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SUMMARY

Cocaine use is a major comorbidity of HIV-associated neurocognitive disorder (HAND). In this 

study, we show that cocaine exposure worsens the learning and memory of doxycycline-inducible 

and brain-specific HIV Tat transgenic mice (iTat) and results in 14,838 hypermethylated CpG-

related differentially methylated regions (DMRs) and 15,800 hypomethylated CpG-related DMRs, 

which are linked to 52 down- and 127 upregulated genes, respectively, in the hippocampus of iTat 

mice. These genes are mostly enriched at the neuronal function-, cell morphology-, and synapse 

formation-related extracellular matrix (ECM) receptor-ligand interaction pathway and mostly 
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impacted in microglia. The accompanying neuropathological changes include swollen dendritic 

spines, increased synaptophysin expression, and diminished glial activation. We also find that 

sex (female) and age additively worsen the behavioral and pathological changes. These findings 

together indicate that chronic cocaine and long-term Tat expression interactively contribute to 

HAND, likely involving changes of DNA methylation and ECM receptor-ligand interactions.

Graphical abstract

In brief

Zhao et al. investigate combined effects of HIV Tat and cocaine on HIV-associated neurocognitive 

disorder and the underlying molecular mechanisms, using doxycycline-inducible and brain-

specific HIV Tat transgenic mice. They uncover specific changes in behavior, neuropathologies, 

genome-wide DNA methylation, gene expression, and processes affected by combined cocaine 

and Tat.

INTRODUCTION

HIV infection of the central nervous system (CNS) occurs in a majority of HIV-infected 

individuals and causes HIV-associated neurocognitive disorder (HAND) in up to 50% of 

the infected population (Egger et al., 2002; May et al., 2007; Moreno et al., 2000). One 

of the major pathogenic factors for HAND is HIV viral protein Tat. Tat is secreted from 

HIV-infected microglia/microphages and astrocytes (Westendorp et al., 1995; Xiao et al., 
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2000) and is detected in the CNS of HIV-infected individuals (Hudson et al., 2000; Wiley et 

al., 1996). Tat continues to be expressed in HIV-infected individuals whose HIV replication 

is effectively suppressed by combination antiretroviral therapy (cART) (Henderson et al., 

2019; Hudson et al., 2000; Johnson et al., 2013). Recombinant Tat protein, when given in 
vivo, and Tat expression alone in the doxycycline (Dox)-inducible brain-specific HIV Tat 

transgenic mice (iTat) results in neurological and neuropathological changes reminiscent of 

those noted in the HIV-infected brain (Jones et al., 1998; Kim et al., 2003; Paris et al., 2014). 

The controllability of the time and duration of Tat expression in the iTat model offers a great 

opportunity to investigate long-term effects of Tat in the context of HIV infection treated 

with cART and comorbidities such as chronic substance use disorders.

Cocaine use is prevalent in the HIV-infected population (Kumar et al., 2015; Meade et 

al., 2018; Shu et al., 2020). Cocaine impairs the cellular functions and promotes HIV 

replication (Baldwin et al., 1997; Klein et al., 1993), disrupts the integrity of the blood-brain 

barrier (Kousik et al., 2012; Sharma et al., 2009; Yao et al., 2011), induces upregulation of 

pro-inflammatory mediators and neuroinflammation (Clark et al., 2013; Fox et al., 2012), 

and facilitates the progression of HAND (Litvin et al., 2019; Martin et al., 2018; Meyer 

et al., 2014). Cocaine also alters histone modifications through HDAC, sirtuin, and G9a, 

and transcriptional regulation of genes, such as FosB, CDK5, and BNDF, at the chromatin 

level, which contributes to the development and maintenance of addiction (Nestler, 2014; 

Renthal and Nestler, 2008; Rogge and Wood, 2013). Furthermore, cocaine upregulates 

miR-212, leading to an amplification of the stimulatory effects of cocaine on CREB 

signaling (Jonkman and Kenny, 2013). A number of studies have documented interactive 

effects between cocaine and Tat. Tat potentiates the psychostimulant effects of cocaine 

and heightens drug award (Napier et al., 2014; Paris et al., 2014). Tat and cocaine alter 

metabolism (Cotto et al., 2018b; Mohseni Ahooyi et al., 2018; Sivalingam et al., 2021) and 

increase the blood-brain barrier permeability (Gandhi et al., 2010; Sun et al., 2016; Yao et 

al., 2012). However, these studies are performed using recombinant Tat protein in vitro or 

short-term Tat expression in vivo, and little is known about whether chronic cocaine use 

results in epigenetic changes, specifically DNA methylation in the context of long-term Tat 

expression and whether these changes contribute to HAND neurology and neuropathology.

In the study, we determined the effects of chronic cocaine exposure and long-term Tat 

expression on neurological, DNA methylation, and neuropathological changes. We fed iTat 

mice with Dox to induce Tat expression for 5 and 11 months, exposed these mice to cocaine 

for 2 weeks, kept them drug free for 10 days, and performed behavioral assessments. 

At the end of behavioral tests, we euthanized the animals and collected brain tissues to 

isolate genomic DNA for single-base resolution whole-genome bisulfate sequencing, to 

isolate RNA for RNA sequencing and to perform neuropathology. We then used system 

biology to characterize the gene expression, and biological pathways and processes altered 

by cocaine and Tat as well as the relationship among DNA methylation change-associated 

gene expression, and biological pathways and processes, neurology, and neuropathology.
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RESULTS

Cocaine exposure worsened learning and memory impairments by Tat

Following weaning iTat mice were fed with Dox for 5 and 11 months (Figure 1A), injected 

cocaine (Coc) (30 mg/kg/day) for 14 days (Morrell et al., 2011; Park et al., 2013; Pope et al., 

2016), kept drug-free for 10 days, and subjected to a battery of behavioral tests. Wild-type 

(WT) mice and saline (Sal)-treated mice were included as the controls for iTat mice and 

Coc, respectively. Behavioral tests were performed in the order of increasing stress level, 

namely elevated plus maze (EPM) for anxiety, open-field test (OPT) for locomotor activity 

and anxiety, rotarod test (RT) for balance and coordination, tail suspension test (TST), 

forced swim test (FST) for depressive status, and Morris water maze (MWM) for learning 

and memory.

During the 5-day MWM training, iTat mice showed longer escape latency trend than WT 

mice in the absence of Coc; Coc prolonged escape latency in iTat mice while it only slightly 

shortened escape latency in WT mice (Figure 1B). Cumulative distance showed the same 

pattern, but with the more pronounced impact of Tat on 6-month (6m) females (Figure S1A; 

Table S1); 12m females had less pronounced effects of Tat and Coc than males of 6m and 

12m and 6m females. For the first probe test (short-term memory), which was performed 1 

day after the last training, iTat 6m males showed shorter time at platform and fewer platform 

events than WT 6m males, and Coc showed shorter latency to platform in all iTat mice 

than WT mice, less time at target quadrant in iTat males than WT males of both 6m and 

12m groups, and shorter distance to target quadrant in iTat 12m males than WT 12m males 

(Figure 1C). In addition, Coc showed shorter time at target quadrant and shorter distance to 

target quadrant than Sal in iTat males. For the second probe test, which was performed 7 

days after the first probe test for long-term memory, iTat mice showed shorter time at target 

quadrant than in WT in 6m females and 12m males, shorter time at platform, fewer platform 

events, shorter distance to target quadrant, and shorter distance to platform than WT in 12m 

males when given Coc, and iTat showed longer latency to platform than WT in 12m males, 

regardless of Coc or Sal treatment (Figure S1B). In addition, Coc showed longer distance to 

target quadrant than Sal in iTat males.

For EPM, iTat showed more open arm entries than WT in 6m males and 6m females, longer 

open arm time than WT in 12m males, and longer open arm distance than WT in 12m males 

(Figure S2A; Table S2). Coc showed more open arm entries and longer open arm distance 

than Sal in iTat 6m, WT 6m females, and iTat 12m of both males and females. For OPT, 

measured by total distance and maximum speed for locomotor activity, and central distance 

and central entries for anxiety, iTat showed shorter total distance than WT in 12m females, 

lower maximum speed than WT in 6m females and 12m females, longer central distance 

than WT in 12m males, and more central entries than WT in 12m males (Figure S2B). Coc 

showed shorter longer total distance than Sal in iTat 6m females, higher maximum speed 

than WT in iTat 12m females, longer central distance than Sal in iTat 6m females and WT 

12m males, and more central entries than Sal in 6m females of both WT and iTat. For RT, 

measured by latency to fall for balance and coordination ability, iTat showed shorter latency 

to fall than WT in 6m females at the speed of 30 rpm, Coc showed longer latency to fall 
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than Sal in 12m females (Figure S2C). For TST and FST, measured by immobile time for 

depressive status, Coc showed shorter immobile time of TST than Sal in iTat 12m females 

(Figure S2D) and shorter immobile time of FST than Sal in WT 12m females (Figure S2E). 

In addition, iTat showed shorter immobile time of FST in 6m males than WT, regardless of 

Coc or Sal treatment.

Age and sex independently contributed to behavioral abnormalities by Tat and cocaine

Similar patterns of learning and memory and cellular response to Tat and cocaine were noted 

among all four groups of 2 ages × 2 sexes: 6m males, 6m females, 12m males, and 12m 

females (Tables S1, S3, and S4). To further ascertain if age and sex had different learning 

and memory and cellular response to Tat and cocaine, we performed statistical analysis 

for comparisons among these four groups (Table S5). In learning and memory of MWM, 

12m females had longer escape latency and cumulative distance than 6m females, and 12m 

females showed longer escape latency and cumulative distance than 12m males, suggesting 

that the learning and memory of females are more vulnerable to aging.

Chronic exposure led to significant changes in genome-wide DNA methylation in the 
presence of Tat

Next, we performed the whole-genome bisulfate sequencing (WGBS) with single-base 

resolution and determined the impact of chronic cocaine and long-term Tat on genome-wide 

DNA methylation, focusing on methylated cytosine adjacent to a guanine (CpG) or another 

three nucleotides, adenine, thymine, and cytosine (CpH). We chose hippocampus (HIP) 

hemispheres from the mice of eight 12m groups, selected three samples from each group, 

and extracted their DNA for 24 WGBS libraries, as HIP and 12m were the brain region and 

age that were most noted for the changes in learning and memory by cocaine and Tat. Using 

the threshold of a minimum of six reads per mC site, we identified a total of 39,312,240 

CpG and 149,800,650 CpH sites. Initial analysis did not indicate any significant differences 

in the number and distribution of mC sites between males and females (Y chromosomes 

were excluded from analysis), which was consistent with our behavioral findings that both 

males and females showed generally similar trends in their learning and memory response to 

cocaine and Tat. Therefore, we decided to combine males and females to have four groups 

and focus on two factors: cocaine and Tat (Figure S3).

We first compared the average methylation level of each CpG site among four groups. 

Cocaine showed lower mCpG than Sal in WT mice, while iTat showed higher mCpG than 

WT in Sal. In addition, there was still a significant interaction between Tat and cocaine, 

despite their trade-off effects (Figure 2A). The mCpG sites showed similar distribution 

patterns in all 20 chromosomes among these 4 groups (Figure 2B). To further identify 

differentially methylated regions (DMRs), we framed 6 continuous mC sites as a calculated 

unit in preset regions and used the linear mixed model to determine the methylation value 

(M value) in three comparisons, including WT-Sal versus iTat-Sal (Tat factor), WT-Sal 

versus WT-Coc (Coc factor), and interaction (Tat × Coc factor), which was used to capture 

unexpected changes in present of both Tat and Coc factors. For mCpG-related DMRs, 

18,371 hypermethylated DMRs (Hyper-DMRs) and 20,195 hypomethylated DMRs (Hypo-

DMRs) were identified for Tat (left panel, Figure 2C); 22,269 Hyper-DMRs and 34,308 
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Hypo-DMRs were identified for Coc (left panel, Figure 2D); and 14,838 Hyper-DMRs 

and 15,800 Hypo-DMRs were identified for Tat × Coc (left panel, Figure 2E). Next, we 

traced these significant DMRs back to chromosomes and located the four lowest numbers 

of DMRs at chromosomes 16, 18, 19, and X, and the four highest numbers at chromosomes 

2, 5, 7, and 11, across these four groups (right panels, Figures 2C and 2D). These results 

were consistent with the chromosome distribution of mouse active genes (Cross et al., 

1997), indicating that the impact of Tat, Coc, or Tat × Coc on chromosomes is broad and 

non-selective. Finally, we intersected the significant DMRs of these three comparisons and 

found that 5,232 DMRs were overlapped in all of them, and 21,292, 36,744, and 11,541 

DMRs were unique to Tat, Coc, and Tat × Coc, respectively (Figure 2F).

We also performed analysis of the average methylation level of each CpH site and 

chromosome distribution and obtained similar findings to CpG (Figures S4A and S4B). We 

then did the similar CpH-related DMR analysis. The total numbers of CpH-related Hyper-

DMRs and Hypo-DMRs were lower than CpG-related Hyper-DMRs and Hypo-DMRs. 

Totals of 9,234 Hyper-DMRs and 3,055 Hypo-DMRs were identified for Tat (left panel, 

Figure S4C), 4,427 Hyper-DMRs and 7,714 Hypo-DMRs were identified for Coc (left panel, 

Figure S4D), and 1,995 Hyper-DMRs and 2,762 Hypo-DMRs were identified for Tat × 

Coc (left panel, Figure S4E). Chromosomes 16, 18, 19, and X had the lowest CpH-related 

DMR distribution for all factors, which was similar to CpG-DMRs (right panels, Figures 

S4C and S4D). However, the four highest CpH-related DMRs for these three factors showed 

different chromosomes, which were 1, 2, 4, 5, 6, and 7. There were 898 CpH-related 

DMRs overlapped in all three factors, and 8,813, 8,850, and 1,860 CpH-related DMRs 

were unique to Tat, Coc, and Tat × Coc, respectively (Figure S4F). We also investigated 

the distribution of CpG DMRs among promotors, exons, and introns relative to genomic 

distribution. However, no significant differences were found, even though the intron regions 

showed higher convergent tendency across three comparisons (upper panels, Figure S5A). 

Similar findings were noted for CpH-related DMRs for all three factors (lower panels, 

Figure S5A).

Alterations of genome-wide gene expression by Tat and cocaine

To determine changes of gene expression resulting from the changes of DNA methylation 

by cocaine and Tat and their relationship with the behavioral and cellular response to Tat 

and cocaine, we isolated RNA from the other corresponding HIP hemispheres of the same 

mice and performed bulky RNA sequencing (RNA-seq). We used the same linear mixed 

model and identified differentially expressed genes (DEGs) among these four groups and 

linked them with DMRs (Figure S3). In CpG-related DMRs, Tat altered 20,437 genes 

containing or proximal to Hyper-DMRs and 22,583 for Hypo-DMRs, of which 5,184 genes 

were overlapped; for Coc, 24,796 genes were containing or proximal to Hyper-DMRs, 

32,759 genes for Hypo-DMRs, and 8,701 genes for both; for Tat × Coc, 17,950 genes were 

containing or proximal to Hyper-DMRs, 18,518 genes for Hypo-DMRs, and 3,959 genes for 

both (Figure 3A; Table S6). In addition, 513, 242, and 432 upregulated DEGs (Up-DEGs) 

and 506, 479, and 186 downregulated DEGs (Down-DEGs) were identified by Tat, Coc, and 

Tat × Coc, and 140, 79, and 127 Up-DEGs were linked to CpG-related Hypo-DMRs and 

143, 143, and 52 Down-DEGs were linked to CpG-related Hyper-DMRs under Tat, Coc, and 
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Tat × Coc factor, respectively. The differences among all four overlaps, Hyper-DMRs and 

Up-DEGs, Hyper-DMRs and Down-DEGs, Hypo-DMRs and Up-DEGs, and Hypo-DMRs 

and Down-DEGs under Tat, Coc, and Tat × Coc factors reached statistical significance by 

using Fisher’s exact test.

Next, we performed GO and KEGG enrichment analysis on these overlapped genes to 

determine whether there were any specific functions or pathways involved. Tat, Coc, and 

Tat × Coc had different top 10 functional clusters (p < 0.05) from GO functional analysis 

(Figure 3B; Table S7). The cluster with the largest gene ratio and gene counts for Tat was 

Carbohydrate derivative binding, for Coc it was cell surface receptor signaling pathway, and 

for Tat × Coc it was nervous system development. Several morphology-related clusters 

were overlapped between Coc and Tat × Coc, such as cell projection morphogenesis, 

cell part morphogenesis, and cell projection organization, suggesting that cocaine plays a 

pivotal role in inducing pathological changes (middle and right panels, Figure 3B). More 

neuron functional clusters occurred in Tat × Coc, including neuron projection development, 
neuron development, neurogenesis, and dendrite development (right panel, Figure 3B), 

which provides molecular evidence to support our behavioral findings that chronic cocaine 

use led to more severe cognition decline in iTat mice. Different to GO functional clusters, 

KEGG pathway analysis revealed more convergent effects among these three factors, as 

the extracellular matrix (ECM) receptor-ligand interaction pathway was found in all of 

them (Figures 3C and S5D). ECM is deeply involved in synapse formation and plasticity 

(Ferrer-Ferrer and Dityatev, 2018). These findings suggest that Tat, Coc, and Tat × Coc 

affect neuronal function commonly through the ECM receptor interaction pathway.

To determine the roles of different cell types in response to Tat and cocaine, we 

employed machine learning to build up the database of different brain cell types and then 

used this database to tag the above overlapped genes into neuron, microglia, astrocyte, 

oligodendrocyte, oligodendrocyte progenitor cell (OPC), and endothelial cell. Specifically, 

we took the top 6,000 ranked cell-type-enriched mouse genes (McKenzie et al., 2018), 

mapped them with the RNA-seq transcriptome database from purified brain cells (Zhang 

et al., 2014), employed a support vector machine (Zhang et al., 2021) to build a learning 

model with these mapped genes, and applied the trained model to predict the cell type for 

the unmapped genes. The largest numbers of genes were in microglia for all three factors 

(Figure 3D), suggesting that microglia was the most affected cell type by Tat, Coc, and Tat 

× Coc. All the other five cell types appeared to be somewhat equally affected among these 

three factors.

To identify the most promising gene targets for the morphological changes of microglia, 

astrocyte, and neuron and mouse behavior, we used a volcano map to sort out genes with q 

< 1e-5 DMRs and q < 0.01 DEGs (marked in red in Figure 3E) and heatmap to document 

these 20 top-ranked genes in microglia and the 10 top-ranked genes, if there were any, in 

astrocytes and neurons with q < 0.05 DEGs (Figure 3F). The genes marked in red in the 

volcano map were highlighted with the same color in the heatmap, and these genes had the 

highest significance in both DNA methylation and gene expression by Tat, Coc, and Tat × 

Coc. Downregulation of Ranbp17 and Vars2 and upregulation of Abca8b, Olfr558, Asap2, 

and Acaa1b in microglia, and Sec61a2f in neurons, were highly involved in Tat-induced 
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behavioral and pathological changes; for Coc, downregulation of Col6a1, Slco4c1, Vwa5b1, 
Asap2, Smc2, Gpr157, Map3k13, and 9330182L06Rik in microglia, Ptpn9 in astrocytes, 

and Yeats4 in neurons, and upregulation of Atp8a2 and Rcc1 in microglia; and for Tat × 

Coc, downregulation of gene Ift172, Eif2ak4, Pik3c2a, and Phf8 in microglia, Garem1 and 

Adgrb3 in astrocytes, and Dcun1d4 and Adgrb3 in neurons.

Other genes that were not highlighted in heatmap could also play an important role in 

behavioral and cellular changes by these three factors, as they all reached significant 

standards of DMRs (q < 0.05) (Figure 3F). Of particular note was that several genes were 

present in at least two of these three factors: Tat, Coc and Tat × Coc. In microglia, Ift172 and 

Eif2ak4 were downregulated in Tat × Coc, but shown to be upregulated in Coc. Slco4c1 was 

shown to be upregulated in Tat × Coc, but downregulated in Coc; and Asap2 was shown to 

be upregulated in Tat and Tat × Coc but downregulated in Coc. In astrocytes, Garem1 was 

downregulated in Tat × Coc, but upregulated in Coc. In neurons, Dcun1d4 and Prune2 were 

up- and downregulated, respectively, in both Tat × Coc and Tat, but to a different extent; 

Similarly, Dock3 and Kcnt2 were up- and downregulated, respectively, in both Tat × Coc 

and Coc; Yeats4 was upregulated in Tat × Coc but downregulated in Coc; and Dcaf5 was 

upregulated in Tat × Coc but downregulated in Tat. In addition, genes Itga3 in microglia and 

Ank2 in astrocytes had an opposite direction of expression changes and offset each other in 

Tat × Coc factor; and genes Col6a1 in microglia and Tjp2 in astrocytes were either up- or 

downregulated in both Tat and Coc factors, indicating that they may have an additive effect 

between Tat and cocaine.

For CpH-related DMRs, there were 9,375 genes containing or proximal to Hyper-DMRs 

and 3,670 for Hypo-DMRs by Tat, and 631 genes were overlapped for both; for Coc, 5,379 

genes were containing or proximal to Hyper-DMRs, 8,293 genes for Hypo-DMRs, and 822 

genes for both; for Tat × Coc, 2,381 genes were containing or proximal to Hyper-DMRs, 

3,188 genes for Hypo-DMRs, and 187 genes for both (Figure S5B; Table S6). In addition, 

there were 31, 35, and 14 Up-DEGs linked to Hypo-DMRs, and 62, 50, and 19 Down-DEGs 

linked to Hyper-DMRss by Tat, Coc, and Tat × Coc factors, respectively. Microglia was 

also most affected by all these factors, while the other five cell types showed similar effects 

among these three factors (Figure S5C). However, only a small number of genes were 

screened out for all three factors, which did not allow sufficient statistic power for further 

GO and KEGG enrichment analysis and volcano map and heatmap selection.

Cocaine exposure led to dendritic spine swelling without altering the number of neurons 
and neuronal branches in the presence of Tat

Based on the idea that genome-wide alteration could extensively affect cell morphology, we 

further investigated whether there are corresponding pathological changes of three major 

brain cells, neurons, microglia, and astrocytes, of iTat mice exposed to cocaine. In addition, 

to test whether there were brain region restrictions on pathological changes, we extended 

our observations from HIP to other two main brain regions, the cortex (CORT) and caudate 

putamen of dorsal striatum (CPU), which are also related to cognitive dysfunction. We first 

performed Golgi-Cox staining to determine morphological changes in neurons. Neurons 

Zhao et al. Page 8

Cell Rep. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were characterized by spine density, average area, and length/width ratio, and quantitated by 

projecting stack images and modeling the spines.

In HIP (Figure 4A), iTat showed lower spine density than WT in all males. However, Coc 

showed higher spine density than Sal in all mice, and the effect was more pronounced in 

iTat 6m females than WT (left panel, Figure 4B). Coc showed higher spine average area 

than Sal in WT 6m males, iTat had smaller spine average area than WT in 6m females 

and higher spine average area than WT in 12m of both males and females exposed to 

Coc (middle panel, Figure 4B). Coc showed higher spine length/width ratio than Sal in 

WT 6m males, and iTat showed lower spine length/width ratio than WT in 6m females 

(right panel, Figure 4B). We also performed immunofluorescent staining against NeuN to 

determine the number of neurons (Figure S6A) using the number of DAPI+-stained cells as 

a reference. iTat showed lower NeuN+ cells/DAPI+ cells than WT in CA2 and CA3 regions 

(bracketed, Figure S6A) of all males and females of both 6m and 12m mice (Figure S6B). 

Similar trends of changes in spine morphology and the numbers of neurons were obtained 

in CORT (Figure S7; Table S3) and CPU (Figure S8; Table S3). Some notable differences 

included that generally larger dendritic spines in CORT and CPU made the differences more 

pronounced, that Tat-associated sparse and smaller dendritic spines in CORT was absent 

and to a lesser extent in CPU, and that even much thinner Tat-associated dendritic spines 

were found in CPU. Furthermore, we determined the length of neuronal branches, including 

dendrites and axons, and quantitated them by projecting stack images and segmenting the 

cell body (Figure S9A). In CORT, only iTat showed shorter branch length than WT in 6m 

males (Figure S9B). No significant differences in branch length were noted in HIP and CPU 

among all groups in our pilot study. These results together showed that iTat showed lower 

density of dendritic spines with shorter, wider, and smaller size morphology similar to the 

stubby shape (Risher et al., 2014), and Coc showed higher density with longer and thinner 

morphology similar to the filopodia or thin type (Risher et al., 2014), whereas iTat exposed 

to Coc showed higher density with shorter and bolder morphology close to the mushroom 

type but with a much larger size, indicating that cocaine exposure leads to dysgenesis-like 

dendritic spine swelling or synaptopathology.

Cocaine exposure led to significant increases of synaptophysin expression in the 
presence of Tat

We next performed western blotting to determine expression of two important 

neuronal functional markers post-synaptic density protein 95 (PSD-95) and pre-synaptic 

synaptophysin (SYP) in the brains of these mice (Figure 5A). In HIP, Coc showed lower 

PSD-95 expression than Sal in all groups, and iTat showed higher PSD-95 expression than 

WT in all Coc groups (Figure 5B). Coc showed significantly higher SYP expression than 

Sal in all groups except for 6m females, and iTat showed higher SYP expression than WT 

in all Coc groups. Similar trends were noted in both CORT (Figure S10A) and CPU (Figure 

S10B), although the differences were smaller in these two regions compared with HIP, and 

iTat showed higher PSD-95 and SYP than WT in 12m females. One consistent finding from 

all three brain regions was that Coc increased considerably more SYP expression in iTat 

mice than WT in all groups.

Zhao et al. Page 9

Cell Rep. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cocaine exposure diminished microglia activation by Tat

We then performed immunohistochemistry staining for microglia marker Iba-1 and 

determined if there were changes in the number and morphology of microglia. The cell 

body and branches of Iba-1+ cells were segmented, and the branches were skeletonized. 

The branch length and endpoints were quantified for each individual cell. In HIP (Figure 

6A), iTat had more microglia than WT in all groups except for 12m females (left panel, 

Figure 6B), and longer branch length (middle panel, Figure 6B) and more branch endpoints 

(right panel, Figure 6B) than WT in all groups. Coc had longer branch length and more 

branch endpoints than Sal in 6m of both males and females, while Coc had shorter branch 

length and fewer branch endpoints than Sal in iTat 6m of both males and females and 

iTat 12m males. The same findings were noted in CORT (Figure S11; Table S4) and CPU 

(Figure S12; Table S4), only differing in statistical significances. These results showed that 

Tat activated microglia to proliferate along with longer branches and more endpoints, Coc 

did not cause microglia to proliferate but with longer branches and more endpoints but, 

unexpectedly, Coc and Tat led to decreased branch length and endpoints of microglia while 

the higher number of microglia was maintained.

Cocaine exposure diminished astrocyte activation by Tat

We also performed immunohistochemistry staining for astrocyte marker glial fibrillary 

acidic protein (GFAP) and characterized the morphological changes of astrocytes in these 

mice. The cell body of GFAP + cells was segmented, and the total cell number and cell body 

occupied area were quantified. As astrocyte branches are thinner, more intercrossed, and 

denser than microglia, we first pronounced all the branches directly from images and then 

skeletonized them and quantified the total branch length in each view field. In the dentate 

gyrus of HIP (Figure 7A; Table S4), iTat had more astrocytes (left panel, Figure 7B), smaller 

cell body occupied area (middle panel, Figure 7B), and shorter branch length (right panel, 

Figure 7B) than WT in all groups. Except for branch length in both males and females of 

12m, Coc showed smaller cell body occupied area and shorter branch length than Sal in all 

groups, except for branch length in 6m males, and showed even smaller cell body occupied 

area and shorter branch length than Sal in 6m iTat males, smaller cell body occupied area 

than Sal in 12m iTat females, and shorter branch lengths than Sal in 6m iTat females. There 

were very fewer astrocytes in CORT and CPU in GFAP staining and the changes in these 

cells were not very evident (Table S4, data not shown).

Age and sex had similarly independent contributions to pathological abnormalities by Tat 
and cocaine

Similar patterns of cellular response to Tat and cocaine were noted among all four groups 

of 2 ages × 2 sexes: 6m males, 6m females, 12m males, and 12m females (Tables S1, S3, 

and S4). In cellular response (Figure S13; Table S5), compared with 6m males/females, 

12m males/females had fewer neurons in CORT but more microglia and astrocytes in HIP, 

CORT, and CPU, higher spine density in CORT, smaller spine average area in HIP, larger 

spine average area in CPU, higher spine length/width ratio in HIP, lower spine length/width 

ratio in CPU, higher PSD-95 level in spines in HIP, CORT, and CPU, lower SYP level in 

neuron axons in HIP and CORT, longer branches in neurons of CORT and astrocytes of 
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HIP astrocytes, shorter branches and fewer branch endpoints in microglia of HIP, CORT, 

and CPU, and larger cell body area in astrocytes of HIP. Males and females only differed 

in the distribution of statistical significance between these two age groups. Females had 

the statistical significance in CORT spine density, CPU spine average area, HIP spine 

length/width ratio, and HIP branch length of astrocytes, whereas males had the statistical 

significance in HIP spine average area, CPU spine length/width ratio, and CORT branch 

length of neurons.

In addition (Table S5), compared with males, females had fewer neurons in HIP, higher 

spine density, and spine average area in HIP and CORT, lower spine length/width ratio in 

HIP and CPU, higher PSD-95 level in HIP, CORT, and CPU, lower SYP level in CPU, 

longer branches in neurons of CORT, fewer microglia and shorter branch length and fewer 

branch endpoints in HIP and CPU, longer branch length and fewer branch endpoints in 

CORT, fewer astrocytes and shorter branch length in HIP. Both 6m and 12m mice mostly 

had the same response. 6m mice had statistical significance in spine length/width ratio in 

CPU, microglia counts in HIP with branch length and branch endpoints, which were not 

noted in 12m mice. Conversely, 12m mice had the statistical significance in spine density 

and spine average area in HIP, and microglia branch ending points in CORT, which were 

not noted in 6m mice. There were some exceptions; for example, neuron branch length in 

CORT, microglia branch ending points in CPU, and astrocyte branch length in HIP did not 

show the significance in both males and females, but only showed the significance in 6m 

mice that had opposite response compared with 12m mice.

DISCUSSION

Interactive effects between Tat and cocaine

Cocaine exerted its impact on the behaviors of iTat mice in an interactive manner and 

on glial and neuronal response by Tat in both interactive and additive manner (Table S8). 

Specifically, MWM indices with significant changes were all interactive effects (Tables S1 

and S8). For morphological changes in neurons, SYP and PSD-95 expression levels had 

either interactive or additive effect, differing among the groups, and the spine morphology 

changes all showed interactive effects (Table S3 and S8). For morphological changes in 

microglia, all showed interactive effects, while, for morphological changes in astrocyte, all 

showed additive effects (Table S3 and S8). In agreement with our studies are other studies 

that show interactive or additive effects between cocaine and Tat, including cholesterol 

homeostasis of glia and neurons (Cotto et al., 2018b; Mohseni Ahooyi et al., 2018), 

excitability of pyramidal neurons in medial prefrontal cortex (Wayman et al., 2015), 

neuronal differentiation (Sun et al., 2016), brain energy metabolism (Natarajaseenivasan et 

al., 2018; Sivalingam et al., 2021), and addiction (McLaughlin et al., 2014). However, few of 

these studies have clearly clarified the differences between interactive and additive effects. 

Although both interactive and additive effects could lead to worse outcomes, the interactive 

effect is biologically more significant and often leads to more unpredictable outcomes.

In terms of neurobehaviors and neuropathology, Tat slightly impaired learning and memory 

(Figures 1B, 1C, and S1; Table S1) and altered spine morphology (Figures 4A, 4B, S7, 

and S8; Table S2). In contrast, cocaine showed better learning and memory, although there 
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was no statistical significance when compared with Sal. Cocaine was also associated with 

higher spine density, average area, and length/width ratio. However, Tat and cocaine together 

showed significantly worsened learning and memory and induced dramatic spine dysgenesis 

(swelling). Similarly, in HIP of 6m males and 12m females, Tat barely affected SYP 

expression, while cocaine increased SYP expression; However, Tat and cocaine together 

drastically elevated SYP expression (Figure 5; Table S2). For microglia morphology, Tat 

significantly increased branch length and number of branch endpoints, while cocaine 

had similar effects but to a much lesser extent. However, Tat and cocaine together led 

to remarkably decreased branch length and the branch endpoints (Figures 6, S11, and 

S12; Table S3). Furthermore, 14,838 Hyper- and 15,800 Hypo-CpG DMRs linked to 56 

downregulated and 127 upregulated DEGs (Figures 2E and 3A), and 1,995 Hyper- and 2,762 

Hypo-CpH DMRs linked to 19 downregulated and 14 upregulated DEGs (Figures S4E and 

S5B) were identified to be involved in the interactions between Tat and cocaine. All these 

findings strongly support the interactive nature between Tat and cocaine for the impact of 

cocaine in the HAND population.

Chronic cocaine use alone enhances spatial learning and memory (Del Olmo et al., 2007; 

Zhai et al., 2007), and spine density (Cahill et al., 2018; Norrholm et al., 2003; Shen 

et al., 2009), long-term potentiation in different brain regions (del Olmo et al., 2006; Fu 

et al., 2007; Overton et al., 1999), and altered spine morphology (Caffino et al., 2018; 

Rasakham et al., 2014). In this study, we show that changes of synaptic markers SYP 

and PSD-95 expression by cocaine varied among brain regions, age, and sex (Figures 5, 

S10, and S13; Table S2), indicating that effects of cocaine are context dependent. This 

possibility is supported by other behavioral findings in the study that cocaine unexpectedly 

and specifically showed somewhat anxiolytic effect on 6m females by EPM and OPT 

(Figures S2A and S2B; Table S8) and anti-depressive effect to 12m males by TST and FST 

(Figures S2D and S2E; Table S8). These findings are consistent with other studies (Ka et 

al., 2016; Ribeiro et al., 2017; Rodriguez-Espinosa and Fernandez-Espejo, 2015; Yao et al., 

2004). Also, as demonstrated in other studies (Cotto et al., 2018a; Scofield et al., 2016), we 

showed that cocaine activated microglia in 6m mice with increased branch length and ending 

points and decreased astrocyte cell body regions and branch lengths (Figures 6, 7, S11, and 

S12; Table S3).

We and others have shown that Tat impairs spatial memory and locomotor activity (Zhao 

et al., 2020, 2021) and causes depressive status (Lawson et al., 2011; McLaughlin et al., 

2017), neuronal cell loss (Jin et al., 2012; Zhou et al., 2004), shortened neuron dendrite 

branches (Rahimian and He, 2016), lower spine density (Fitting et al., 2010), and glia cells 

activation (Zhao et al., 2021; Zhou et al., 2004). These were confirmed in this study (Tables 

S1, S2, S3, S4, and S8). In the study, we also provide direct and in vivo evidence that 

Tat caused neuronal loss in HIP, CORT, and CPU, shortened neuron dendrite branches in 

CORT, lower spine density in HIP and CPU, microglia activation along with increased cell 

number and branches in HIP, CORT, and CPU, and astrocyte activation with increased cell 

number and decreased cell body and branch length in HIP. Furthermore, we showed mostly 

additive effects of age and sex in changes of behavioral and cellular responses to Tat and 

cocaine (Tables S1, S3, S4, S5, and S8), except that significant depressive status was noted 

in 6m males by FST and somewhat depressive status in 12m females by both TST and FST 
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(Figures S2D and S2E; Table S8), which indicates that age and sex function by different 

mechanisms. Another interesting new finding from this study is that all iTat mice showed 

higher anxious threshold (anxiolytic characteristic) in EPM and OPT even with cocaine 

(Figures S2A and S2B; Table S8). This could be altered locus coeruleus reactivity of the 

anxiety system by Tat (Morris et al., 2020) and merits further investigation.

Glial involvement in synaptic dysgenesis

We found that chronic cocaine use sharply diminished branch lengths of microglia and 

astrocytes along with synapse swelling in iTat mice (Figures 4, 6, 7, S7, S8, S11, 

and S12; Tables S3 and S4). A plausible explanation is that chronic cocaine use limits 

astrocyte-neuron contact and damages the microglia pruning process, which in turn leads 

to unrestrained synapse formation, resulting in synapse swelling or dysgenesis to have 

enough capacity to mediate impaired learning and memory processes (Figures 1B, 1C, and 

S1; Table S1). In addition, ECM, which constitutes around 20% brain volume, has been 

proposed to be a potential mediator for astrocyte-microglia-synapse interaction involved in 

synapse remodeling (Ferrer-Ferrer and Dityatev, 2018; Vainchtein and Molofsky, 2020). Our 

KEGG pathway analysis, which showed that the ECM receptor interaction pathway was 

significantly involved in Tat-, Coc-, and Tat/Coc-induced molecular changes in all three 

factors (Figure 3C), offers additional evidence to further support this possibility. Our GO 

functional analysis revealed that more neuron functional and morphological clusters were 

present under the Tat × Coc factor (Figure 3B), which could be the molecular basis for 

synaptic dysgenesis. Of note is that, although astrocytes play an important role during this 

process, the significant proportion of microglia-related genes with significant changes in 

their expression levels were identified in our bioinformatic analysis (Figure 3D). Finally, the 

morphology changes of microglia showed the interactive effect between Tat and Coc, which 

was different from additive effects in astrocytes (Table S8). All these findings support the 

notion that microglia is the major player during synaptic dysgenesis by Tat and Coc.

Roles of genome-wide DNA methylation by Tat and Coc

Most studies about cocaine-associated DNA methylation changes focus on the nucleus 

accumbens and prefrontal cortex of the brain and show different levels of genome-wide 

DNA methylation by different approaches (for review, see Brown and Feng, 2017). We 

have previously shown that Tat decreases genome-wide DNA methylation in CORT and 

cerebellum by ELISA (Zhao et al., 2020). In this study, we determined the genome-wide 

DNA methylation in HIP using single-base resolution WGBS. Tat or Tat and Coc decreased 

the CpG and CpH percentage, Coc had no significant changes in the CpG percentage and 

slight increases in the CpH percentage (Figures S14A and S14B), suggesting that Tat alters 

the mC sites and Coc does not. However, Tat increased the average methylation levels 

of each CpG and CpH site, and cocaine showed opposite effects (Figures 2A and S4A). 

Taken together, Tat reduced the numbers of CpG and CpH sites, but increased their average 

methylation level. In contrary, cocaine did not affect the numbers of CpG and CpH sites 

but decreased their average methylation level. These findings suggest that the changes at 

individual CpG and CpH site may be more valuable than the changes at the genome-wide 

level. In addition, we showed that the distribution of these mCpG and mCpH sites and 

their linked DMRs by Tat, Coc, or Tat and Coc did not show significant convergent effect 
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(Figures 2B-2E, S4B-S4E, and S5A), indicating that Tat and Coc hijack upstream genes/

pathways that control DNA methylation. DNMT3B, which we identified to be responsive to 

Tat (Zhao et al., 2020), could be a strong candidate.

Tat as an accelerating factor of biological aging

In the study, we monitored body weights of all mice and found that iTat mice weighed 

significantly lower than WT mice in both 6m and 12m groups (Figure S15A), which 

extended our previous observation that there were weight differences between WT and iTat 

mice of 1 month (Kim et al., 2003). We also found that females weighed significantly lower 

than males in 6m iTat and WT mice as well as in 12m WT mice, but not in 12m iTat mice, 

suggesting that iTat mice could experience andropause and menopause earlier than WT mice 

or that their sex hormone could decline earlier than WT mice. In addition, we noticed that 

12 m iTat mice had much higher mortality than 12m WT mice during cocaine injection 

(Table S9), although there was no statistical significance due to the small group number. 

Nonetheless, these results indicate that aging iTat mice are more vulnerable than WT mice 

to stress, such as injection, cocaine, or the declined adaptability of the cardiovascular system 

to stress earlier than WT mice. To ascertain this Tat aging connection (Zhao et al., 2020), 

we aligned HIP mC sites, which were generated from WGBS in 12m mice, with 732 

documented age-related mC markers (Coninx et al., 2020). We identified 172 matched mC 

sites and found that the methylation level (M value) of 32 mC sites in iTat mice were 

significantly higher from WT mice (Figures S14C and S14D; Table S10). These results 

further demonstrated that iTat mice had higher biological age and support the idea that Tat 

accelerates biological aging.

Limitations of the study

There are several perceived limitations about this study. Use of iTat mice as a surrogate 

model for HAND could be one limitation. These mice only express HIV Tat protein and 

none of the other viral proteins, even though Tat is a major pathogenic factor for HAND. 

We also included MWM to determine memory changes of the mice in the context of Tat 

expression and Coc exposure. The results showed MWM to be the best neurobehavioral 

test among all other tests to demonstrate the interactive phenomenon between Tat and Coc. 

Stress and low sensitivity could affect the outcomes of MWM (Vorhees and Williams, 2014). 

Thus, alternative memory tests would further validate the findings. Based on the effects 

of Tat and Coc on the memory, we decided to choose the HIP region as our focus to 

determine the effects of Tat and Coc on DNA methylation and gene expression. Thus, it 

remains to be determined if similar changes occur in other brain regions, including CORT 

and CPU. Microglia, astrocytes, and neurons have been the main focus in the field of 

neuroHIV, as they represent the main targets of HIV infection and HIV-infected/affected 

cells. Our study shows significant changes of gene expression in oligodendrocytes and 

oligodendrocyte progenitor cells in response to Tat, Coc, and Tat × Coc. It would be 

interesting to determine the pathological changes, if any, in these cells exposed to Tat, 

Coc, and Tat × Coc. Finally, although we performed RNA-seq to confirm changes of gene 

expression, individual genes, and biological pathways in different cells identified from this 

study merit further investigation.
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STAR┆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Johnny J. He 

(johnny.he@rosalindfranklin.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

Data availability: All data reported in this paper will be shared by the lead contact upon 

request. The NGS data link is listed in the key resources table.

Code availability: This paper does not report original code.

Any additional information that may be required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and cocaine administration—Wild-type (Wt, C57BL/6) mice were purchased 

from Jackson Laboratory (Bar Harbor, ME), and iTat mice were created as we described 

before (Kim et al., 2003). All the animal procedures were approved by the Institutional 

Animal Care and Use Committee. Mice were housed with a 12-h light and 12-h dark 

photoperiod and provided water and food ad libitum. Mice were fed with Dox food pellets, 

beginning at day 21 following their weaning and continued for 5 or 11 months, then i.p. 

injected with cocaine (Coc, 30 mg/kg/day, stock: 3 mg/mL) or its solvent saline (Sal) 

for 14 days. These mice remained on Dox food pellets throughout the Coc injection and 

behavioral assessments until they were euthanized. Eventually, all mice were fed for a total 

of either 6.5- or 12.5-month, which were designated as 6m or 12m throughout the study 

for simplicity. There were a total of 194 mice in the study, which were randomly assigned 

(10–16 mice/group) to 16 experimental groups [2 genotypes (Wt, iTat) x 2 sexes (male, 

female) x 2 age groups (6m, 12m) x 2 treatments (Sal, Coc). For all experimental groups, an 

equal number of age-matched male and female mice were included.

METHOD DETAILS

Behavioral tests—10 days after final injection (drug free/cessation period), All mice 

remained drug free for 10 days and then subjected to before behavioral battery tests in 

the order of increasing stress. Elevated plus maze (EPM) test: In the low light intensity 

environment, mouse was placed in the central area of EPM apparatus, faced to open arm, 

and allowed travel freely between open arms and close arms for five minutes. Then, their 

travel distance, staying time, and entries in each area/arm were monitored by an infrared 

camera, and Open Arm Entries, Open Arm Time, and Open Arm Distance were finally 

used for measuring the anxious status. Open field test (OPT): Mice were allowed to move 

freely in an acrylic chamber, for 10 min, and the Total Distance, Maximum Speed, Central 

Distance (in the middle square area with 20 cm × 20 cm size), and Central Entries during the 
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movement were recorded for analyzing its locomotor activity and anxious status. Rotarod 
test (RT): There are two sessions in two days for RT. Sensitive speed screening session (Day 

1): In this session, there were total four trials for each mouse, and the interval between each 

trial was around 15 min, but no more than 20 min. Mice were first placed on the stationary 

rod of IITC Rotarod for 30 s, then started with the acceleration mode from 4 to 45 rpm 

within 4 min. The speed at which the mouse fell from rod was record, and the average 

falling-down speed for four trails was calculated. We noted that most young mice fell at 

20–35 rpm, and most old mice at 10–20 rpm. So, 30 rpm and 15 rpm were chosen as the 

sensitive speed for young and old mice, respectively. For the second session test (Day 2), 

there were two trials for each mouse, and every trial had 4 min test with a fixed sensitive 

speed (fixed mode). Similarly, mice were placed on the stationary rod for 30 s, then started 

with their sensitive speed. The latency to fall from the rod was record. Morris water maze 
test (MWM): The apparatus and protocol were as previously described (Zhao et al., 2021), 

except that we added to another probe test seven days after first probe test to measure the 

long-term memory. Briefly, there were two stages including 5-day training and two probe 

tests. Training stage consisted of four trials. In each trial, mice were put into one quadrant 

and allowed to freely seek the platform within 90 s. If they found the platform within 90 

s, they would be allowed to stay on the platform for another 10 s for memorizing purpose. 

However, if they failed, they would be put onto the platform to stay for 15 s. Immobile or 

floating Mice were excluded from the experiments. First probe test was implemented on the 

next day after the 5-day training stage with a 60 s trial, and the second probe test was the 

same as the first one, but was carried out seven days later. The platform was removed during 

the probe tests. One day after second probe test, mice were euthanized and the brains were 

collected. All behavioral tests were record and analyzed by a computerized video tracking 

system, Anymaze.

DNA and RNA isolation, library preparation, and sequencing—Genomic DNA 

was isolated from one HIP hemisphere by DNeasy Blood & Tissue Kit, the DNA quality 

was first confirmed by Nanodrop, with 260/280 ratio at 1.95–2.0 (in 10 mM Tris·Cl, pH 7.5 

solution) and then verified by 1% agarose gel analysis to make sure no DNA degradation 

and RNA contamination. Genomic DNA libraries were prepared genomic DNA (10 ng) 

using a Pico Methyl-Seq Library Prep Kit. MQ beads, were used in place of the column 

purification system in the library kit for higher DNA recovery. The quality of DNA libraries 

was determined to be 380–520 bp of the median size and have no contamination of primer 

dimers. The libraries were sequenced using the Illumina NovaSeq 6000 S4 Paired-end-150 

system. RNA was isolated from the other HIP hemisphere of the same mice by TRIzol 

reagent, and further purified using an RNA Clean & Concentrator Kit. The RNA was 

determined to be 9.5–9.9 of RNA integrity number using an Agilent Bioanalyzer 2100. The 

RNA libraries were prepared from the RNA using a QIAseq Stranded mRNA Select kit. 

Briefly, RNA (800 ng) was used to generate poly-A+ enriched RNA, the concentration of 

which was determined using a Qubit 4 Fluorometer. poly-A+ enriched RNA (10 ng) was 

used to synthesize the RNA libraries using the kit. The quality of libraries was determined 

to be 300–500 bp of the median size and have no contamination of primer dimers using 

a bioanalyzer. The libraries were sequenced using the Illumina HiSeq 4000 Single-end-50 

system.
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Sequencing data processing and analysis—A bioinformatics analysis pipeline 

nf-core/methylseq (Ewels et al., 2020) was used to process the methylation (Bisulfite) 

sequencing data. Briefly, we input the FASTQ raw data, aligned the reads, and performed 

extensive quality-control on the results. In the pipeline, FASTQC (v 0.11.9) was chosen 

for quality control and Trim Galore! (v0.6.5) for adapter sequence trimming with default 

parameters. Trimmed sequences were then mapped to the Mus musculus assembly 

(GRCm38/mm10) from Genome Reference Consortium, using Bismark 0.22.3 (Krueger 

and Andrews, 2011) with the alignment tool Bowtie2 (v2.4.2) (Langmead and Salzberg, 

2012). Sequence duplicates were further removed by command “deduplicate_bismark” 

and context-dependent methylation (CpG and CpH) were extracted by command 

“bismark_methylation_extractor”.

Differential methylation calculation—M-value was used as metrics to measure 

methylation levels and differential analysis of methylation levels, which was defined as 

the log2 ratio of the intensities of methylated probe versus unmethylated probe as followed 

(Du et al., 2010):

M = log 2 m + α
μ + α , (Equation 1)

where m and μ are methylated and unmethylated level, respectively, measured by the 

methylated and unmethylated probes for an interrogated CpG site respectively, and α is 

a constant offset and set as 1e-3. We modeled each CpG or CpH site once for differential 

methylation analysis. For each site and preset region, we considered the following linear 

mixed model to determine differential methylation:

Mijk = μ + Si + Pj + Tk + PTjk + SPij + ST ik + εijk, (Equation 2)

where εijk ~ N(0,σ2). The fixed effects in equation are μ (mean), Si(sex, male or female), Pj 

(genotype, iTat or Wt), Tk (treatment, Coc or Sal), PTjk (genotype-treatment interaction),SPij 

(sex-genotype interaction), and STik (sex-treatment interaction); i = 1,2 stands for male 

and female, respectively; j = 1,2 stands for iTat and Wt mice, respectively; and k = 1,2 

stands for Coc and Sal treatment, respectively. The variance components in the linear mixed 

model were estimated using the residual maximum likelihood (REML) approach (Pinheiro 

and Bates, 2002). We used R program to fit linear mixed models to each site and preset 

region. The lsmeans package was used for testing the differences in combinations of levels 

among genotype and treatment, and for tests of Difference-in-Differences in the interaction 

between genotype and treatment. Initially, we performed the Principal component analysis 

(PCA) analyses using the built-in R functions prcomp() and found there were no significant 

difference by sex factor (Figure S3B). We then only considered two factors, genotype and 

treatment, and defined the vectors with only four values [Wt mice with Sal (Wt-Sal), iTat 

mice with Sal (iTat-Sal), Wt mice with Coc (Wt-Coc), and iTat mice with Coc (iTat-Coc)] 

to represent the means we used to compare. Thereafter, we built the custom comparisons via 

the Contrast () function in lsmeans package. For example, Wt-Coc vs. Wt-Sal is defined as 

(0, 1, 0, −1), iTat-Sal vs. Wt-Sal as (0, 0, 1, −1), and interaction between type (iTat/Wt) and 

treatment (Coc/Sal) as (1, −1, −1, 1).
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Annotation with custom regions—Our preset regions were downloaded from annotatr 

package (Cavalcante and Sartor, 2017), which provides genomic annotations including 1 

to 5 kb, promoters, 3UTRs, 5UTRs, exons, exon boundaries, introns, and intergenic. Then, 

three critical regions, including promotors, exons, and introns were parsed and merged with 

GRCm38 gene annotation file for region analysis.

RNA sequencing (RNA-Seq) data processing—Reads were mapped to GRCm38 

reference genomes with STAR (v2.7.9) (Dobin et al., 2013). The maximum number of 

multiple alignments allowed for a read is set to 10. And, featureCounts (v 2.0.1.13) was 

used to quantify reads with the following parameters (-T 10 -t exon -s 1 -g exon_id). The 

read count matrix was then normalized by countToFPKM package (v 1.0) to Fragments Per 

Kilobase of transcript per Million mapped reads (FPKM) values. For each exon, we applied 

the quantified expression value Yijk the same linear mixed model as shown in Equation 2 to 

determine differential expression:

Y ijk + μ + Si + Pj + Tk + PTjk + SPij + ST ik + εijk, (Equation 3)

where variables and subscripts are same as Equation 2, except for Yijk which is a quantified 

expression value. A PCA analysis were performed and found there were no significant 

difference by sex factor (Figure S3B).

Gene-linked DMR—To determine the potential genes which were possibly regulated by 

differentially methylated regions (DMR). We defined Gene-linked DMR as the differentially 

methylated regions mapped to or close to genes that are differentially expressed (DEG) 

in RNA-Seq. Gene expression values were measured at the exon level from RNA-Seq by 

feature Counts, in order to increase mapping with DMR. We merged the DMR annotated 

from annotatr package (Cavalcante and Sartor, 2017) and differentially expressed exons 

from RNA-Seq by transcript ID. There were totally four types of gene-linked DMR: Hyper-

methylated DMR (Hyper-DMR) linked to up-regulated genes (Up-DEG), Hyper-DMR 

linked to down-regulated genes (Down-DEG), Hypo-methylated DMR (Hypo-DMR) linked 

to Up-DEG, and Hypo-DMR linked to Down-DEG. Only Hyper-DMR linked to Down-DEG 

and Hypo-DMR linked to Up-DEG were used for down-stream analysis.

KEGG and gene ontology analysis—We performed pathway analysis through the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 (Huang et 

al., 2009). Functional Annotation Table for the three factors, Tat, Coc, and Tat X Coc, was 

downloaded through the DAVID API Server.

Machine learning for cell type prediction—In order to predict the cell types for gene-

linked DMR, we first downloaded the top 6000 ranked cell type-enriched mouse genes from 

the reference (McKenzie et al., 2018) and mapped them with the RNA-Seq transcriptome 

database of purified cell classes of the brain (Zhang et al., 2014). The Support Vector 

Machine (Zhang et al., 2021) was used to build a learning model from the mapped genes, 

and then the trained model was applied to predict the cell type for the unmapped genes and 

generated a database with cell type information. The following parameters were used for 

training: method = “C-classification”, kernel = “radial”, scale = TRUE, gamma = 1, and 
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cost = 1000. “Astro.1”, “Astro.2”, “Neuron.1”, “Neuron.2”, “OPC.1”, “OPC.2”, “NFO.1”, 

“NFO.2”, “Myelinating.1”, “Myelinating.2”, “MGL1”, “MGL2”, “Endo.1”, “Endo.2” were 

used for features. An internal five-fold cross-validation method evaluated that its prediction 

accuracy could reach 80%. Finally, we mapped the gene-linked DMR to this database. 

Finally, we mapped the gene-linked DMR to this database.

Golgi-Cox staining—After the mice were euthanized, the brain was extracted and 

sagittally dissected into two hemispheres. Golgi-Cox staining was performed as described 

(Zaqout and Kaindl, 2016). Briefly, one hemisphere was fixed in the Golgi-Cox solution 

at room temperature for 24 h and in the fresh Golgi-Cox solution for 10 more days. The 

tissue was then dehydrated and preserved in tissue-protectant solution at 4°C for 24 h 

and in the fresh tissue-protectant solution for seven more days. All these procedures were 

performed in dark. The tissue was then sagittally sectioned on a vibratome (100 μm thick, 

Leica, VT1000S). The sections were developed in ammonia solution (3:1) and 5% sodium 

thiosulfate solution, dehydrated in gradient ethanol and then in xylene, and mounted. All 

dendritic spine stack images were taken using a Nikon Eclipse 800 microscope with a 100x 

oil objective, while a 20x objective was used for neuronal branches stack images.

3′-Diaminobenzidine (DAB) staining—DAB staining was performed as we described 

(Zhao et al., 2021). Briefly, mice were anesthetized by avertin (tribromoethanol) and 

transcardially perfused with phosphate-buffered saline (PBS) and then 4% paraformaldehyde 

(PFA). The brains were dissected out, fixed, dehydrated, embedded, and sagittally sectioned 

with a cryostat (20 μm thick). Floating sections were permeabilized, blocked, probed by 

Iba-1 antibody or GFAP antibody, inactivated endogenous peroxidases, probed again by a 

goat anti-rabbit secondary antibody, and developed using a DAB kit. All images were taken 

using a Nikon Eclipse E800 microscope with a 20x objective for iba-1 staining and 40x for 

GFAP staining.

Immunofluorescence staining—Brain sections (20 μm thick) were permeabilized, 

blocked, probed by NeuN and secondary antibody goat anti-mouse 488, and counter stained 

in 1 μg/mL DAPI. All images were taken using a Nikon Eclipse E800 microscope with a 10x 

objective.

Western blotting—Different brain regions, including hippocampus (HIP), caudate 

putamen (CPU), and cortex (CORT), were dissected out from the fresh frozen brains at 

−80°C, placed in RIPA buffer (50 mM Tris.HCl, pH 8.0, 280 mM NaCl, 0.5% NP-40, 1% 

C24H39NaO4, 0.2 mM EDTA, 2 mM EGTA and 10% glycerol) supplemented with protease 

inhibitors, and briefly sonicated on ice to obtain the lysates. Protein concentrations of the 

lysates were determined using a Bio-Rad DC protein assay kit, the lysates were denatured in 

the SDS-PAGE loading buffer at 100°C for 10 min, electrophoretically separated by 8–10% 

SDS-PAGE, transfer onto 0.45 μm polyvinylidene fluoride membrane, and probed using 

appropriate antibodies against PSD-95, synaptophysin, and β-actin. A Bio-Rad ChemicDoc 

imaging system was used to capture images.

Zhao et al. Page 19

Cell Rep. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



QUANTIFICATION AND STATISTICAL ANALYSIS

Image analysis—For dendritic spine morphology from Golgi staining: All z stack 

images were firstly projected into 2D images by image J (Schneider et al., 2012) with 

EDF plugin (Forster et al., 2004), then input to Imaris software (Bitplane) to analyze Spine 

Density, Spine Average Area, and Spine Length/Width ratio. All spine were chosen from the 

terminal branches of neuron dendrites with at least 60 μm in length, every dendritic branch 

was selected from a different individual neuron, three to four neurons were picked up from 

each section, three sections were selected from each individual mouse, every experimental 

group had three mice, and finally 9–12 spines were allocated to each group for statistical 

analysis. In HIP, only CA regions were included for analysis; in CORT, dendritic branches 

were randomly chosen from frontal, occipital, and parietal cortex, but every region had at 

least one dendritic branch; and in CPU, random dendritic branches were selected, as neuron 

morphology in this region was more uniform. For neuronal branches from Golgi staining: 

All z stack images were projected into 2D images first, then input to ilastik (Berg et al., 

2019) to run the cell body and branch segmentation, and lastly, analyzed by Cellprofiler 

(McQuin et al., 2018). Only the CORT region was selected for this analysis, as no apparent 

changes were observed in HIP and CPU in our pilot study. For microglia morphology from 
Iba-1 DAB staining: All branches of microglia were pronounced by ilastik and analyzed 

by Cellprofiler. For astrocyte morphology from GFAP DAB staining: Image J was used 

to segment the cell body region and count the cell number; and astrocyte branches were 

pronounced by ilastik and calculated by Cellprofiler. We only chose HIP dentate gyrus (DG) 

region in this analysis because of its significance as well as most if not all negative GFAP 

staining in CORT and CPU regions. For neuron number from NeuN immunofluorescence 
staining: In HIP, only a specific area located at CA2-CA3 region (framed by white box in 

Figure 2C) was chosen for analysis; the green (NeuN+) and blue (DAPI+) channels in this 

area were split by image J, then the cell body signals in green channel were pronounced 

by ilastik and calculated by Cellprofiler. The blue channel in HIP and all staining signals 

in CORT and CPU regions were directly processed by Cellprofiler. In HIP and CPU, three 

random areas were chosen from each section; in CORT, three areas were chosen for each 

of frontal, occipital and parietal cortex from each section, thus three areas from three cortex 

regions were averaged for CORT analysis; for all the brain regions, three to five sections 

were selected from each mouse, every group had three mice, and there were 9–15 sections 

for each group for statistical analysis.

Statistical analysis—Four-way repeated measures ANOVA was used in MWZ training 

stages, and all other studies used either two-way or four-way ANOVA, whenever applicable; 

Bonferroni test was used for all post hoc analyses. All statistical analyses were performed 

using the IBM SPSS 20; and p < 0.05 was considered significant and marked as *, # or $ for 

comparisons among different groups; p < 0.01 and p < 0.001 were both considered highly 

significant and marked as ** and ***, respectively. For all bioinformatic data analysis, R 

program with q < 0.05 or p < 0.05 was used, and other details were provided the sections 

above. Interactive effect between Tat and cocaine was defined by ANOVA tests or Linear 

mix model analysis. If there was no interactive effect and combined effect of these two 

factors was more than each of the factors alone, it was defined as additive effect.
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Highlights

• Cocaine use worsens impaired learning and memory in brain-specific Tat 

transgenic mice

• Cocaine/Tat alters gene expression in ECM receptor pathways and microglia

• Cocaine/Tat changes dendritic spines, synaptophysin expression, and glial 

activation

• Sex and age are both important contributing factors to cocaine and Tat 

interaction
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Figure 1. Effects of cocaine on the learning and memory of iTat mice
(A) Experimental scheme. WT and iTat mice were fed with Dox food pellets for 5 or 11 

months from day 21 when they were weaned, given cocaine i.p. (30 mg/kg/day) for 14 

days, remained drug free for 10 days, and subjected to behavioral assessments: EPM, OPT, 

RT, TST, FST, and MWM. Dox food pellets continued throughout the studies. Mice were 

euthanized to collect tissues for pathology or DNA/RNA isolation following MWM.

(B) Escape latency in the MWZ training stages.

(C) Short-term memory from the first probe test demonstrated by Latency to platform, 

platform entries, time at target quadrant, distance to target quadrant, time at platform, and 

distance to platform.

n = 8–14/group. p < 0.05 was considered significant and marked as * or $ for comparisons 

among different groups; p < 0.01 and p < 0.001 were both considered highly significant and 

marked as ** and ***, respectively. Sal, saline; Coc, cocaine. Error bars: mean ± SEM.

Zhao et al. Page 28

Cell Rep. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Effects of cocaine on genome-wide DNA methylation in the context of Tat expression
Genomic DNA was isolated from HIP of the mice for genome-wide DNA methylation 

analysis.

(A) The average CpG methylation level among these four groups (n = 6/group).

(B) The CpG distribution among all mouse chromosomes. Red, WT-Sal; green, WT-Coc; 

blue, iTat-Sal; pink, iTat-Coc.

(C–F) CpG site-linked differentially methylated regions (DMRs) expressed in M values 

(left panel) and their chromosomal location (right panel) under factor Tat (WT-Sal versus 

iTat-Sal) (C), Coc (WT-Sal versus WT-Coc (D), and Tat × Coc (interaction between Tat and 

Coc) (E). (F) Overlapped DMRs among three comparisons. *Four chromosomes with the 

top ranked number of up and down DMRs; ∨, four chromosomes with the bottom ranked 

total number of up and down DMRs.
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Figure 3. The relationship between CpG DNA methylation and genes expression by each of the 
factors Tat, Coc, and Tat × Coc
(A–F) RNA was isolated from HIP of the mice and used for RNA-seq analysis. 

Differentially expressed genes (DEGs) (Up or Down) were identified to be proximal to 

DMRs (Hyper or Hypo) by each of the factors Tat, Coc, and Tat × Coc (A). Up-DEGs/

Hypo-DMR-linked genes and Down-DEGs/Hyper-DMR-linked genes (marked in red) in 

(Aa) were chosen to run GO (B) and KEGG enrichment analysis (C). The GO cluster with 

the highest gene ratio and gene count was highlighted in red (B). The extracellular matrix 

(ECM)-receptor interaction pathway was shared among these three factors (marked in red) 

in (C). DEGs in each factor were further segregated to different brain cell types: microglia, 

astrocyte, neuron, oligodendrocyte, oligodendrocyte progenitor cell (OPC), and endothelial 

cell (D). The most significantly impacted genes that had q < 1e-5 DMRs and q < 0.01 DEGs 

are marked in red in volcano map (E). Top 20 DEGs with q < 0.05 in microglia and top 

10 DEGs with q < 0.05 in astrocytes and neurons were shown in heatmap (F), in which 

overlapped top genes were marked in white. Red ellipsis, 9330182L06Rik; black ellipsis, 

4933407I05Rik. *Genes present in both Tat × Coc and Tat or Coc; #genes present in both 

Tat and Coc. Framed genes present in Tat, Coc, and Tat × Coc.
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Figure 4. Effects of cocaine on dendritic spine morphology of neurons in HIP of iTat mice
(A and B) Mouse brain sections were stained in the Golgi-Cox solution (A). Scale bar, 10 

μm. Dendritic spines in CA1-4 regions were modeled and quantified by Imaris for spine 

density, occupied area, and length/width.

(B). Representative images (A) were chosen from 6- and 12-month male mice groups. n = 

9–11/group. p < 0.05 was considered significant and marked as *, and p < 0.01 and p < 

0.001 were both considered highly significant and marked as ** and ***, respectively. Sal, 

saline; Coc, cocaine. Error bars: mean ± SEM.
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Figure 5. Effects of cocaine on synaptophysin expression in HIP of iTat mice
(A and B) HIP brain regions were dissected from the mouse brain and processed for 

lysates. SYP and PSD-95 expression in the lysates was determined by western blotting (A), 

quantified by Fiji, normalized to the loading control β-actin, and calculated using the WT + 

Sal as a reference, which was set at 1 (B). n = 6/group. p < 0.05 was considered significant 

and marked as *, and p < 0.01 and p < 0.001 were both considered highly significant and 

marked as ** and ***, respectively. Sal, saline; Coc, cocaine. Error bars: mean ± SEM.
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Figure 6. Effects of cocaine on microglia of HIP of iTat mice
Mouse brain sections were stained for Iba-1, the cell bodies of microglia were segmented 

and the branches were skeletonized by Cellprofiler.

(A) The total number of microglia in every view field (1.4 × 105 μm2), the branch length of 

microglia, and the number of the ending points in each microglia were further calculated by 

Cellprofiler. Scale bars, 50 μm.

(B) Representative images were chosen from 6- and 12-month male mice groups.

n = 9–14/group. p < 0.05 was considered significant and marked as *, and p < 0.01 and p 

< 0.001 were both considered highly significant and marked as **and ***, respectively. Sal, 

saline; Coc, cocaine. Error bars: mean ± SEM.
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Figure 7. Effects of cocaine on astrocytes of HIP dentate gyrus of iTat mice
Mouse brain sections were stained for GFAP, and the cell bodies of astrocytes in HIP dentate 

gyrus were segmented and the branches were pronounced by Imaris and ilastik, respectively.

(A) The total number of astrocytes, the cell body occupied area, and the branch length were 

further calculated by Imaris or Cellprofiler in every view field (3.8 × 104 μm2). Scale bars, 

50 μm.

(B) Representative images were chosen from 6- and 12-month male mice groups.

n = 9/group. p < 0.05 was considered significant and marked as *, and p < 0.01 and p < 

0.001 were both considered highly significant and marked as ** and ***, respectively. Sal, 

saline; Coc, cocaine. Error bars: mean ± SEM
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Iba-1 (1:800) Wako Catalog # 019–19741; RRID: AB_839504

GFAP (1:500) DAKO Catalog # Z0334; RRID: AB_10013382

NeuN (1:500) Millipore-sigma Catalog # MAB377; RRID: AB_2298772

PSD-95 (1:2000) Abcam Catalog # Ab18258; RRID: AB_444362

Synaptophysin (1:1000) Abcam Catalog # Ab8049; RRID: AB_2198854

β-actin (1:2000) Sigma-Aldrich Catalog # A1978; RRID: AB_476692

Goat anti-rabbit secondary antibody, 
HRP (1:200)

Southern Biotech Catalog # 4030–05; RRID: AB_2687483

Goat anti-mouse secondary antibody, 
Alexa 488 (1:500)

ThermoFisher Catalog # A11001; RRID: AB_2534069

Chemicals, peptides, and recombinant proteins

Dox food pellets (0.625g/kg) Envigo Catalog #TD.01306

Protease inhibitors Millipore-Sigma Catalog # S8830

TRIzol reagent ThermoFisher Catalog # 15596026

Critical commercial assays

DAB kit Abcam Catalog # Ab103723

DNeasy Blood & Tissue Kit Qiagen Catalog # 69504

Bio-Rad DC protein assay kit Bio-Rad Catalog # 5000111

Pico Methyl-Seq Library Prep Kit ZYMO Catalog # D5456

RNA Clean & Concentrator Kit ZYMO Catalog # R1013

QIAseq Stranded mRNA Select kit Qiagen Catalog # 180773

Deposited data

WGBS and RNA-seq data This paper GSE200255: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE200255

Experimental models: Organisms/strains

Wild-type (C57BL/6) mouse Jackson Laboratory Strain # 000664

iTat mouse This Study N/A

Software and algorithms

nf-core/methylseq Ewels et al. (2020) https://nf-co.re/methylseq

FASTQC (v 0.11.9) N/A http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trim Galore! (v0.6.5) N/A http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

Bismark (v0.22.3) Krueger and Andrews (2011) https://www.bioinformatics.babraham.ac.uk/projects/bismark/

Bowtie2 (v2.4.2) Langmead and Salzberg (2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

R program (version 4.0.4) N/A http://www.r-project.org

annotatr package Cavalcante and Sartor (2017) https://bioconductor.org/packages/release/bioc/html/annotatr.html

STAR (v2.7.9) Dobin et al. (2013) https://github.com/alexdobin/STAR

featureCounts (v2.0.1.13) Liao et al., 2014 http://subread.sourceforge.net/

annotatr package Cavalcante and Sartor (2017) https://pubmed.ncbi.nlm.nih.gov/28369316/

DAVID (v6.8) Huang et al. (2009) https://david.ncifcrf.gov/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Support Vector Machine Zhang et al. (2021) https://pubmed.ncbi.nlm.nih.gov/33492292/

Anymaze (V6.1) Stoelting N/A

Image J Schneider et al. (2012) https://imagej.net/downloads

Imaris Bitplane N/A

Ilastik Berg et al. (2019) https://www.ilastik.org/

Cellprofiler McQuin et al. (2018) https://cellprofiler.org/

SPSS (v20) IBM https://www.ibm.com/analytics/spss-statistics-software

Other

polyvinylidene fluoride membrane 
(0.45 μm)

GE Healthcare Life Sciences catalog # 10600023

MQ beads Epigentik catalog # P-1059

EPM apparatus San Diego Instruments Part # 7001–0336

OPT acrylic chamber San Diego Instruments Part # 7001–0354

IITC Rotarod San Diego Instruments Part # 2360–0143

Morris water maze San Diego Instruments Part # 7000–0723

Nanodrop ThermoFisher catalog #13-400-518

Qubit 4 Fluorometer ThermoFisher catalog # Q33238
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