doi: 10.1016/j.drugalcdep.2012.11.016

2. Courtney KE, Ray LA. Methamphetamine: an update on epidemiology,

pharmacology, clinical phenomenology, and treatment literature. Drug

Alcohol Depend. (2014) 143:11–21. doi: 10.1016/j.drugalcdep.2014.08.003

3. Gonzales R, Mooney L, Rawson RA. The methamphetamine

problem in the United States. Annu Rev Public Health. (2010)

31:385–98. doi: 10.1146/annurev.publhealth.012809.103600

Frontiers in Psychiatry | www.frontiersin.org 8 March 2021 | Volume 12 | Article 583950

https://doi.org/10.1016/j.drugalcdep.2012.11.016
https://doi.org/10.1016/j.drugalcdep.2014.08.003
https://doi.org/10.1146/annurev.publhealth.012809.103600
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yan et al. Methamphetamine Identification and Response Prediction

4. Riddle EL, Fleckenstein AE, Hanson GR. Mechanisms of

methamphetamine-induced dopaminergic neurotoxicity. AAPS J. (2006)

8:E413–8. doi: 10.1007/BF02854914

5. Morley KC, Cornish JL, Faingold A,Wood K, Haber PS. Pharmacotherapeutic

agents in the treatment of methamphetamine dependence. Expert Opin

Investig Drugs. (2017) 26:563–78. doi: 10.1080/13543784.2017.1313229

6. Ballester J, Valentine G, Sofuoglu M. Pharmacological treatments for

methamphetamine addiction: current status and future directions. Expert Rev

Clin Pharmacol. (2017) 10:305–14. doi: 10.1080/17512433.2017.1268916

7. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-

sensitization theory of addiction. Brain Res Brain Res Rev. (1993) 18:247–

91. doi: 10.1016/0165-0173(93)90013-P

8. Koob GF, Volkow ND. Neurocircuitry of addiction.

Neuropsychopharmacology. (2010) 35:217–38. doi: 10.1038/npp.2009.110

9. Hyman SE, Malenka RC. Addiction and the brain: the neurobiology

of compulsion and its persistence. Nat Rev Neurosci. (2001) 2:695–

703. doi: 10.1038/35094560

10. Paulus MP. Pragmatism instead of mechanism: a call for

impactful biological psychiatry. JAMA Psychiatry. (2015) 72:631–

2. doi: 10.1001/jamapsychiatry.2015.0497

11. Barish MA, Jara H. Motion artifact control in body MR imaging. [Journal

Article; Review].Magn Reson Imaging Clin N Am. (1999) 7:289–301

12. AshaRani PV, Hombali A, Seow E, Ong WJ, Tan JH, Subramaniam

M. Non-pharmacological interventions for methamphetamine

use disorder: a systematic review. Drug Alcohol Depend. (2020)

212:108060. doi: 10.1016/j.drugalcdep.2020.108060

13. Siefried KJ, Acheson LS, Lintzeris N, Ezard N. Pharmacological treatment

of methamphetamine/amphetamine dependence: a systematic review. CNS

Drugs. (2020) 34:337–65. doi: 10.1007/s40263-020-00711-x

14. Harada T, Tsutomi H, Mori R, Wilson DB. Cognitive-behavioural treatment

for amphetamine-type stimulants (ATS)-use disorders. Cochrane Database

Syst Rev. (2018) 12:CD011315. doi: 10.1002/14651858.CD011315.pub2

15. Roll JM, Chudzynski J, Cameron JM, Howell DN, McPherson

S. Duration effects in contingency management treatment of

methamphetamine disorders. Addict Behav. (2013) 38:2455–

62. doi: 10.1016/j.addbeh.2013.03.018

16. Shoptaw S, Huber A, Peck J, Yang X, Liu J, Dang J, et al. Randomized,

placebo-controlled trial of sertraline and contingency management for the

treatment of methamphetamine dependence. Drug Alcohol Depend. (2006)

85:12–8. doi: 10.1016/j.drugalcdep.2006.03.005

17. Polcin DL, Bond J, Korcha R, Nayak MB, Galloway GP, Evans

K. Randomized trial of intensive motivational interviewing for

methamphetamine dependence. J Addict Dis. (2014) 33:253–

65. doi: 10.1080/10550887.2014.950029

18. Longo M, Wickes W, Smout M, Harrison S, Cahill S, White JM.

Randomized controlled trial of dexamphetamine maintenance for the

treatment of methamphetamine dependence. Addiction. (2010) 105:146–

54. doi: 10.1111/j.1360-0443.2009.02717.x

19. Ezard N, Dunlop A, Clifford B, Bruno R, Carr A, Bissaker A, et al.

Study protocol: a dose-escalating, phase-2 study of oral lisdexamfetamine

in adults with methamphetamine dependence. BMC Psychiatry. (2016)

16:428. doi: 10.1186/s12888-016-1141-x

20. Ling W, Chang L, Hillhouse M, Ang A, Striebel J, Jenkins J,

et al. Sustained-release methylphenidate in a randomized trial of

treatment of methamphetamine use disorder. Addiction. (2014)

109:1489–500. doi: 10.1111/add.12608

21. Miles SW, Sheridan J, Russell B, Kydd R, Wheeler A, Walters

C, et al. Extended-release methylphenidate for treatment of

amphetamine/methamphetamine dependence: a randomized,

double-blind, placebo-controlled trial. Addiction. (2013) 108:1279–

86. doi: 10.1111/add.12109

22. Kohno M, Dennis LE, McCready H, Schwartz DL, Hoffman WF,

Korthuis PT. A preliminary randomized clinical trial of naltrexone

reduces striatal resting state functional connectivity in people with

methamphetamine use disorder. Drug Alcohol Depend. (2018) 192:186–

92. doi: 10.1016/j.drugalcdep.2018.07.045

23. Ray LA, Bujarski S, Courtney KE, Moallem NR, Lunny K, Roche D,

et al. The effects of naltrexone on subjective response to methamphetamine

in a clinical sample: a double-blind, placebo-controlled laboratory study.

Neuropsychopharmacology. (2015) 40:2347–56. doi: 10.1038/npp.2015.83

24. Ma JZ, Johnson BA, Yu E, Weiss D, McSherry F, Saadvandi J, et al. Fine-

grain analysis of the treatment effect of topiramate on methamphetamine

addiction with latent variable analysis. Drug Alcohol Depend. (2013) 130:45–

51. doi: 10.1016/j.drugalcdep.2012.10.009

25. Elkashef A, Kahn R, Yu E, Iturriaga E, Li SH, Anderson

A, et al. Topiramate for the treatment of methamphetamine

addiction: a multi-center placebo-controlled trial. Addiction. (2012)

107:1297–306. doi: 10.1111/j.1360-0443.2011.03771.x

26. Zhang S, Hu Q, Tang T, Liu C, Li C, Zang YY, et al. Changes in

gray matter density, regional homogeneity, and functional connectivity in

methamphetamine-associated psychosis: a resting-state functional Magnetic

Resonance Imaging (fMRI) study. Med Sci Monit. (2018) 24:4020–

30. doi: 10.12659/MSM.905354

27. Kohno M, Okita K, Morales AM, Robertson CL, Dean AC, Ghahremani DG,

et al. Midbrain functional connectivity and ventral striatal dopamine D2-

type receptors: link to impulsivity in methamphetamine users.Mol Psychiatry.

(2016) 21:1554–60. doi: 10.1038/mp.2015.223

28. Kohno M, Morales AM, Ghahremani DG, Hellemann G, London ED.

Risky decision making, prefrontal cortex, and mesocorticolimbic functional

connectivity in methamphetamine dependence. JAMA Psychiatry. (2014)

71:812–20. doi: 10.1001/jamapsychiatry.2014.399

29. Bassett DS, Bullmore ET. Human brain networks in health and disease.

Curr Opin Neurol. (2009) 22:340–7. doi: 10.1097/WCO.0b013e32832

d93dd

30. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis

of structural and functional systems. Nat Rev Neurosci. (2009) 10:186–

98. doi: 10.1038/nrn2575

31. Rubinov M, Sporns O. Complex network measures of brain

connectivity: uses and interpretations. NeuroImage. (2010)

52:1059–69. doi: 10.1016/j.neuroimage.2009.10.003

32. Stam CJ. Characterization of anatomical and functional connectivity in the

brain: a complex networks perspective. Int J Psychophysiol. (2010) 77:186–

94. doi: 10.1016/j.ijpsycho.2010.06.024

33. Cortes C, Vapnik VN. Support vector networks. Mach Learn. (1995) 20:273–

97. doi: 10.1007/BF00994018

34. Li Y, Cui Z, Liao Q, Dong H, Zhang J, Shen W, et al. Support vector

machine-based multivariate pattern classification of methamphetamine

dependence using arterial spin labeling. Addict Biol. (2019) 24:1254–

62. doi: 10.1111/adb.12705

35. Gowin JL, Ernst M, Ball T, May AC, Sloan ME, Tapert SF, et al.

Using neuroimaging to predict relapse in stimulant dependence: a

comparison of linear and machine learning models. NeuroImage Clin. (2019)

21:101676. doi: 10.1016/j.nicl.2019.101676

36. Wang YG, Shen ZH, Wu XC. Detection of patients with

methamphetamine dependence with cue-elicited heart rate

variability in a virtual social environment. Psychiatry Res. (2018)

270:382–8. doi: 10.1016/j.psychres.2018.10.009

37. Breen MS, Uhlmann A, Nday CM, Glatt SJ, Mitt M, Metsalpu A, et al.

Candidate gene networks and blood biomarkers of methamphetamine-

associated psychosis: an integrative RNA-sequencing report. Transl

Psychiatry. (2016) 6:e802. doi: 10.1038/tp.2016.67

38. Platt J. Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. Adv Large Margin Classif. (2000) 10:61–74.

39. Chih-Chung C, Chih-Jen L. Libsvm: a library for support vector machines.

ACM Trans Intell Syst Technol. (2011) 2:1–27. doi: 10.1145/1961189.1961199

40. Cao B, Cho RY, Chen D, Xiu M, Wang L, Soares JC, et al.

Treatment response prediction and individualized identification

of first-episode drug-naïve schizophrenia using brain functional

connectivity. Mol Psychiatry. (2020) 25:906–13. doi: 10.1038/s41380-018-

0106-5

41. Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. Disconnection of

network hubs and cognitive impairment after traumatic brain injury. Brain.

(2015) 138:1696–709. doi: 10.1093/brain/awv075

42. Zhang Y, Li M, Wang R, Bi Y, Li Y, Yi Z, et al. Abnormal brain white matter

network in young smokers: a graph theory analysis study. Brain Imaging

Behav. (2018) 12:345–56. doi: 10.1007/s11682-017-9699-6

Frontiers in Psychiatry | www.frontiersin.org 9 March 2021 | Volume 12 | Article 583950

https://doi.org/10.1007/BF02854914
https://doi.org/10.1080/13543784.2017.1313229
https://doi.org/10.1080/17512433.2017.1268916
https://doi.org/10.1016/0165-0173(93)90013-P
https://doi.org/10.1038/npp.2009.110
https://doi.org/10.1038/35094560
https://doi.org/10.1001/jamapsychiatry.2015.0497
https://doi.org/10.1016/j.drugalcdep.2020.108060
https://doi.org/10.1007/s40263-020-00711-x
https://doi.org/10.1002/14651858.CD011315.pub2
https://doi.org/10.1016/j.addbeh.2013.03.018
https://doi.org/10.1016/j.drugalcdep.2006.03.005
https://doi.org/10.1080/10550887.2014.950029
https://doi.org/10.1111/j.1360-0443.2009.02717.x
https://doi.org/10.1186/s12888-016-1141-x
https://doi.org/10.1111/add.12608
https://doi.org/10.1111/add.12109
https://doi.org/10.1016/j.drugalcdep.2018.07.045
https://doi.org/10.1038/npp.2015.83
https://doi.org/10.1016/j.drugalcdep.2012.10.009
https://doi.org/10.1111/j.1360-0443.2011.03771.x
https://doi.org/10.12659/MSM.905354
https://doi.org/10.1038/mp.2015.223
https://doi.org/10.1001/jamapsychiatry.2014.399
https://doi.org/10.1097/WCO.0b013e32832d93dd
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.ijpsycho.2010.06.024
https://doi.org/10.1007/BF00994018
https://doi.org/10.1111/adb.12705
https://doi.org/10.1016/j.nicl.2019.101676
https://doi.org/10.1016/j.psychres.2018.10.009
https://doi.org/10.1038/tp.2016.67
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1038/s41380-018-0106-5
https://doi.org/10.1093/brain/awv075
https://doi.org/10.1007/s11682-017-9699-6
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yan et al. Methamphetamine Identification and Response Prediction

43. Zorlu N, Çapraz N, Oztekin E, Bagci B, Di Biase MA, Zalesky A, et al.

Rich club and reward network connectivity as endophenotypes for alcohol

dependence: a diffusion tensor imaging study. Addict Biol. (2019) 24:265–

74. doi: 10.1111/adb.12599

44. Ungerleider LG, Haxby JV. ’What’ and ’where’ in the human brain. Curr Opin

Neurobiol. (1994) 4:157–65. doi: 10.1016/0959-4388(94)90066-3

45. Van Hedger K, Keedy SK, Schertz KE, Berman MG, de Wit H.

Effects of methamphetamine on neural responses to visual stimuli.

Psychopharmacology. (2019) 236:1741–8. doi: 10.1007/s00213-018-5156-5

46. Kim YT, Song HJ, Seo JH, Lee JJ, Lee J, Kwon DH, et al. The differences

in neural network activity between methamphetamine abusers and healthy

subjects performing an emotion-matching task: functional MRI study. NMR

Biomed. (2011) 24:1392–400. doi: 10.1002/nbm.1702

47. Hall MG, Alhassoon OM, SternMJ,Wollman SC, Kimmel CL, Perez-Figueroa

A, et al. Gray matter abnormalities in cocaine versus methamphetamine-

dependent patients: a neuroimaging meta-analysis. Am J Drug Alcohol Abuse.

(2015) 41:290–9. doi: 10.3109/00952990.2015.1044607

48. Van Hedger K, Keedy SK, Mayo LM, Heilig M, de Wit H.

Neural responses to cues paired with methamphetamine in

healthy volunteers. Neuropsychopharmacology. (2018) 43:1732–

7. doi: 10.1038/s41386-017-0005-5

49. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L,

et al. Therapeutic doses of oral methylphenidate significantly increase

extracellular dopamine in the human brain. J Neurosci Nurs. (2001)

21:RC121. doi: 10.1523/JNEUROSCI.21-02-j0001.2001

50. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y. Factors

modulating neural reactivity to drug cues in addiction: a survey

of human neuroimaging studies. Neurosci Biobehav Rev. (2014)

38:1–16. doi: 10.1016/j.neubiorev.2013.10.013

51. Siyah Mansoory M, Oghabian MA, Jafari AH, Shahbabaie A. Analysis of

resting-state fMRI topological graph theory properties in methamphetamine

drug users applying box-counting fractal dimension. Basic Clin Neurosci.

(2017) 8:371–85. doi: 10.18869/nirp.bcn.8.5.371

52. Liu J, Liang J, Qin W, Tian J, Yuan K, Bai L, et al. Dysfunctional connectivity

patterns in chronic heroin users: an fMRI study. Neurosci Lett. (2009) 460:72–

7. doi: 10.1016/j.neulet.2009.05.038

53. Kim YT, Lee JJ, Song HJ, Kim JH, Kwon DH, Kim MN, et al.

Alterations in cortical activity of male methamphetamine abusers performing

an empathy task: fMRI study. Hum Psychopharmacol. (2010) 25:63–

70. doi: 10.1002/hup.1083

54. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, et al.

Low level of brain dopamine D2 receptors in methamphetamine abusers:

association with metabolism in the orbitofrontal cortex. Am J Psychiatry.

(2001) 158:2015–21. doi: 10.1176/appi.ajp.158.12.2015

55. Sekine Y, Minabe Y, Ouchi Y, Takei N, Iyo M, Nakamura K, et al.

Association of dopamine transporter loss in the orbitofrontal and

dorsolateral prefrontal cortices with methamphetamine-related psychiatric

symptoms. Am J Psychiatry. (2003) 160:1699–701. doi: 10.1176/appi.ajp.160.

9.1699

56. Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, et al.

Behavioral and functional neuroimaging evidence for prefrontal dysfunction

in methamphetamine-dependent subjects. Neuropsychopharmacology. (2002)

26:53–63. doi: 10.1016/S0893-133X(01)00334-7

57. Aron JL, Paulus MP. Location, location: using functional magnetic resonance

imaging to pinpoint brain differences relevant to stimulant use. Addiction.

(2007) 102:33–43. doi: 10.1111/j.1360-0443.2006.01778.x

58. Stewart JL, May AC, Poppa T, Davenport PW, Tapert SF, Paulus MP.

You are the danger: attenuated insula response in methamphetamine users

during aversive interoceptive decision-making. Drug Alcohol Depend. (2014)

142:110–9. doi: 10.1016/j.drugalcdep.2014.06.003

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Yan, Yang, Yang, Yang, Luo, Tang, Huang and Liu. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Psychiatry | www.frontiersin.org 10 March 2021 | Volume 12 | Article 583950

https://doi.org/10.1111/adb.12599
https://doi.org/10.1016/0959-4388(94)90066-3
https://doi.org/10.1007/s00213-018-5156-5
https://doi.org/10.1002/nbm.1702
https://doi.org/10.3109/00952990.2015.1044607
https://doi.org/10.1038/s41386-017-0005-5
https://doi.org/10.1523/JNEUROSCI.21-02-j0001.2001
https://doi.org/10.1016/j.neubiorev.2013.10.013
https://doi.org/10.18869/nirp.bcn.8.5.371
https://doi.org/10.1016/j.neulet.2009.05.038
https://doi.org/10.1002/hup.1083
https://doi.org/10.1176/appi.ajp.158.12.2015
https://doi.org/10.1176/appi.ajp.160.9.1699
https://doi.org/10.1016/S0893-133X(01)00334-7
https://doi.org/10.1111/j.1360-0443.2006.01778.x
https://doi.org/10.1016/j.drugalcdep.2014.06.003~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles

	Treatment Response Prediction and Individualized Identification of Short-Term Abstinence Methamphetamine Dependence Using Brain Graph Metrics
	Introduction
	Materials and Methods
	Patient Population
	MRI Data Acquisition and Preprocessing
	Calculation of Graph Metrics
	Statistical Analysis
	SVM-Based Classification

	Results
	Patient Population
	Classification Performance of MA-Dependent Patients
	Classification Performance of Treatment Response Prediction

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


