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Abstract: The study aims to evaluate the diagnostic performance of an artificial intelligence system
based on deep learning for the segmentation of occlusal, proximal and cervical caries lesions on
panoramic radiographs. The study included 504 anonymous panoramic radiographs obtained from
the radiology archive of Inonu University Faculty of Dentistry’s Department of Oral and Maxillofacial
Radiology from January 2018 to January 2020. This study proposes Dental Caries Detection Network
(DCDNet) architecture for dental caries segmentation. The main difference between DCDNet and
other segmentation architecture is that the last part of DCDNet contains a Multi-Predicted Output
(MPO) structure. In MPO, the final feature map split into three different paths for detecting occlusal,
proximal and cervical caries. Extensive experimental analyses were executed to analyze the DCDNet
network architecture performance. In these comparison results, while the proposed model achieved
an average F1-score of 62.79%, the highest average F1-score of 15.69% was achieved with the state-of-
the-art segmentation models. These results show that the proposed artificial intelligence-based model
can be one of the indispensable auxiliary tools of dentists in the diagnosis and treatment planning of
carious lesions by enabling their detection in different locations with high success.

Keywords: caries diagnosis; convolutional neural network; dental panoramic radiographs; deep learning

1. Introduction

Dental caries is one of the most common chronic diseases and affects more than
three billion people worldwide [1]. Clinicians need to detect caries at the enamel and
dentin levels before these turn into irreversible lesions [2]. Dental radiographs are an
essential diagnostic tool for helping clinicians to diagnose caries. One type of extra-oral
radiograph is the digital panoramic, which is widely used in many areas of dentistry and
provides safer, more accurate and relatively cheaper results today [3]. Contrary to intra-oral
radiographs, it has minimal spatial resolution and is open to significant, unpredictable
geometric distortion [4]. For this and many other reasons (different tooth anatomical
morphologies and restorative forms, etc.), even though dental radiography and explorer
(also known as a dental probe) are often employed and considered very reliable diagnostic
techniques for the identification of dental caries, a large proportion of screening and final
diagnosis frequently relies on empirical evidence [5]. However, this approach is highly
subjective and in crowded clinics mistakes or underdiagnoses may happen depending on
the knowledge and focus of the clinicians. This can be avoided by integrating artificial
intelligence software with radiographs to assist the clinician during the diagnosis and
treatment phases.
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Artificial intelligence (AI) is a generic phrase used to describe the development of
computer systems that can carry out functions that typically require human intellect. The
applications of AI in dentistry are primarily virtual, using AI algorithms to separate lesions
from healthy structures, rank risk variables and simulate and assess future outcomes [6].
Convolutional neural networks (CNNs) have been effectively used in recent years to
clarify numerous healthcare difficulties involving various forms of medical imaging. Skin
cancer classification from dermoscopic pictures, breast cancer detection from thermal
images, Alzheimer’s disease diagnosis using SPECT data and automated identification
and quantification of COVID-19 from chest computed tomography records are a few new
techniques employing CNNs [7–10].

Radiology is a key part of the diagnostic process in dentistry. Every year, a consid-
erable number of images, including panoramic, bitewing, periapical and cephalometric
radiographs, are acquired in dental radiology [11]. Given this massive number of picture
records, CNNs appear to have enormous clinical evaluation and diagnostic potential. Deep
learning researchers have just begun to investigate this potential in the realm of dental
radiography. CNNs have been utilized effectively in periapical radiographs to diagnose pe-
riodontal bone loss [12], bitewing radiographs to detect carious lesions [13] and panoramic
radiographs to detect apical lesions [14]. A thorough examination of the use of CNNs in
dental radiology is provided. Furthermore, it is feasible to envision how the application of
artificial intelligence in dentistry might yield gratifying results, particularly in the field of
caries diagnostics [15].

Briefly, in connection with various medical and dental practices, the deep learning
system, one of the most promising artificial intelligence models, has been developed [16,17].
Deep learning systems can automatically classify datasets and, with the aid of multilayer
CNNs, they can learn in-depth about the features present in the data [18].

Tooth segmentation is crucial for the automated detection of tooth-related disorders
on dental radiologic images, but manual annotation is a laborious and time-consuming
operation. Therefore, the first (and most difficult) step in creating automated interpretable
diagnostic procedures for dental images is the automation of tooth segmentation. CNN
has recently been widely used in dentistry to overcome the constraints associated with
traditional segmentation algorithms [19–21].

The application of CNNs in dentistry, particularly for the detection of caries, is a
novel technique [13]. The aim of this study is to develop a new deep-learning system for
the segmentation of different types of carious lesions on panoramic radiographs. In this
direction, the Dental Caries Detection Network (DCDNet) architecture was developed
to detect different types of caries lesions and performance was compared with other
existing models.

2. Material and Methods
2.1. Image Dataset

Inonu University Non-Interventional Clinical Research Ethics Board (number 2022/3774)
authorized the study protocol. The principles of the Helsinki Declaration were followed.
The study included anonymous panoramic radiographs obtained from the radiology
archive of Inonu University Faculty of Dentistry’s Department of Oral and Maxillofa-
cial Radiology from January 2018 to January 2020. The age range of the patients to whom
the radiographs belonged was between 14 and 80. The percentage of males and females
was 29.5 and 70.5, respectively. Radiographs were obtained using the Planmeca Promax
2D Panoramic System (Planmeca, Helsinki, Finland) with image acquisition parameters of
68 kVp, 14 mA and 12 s.
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2.2. Image Evaluation and Labeling

Radiographs with artifacts and in which no caries could be detected were not included
in the analysis. Occlusal caries detected on the panoramic radiographs were labeled as
Type I, proximal caries as Type II and caries in the cervical region as Type III with the
Plainsight Software System (San Francisco, CA, USA). Labeling was performed with the
joint decision of an 8-year restorative dental specialist and a 5-year oral and maxillofacial
radiologist. In case of instability, the relevant images were excluded from the study.
As a result, 504 panoramic radiography images were used in experimental studies and
746 occlusal caries (Type I), 1627 proximal caries (Type II) and 378 cervical caries (Type III)
labels were made in these images (Figure 1).
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2.3. Construction of the Models

Pre-trained network architectures are used to ensure the high performance of our
proposed model. In this study, MobileNetV2, VGG16, ResNet50 and EfficientNet and
Inception network architectures, which have recently provided high performance, have
been used. In addition, the decoder module of the proposed model was inspired by the
Feature Pyramid Network. The architectures used are briefly described below.

2.3.1. MobileNetV2

MobileNetV1 is a convolutional architecture designed for low-cost or mobile devices
that minimizes network cost and size. This has resulted in the ease of use of image
processing and deep network categorization in mobile devices. The MobileNetV2 model
was based on the MobileNetV1 and tackled difficulties relating to nonlinearities in the
model’s thin layers containing building blocks [22]. The MobileNetV2 model can perform
classification, segmentation and object identification and adds two additional features to
its predecessor. The first is that some bottlenecks might appear linearly between layers; the
second is the development of shortcuts between bottlenecks [23].

The MobileNetV2 design includes depth wise (dw) separable filters and combination
stages. This model employs a deep convolution filter for each layer input with a resolution
of 1 × 1 pixel. Depth wise separable convolutional filters investigate inputs by dividing
them into two distinct layers. This reduces both the model’s speed and cost. The features
obtained by filter separation are combined in the combining stages and a new layer is
formed. Batchnorm and Rectified Linear Unit (ReLU) linearity are used in constructing the
MobilNetV2 model [24].

2.3.2. VGG16

In 2014, Zisserman and Simonyan presented VGG16 as a VGGNET network struc-
ture. It is a more extensive network constructed on top of the AlexNet network. It can
more correctly describe the data collection properties while recognizing and classifying
images and outperforms other methods when dealing with big datasets and complicated
backdrop recognition tasks. The network topology consists of three fully connected layers,
13 convolutional layers and five pool layers. Compared to other networks, the VGG16’s
13 convolutional layers employ a medium-sized 3 × 3 matrix with a moving step of 1.
The number of convolution kernels steadily rose from 64 in the first layer to 128 to 256 in
the second layer and then to 512 in the final layer. The convolution kernel in the pooling
layer has a size of 2 × 2 and a step size of 2. With a convolution kernel size of 5 × 5, it
outperforms other networks in terms of extracted features [25].

2.3.3. ResNet50

The name ResNet is an abbreviation for residual neural networks. It is an improved
version of CNN with a large number of convolutional neural networks. ResNet tries to
solve saturation and accuracy loss in the deep CNN training process [26]. ResNet50 is a
residual network with 50 layers. Having transitions between layers deepens the network
in ResNet models. The deterioration that may occur in the deepening network is prevented
thanks to these transitions. Moreover, ResNet models employ a mixture of multiple-sized
convolution filters to counteract degradation and minimize training time due to deep
structures. These models use blocks called bottlenecks for rapid training [27].
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2.3.4. EfficientNet

EfficientNet is an algorithm that uses convolutional neural networks. EfficientNet
has an architecture that focuses on improving the efficiency of models as well as their
accuracy. EfficientNet consists of 8 different models between B0-B7. The model scales
use three separate parameters. These parameters are depth, width and resolution. The
depth parameter measures how deep the networks are, while the width parameter is
the number of neurons in the layers. The resolution parameter expresses the resolution
of the dataset on which the model will be trained. Within the scope of the study, the
classification process was carried out with EfficientNet, unlike existing CNN models,
which employ a novel activation function termed Swish rather than a ReLU activation
function [28]. EfficientNet also provides more efficient outcomes in other cutting-edge
models by consistently scaling depth, breadth and resolution while scaling down the
model. The first stage in the compound scaling approach is to find a grid that will assist
in determining the relationship between the various scaling dimensions of the baseline
network while working with a fixed resource limitation. Thus, an appropriate scaling factor
for the depth, breadth and resolution parameters is calculated. The coefficients are then
applied to scale the baseline network to the desired target network [29].

2.3.5. Feature Pyramid Network

A Feature Pyramid Network (FPNet) is a fully convolutional feature extractor that
takes as input a single-scale image of any size and outputs proportionally sized feature maps
at multiple levels. This process does not depend on the architecture of the convolutional
backbone, so may be used as a universal approach for building feature pyramids within
deep convolutional networks for applications such as object recognition [30].

A bottom-up and a top-down path are used to build the pyramid. The bottom-up
pathway is the backbone of ConvNet’s feedforward computation. It builds a feature
hierarchy out of feature maps at different scales with a scaling step of 2. For each step of
the feature pyramid, one pyramid level is defined. As a reference set of feature maps, the
output of the last layer of each stage is used [31]. The top-down path gives the impression
of higher resolution features by upsampling feature maps from higher pyramid levels that
are geographically coarser but have better meaning. Then, using lateral connections, these
traits are added to traits from the bottom-up pathway. Each lateral link is made up of equal-
sized feature maps from the top-down and bottom-up pathways. The bottom-up feature
map has lower-level meanings, but its activations have been more accurately localized
because there was less subsampling [32].

2.4. Proposed Network Architecture

In this study, Dental Caries Detection Network (DCDNet) architecture is proposed for
dental caries detection. This network architecture is encoder-decoder based as shown in
Figure 2. The Encoder part consists of pre-trained backbone network architectures such as
VGG16, MobileNet and EfficientNet. In the proposed model, initial features are obtained
from these backbone networks. The decoder part of the proposed DCDNet network consists
of two parts, the Multi-level Features Concatenation (MFC) module and the Multi-Predicted
Output (MPO) Block. It is fed with features from different levels of the backbone network
in the MFC model. In this section, new powerful feature maps are obtained for caries
detection. The second part of the decoder generates the prediction map for the three caries
types from the final feature map in the MPO block. For this process, the final feature map
proceeds in three ways and convolution and sigmoid activation are applied.
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2.4.1. Encoder

Pre-trained backbone networks are used in the encoder part of the proposed model.
The backbone networks used in experimental studies are EfficientNet, ResNet50, VGG16,
Inception-V3 and MobileNetV2 networks, respectively. Each backbone network has con-
nection points, as shown in Table 1. Features taken from these ports are transferred to the
decoder section.

Table 1. Backbone networks and skip connections used in the proposed DCDNet network.

Backbone Skip Connection 1 Skip Connection 2 Skip Connection 3 Skip Connection 4

MobilenetV2 Block 13 expands relu block 6 expand relu block 3 expand relu block 1 expand relu
Inception-V3 Mixed7 Mixed2 Activation 5 Activation 3
EfficientNet block6a expand activation block4a expand activation block3a expand activation block2a expand activation

ResNet50 stage4 unit1 relu1 stage3 unit1 relu1 stage2 unit1 relu1 relu0
VGG16 block5 conv3 block4 conv3 block3 conv3 block2 conv2

The primary purpose of using backbone networks shown in Table 1 is to obtain initial
features for a limited dataset. In this way, a more efficient training procedure takes place.

2.4.2. Decoder

The decoder of the proposed model consists of two stages; the first is the feature
integration module, MFC. The MFC model was inspired by the FPNet model. As shown in
Figure 2, the MFC module consists of four levels. ConvBNReLU blocks have been applied
to the input features at the beginning of each level. Then the resulting output was combined
with the skip connection. In the merging process, the Pointwise Convolution (PC) layer
was primarily applied to the feature maps. In this way, the two feature maps were brought
to the same size. The element-based sum operation was then applied to these feature maps.
These processes were repeated for the four levels of the MFC.

At the last level of MFC, feature maps of all levels were combined. In this way, essential
details obtained in the intermediate layers were preserved. The combined feature maps
were transferred to the MPO unit to obtain dental caries prediction output.

The MPO block divided the final feature map into three paths, as shown in Figure 2.
Each path represents one type of caries. Here, the final feature map, like Unet and FPN,
were not used directly. The main reason for this is to prevent the interaction of caries types
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that are very closely related to each other. Thus, it detects with higher scores than other
single-output architectures.

2.5. Training Procedure

In transfer learning architectures based on the CNN model, high-performance results
are achieved through learning transfer. These models have provided significant improve-
ments, especially in the field of image processing. The EfficientNet architecture and other
deep learning models were trained using the transfer learning approach.

The initial parameters of the backbone networks used in the proposed DCDNet
network were used with ImageNet-trained parameters. In addition, the other layers in the
decoder section were initialized with random values. Detailed layer structures, connections
and other details of the proposed DCDNet architecture are given in Table 2.

The Binary Cross-Entropy loss function was used in the training of the DCDNet
network, defined as in Equation (1).

Lk = −
M

∑
i,j

yi×jlog
(

Pi×j
)
+

(
1− yi×j

)
log

(
1− Pi×j

)
L = 1

N

N

∑
k

Lk

(1)

Here, yi×j and Pi×j represent the actual and predicted values of the pixel at position
i × j, respectively. M and N represent the total number of samples and the number of
caries types, respectively. The Lk value shows the mean error value obtained for k-type
(k ∈ {1, 2, 3}) caries and the L result error value.

Table 2. Detailed layer structure and connections (layer inputs) of the DCDNet model (Sc: skip
connection, f: filters, c: kernel, s: stride).

Layer Name Section Layer Input Applied Layer Process Details

L0 Encoder Image Pre-training Network Details in Table 1

L1
MCF-level 0

Sc0 Pointwise Convolution f: 256, c: 3 × 3, s = 1 × 1

L2 L1 Conv2DTranspose f: 256, c: 4 × 4, s = 2 × 2

L3

MCF-level 1

Sc1 Pointwise Convolution f: 256, c: 3 × 3, s = 1 × 1

L4 L2, L3 Concat -

L5 L4 Conv2DTranspose f: 256, c: 4 × 4, s = 2 × 2

L6 L4 Convolution, Batch Normalization, ReLU f: 128, c: 3 × 3, s = 1 × 1

L7 L6 UpSampling2D s = 8 × 8

L8

MCF-level 2

Sc2 Pointwise Convolution f: 256, c: 3 × 3, s = 1 × 1

L9 L5, L8 Concat -

L10 L9 Conv2DTranspose f: 256, c: 4 × 4, s = 2 × 2

L11 L9 Convolution, Batch Normalization, ReLU f: 128, c: 3 × 3, s = 1 × 1

L12 L11 UpSampling2D s = 4 × 4

L13

MCF-level 3

Sc3 Pointwise Convolution f: 256, c: 3 × 3, s = 1 × 1

L14 L10, L13 Concat -

L15 L14 Conv2DTranspose f: 256, c: 4 × 4, s = 2 × 2

L16 L14 Convolution, Batch Normalization, ReLU f: 128, c: 3 × 3, s = 1 × 1

L17 L16 UpSampling2D s = 2 × 2
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Table 2. Cont.

Layer Name Section Layer Input Applied Layer Process Details

L18

MCF-level 4

Sc4 Pointwise Convolution f: 256, c: 3 × 3, s = 1 × 1

L19 L15, L18 Concat -

L20 L19 Conv2DTranspose f: 256, c: 4 × 4, s = 2 × 2

L21 L19 Convolution, Batch Normalization, ReLU f: 128, c: 3 × 3, s = 1 × 1

L22

MPO

L6, L11, L16, L19 Concat -

L23 L22 Convolution, Batch Normalization, ReLU f: 32, c: 3 × 3, s = 1 × 1

L24 L22 Convolution, Batch Normalization, ReLU f: 32, c: 3 × 3, s = 1 × 1

L25 L22 Convolution, Batch Normalization, ReLU f: 32, c: 3 × 3, s = 1 × 1

L26 Output 1 L23 Convolution, Sigmoid f: 1, c: 1 × 1, s = 1 × 1

L27 Output 2 L24 Convolution, Sigmoid f: 1, c: 1 × 1, s = 1 × 1

L28 Output 3 L25 Convolution, Sigmoid f: 1, c: 1 × 1, s = 1 × 1

3. Results

In this section, experimental studies have been carried out to analyze the caries
detection performance of the proposed DCDNet network. Firstly, the backbone networks
of the proposed model were compared. Then, the proposed model was compared with
other models, such as Unet and FPNet.

3.1. Application Details

To evaluate the DCDNet network, the Dental Caries dataset produced in this study
was used. Panoramic radiography images in the dataset are 900 × 1700 in size. As seen in
Figure 1 in these high-resolution images, there are external parts, such as the other parts of
the lower and upper jaw apart from the teeth. These external parts, except the teeth, are
unimportant for caries detection. Therefore, the images were cropped at 540 × 1300 size
with reference to the middle part of each image covering the teeth (Figure 3). Then, these
cropped images were reduced to 256× 512 size to give the input of the network architecture.

For the training phase, 75% of the panoramic radiography images that marked dental
caries and their types were used. The remaining images were used for testing. The training
and testing processes of the proposed model were carried out using the TensorFlow-Keras
library in a python environment. In training the model, the Batch size was set to 8, the
learning rate to 0.001 and the training epoch to 100. Adam’s optimization method was
employed to update the network parameters. All experiments were performed under the
Ubuntu 18.04 system using the Intel Xeon CPU, 128GB RAM and Nvidia P40 (24 GB).

In experimental studies, Precision, Recall, F1-score and mIoU (mean intersection over
union), and metrics were used to evaluate the proposed model performance. This metric is
defined as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− score =
2×precision×recall

precision+recall

mIoU = pr∩ GT
pr ∪ GT

(2)

where TP, FP and FN refer to true positives, false positives and false negatives, respectively.
GT, pr, mIoU and F1-score denote the ground truth, the prediction map, mean intersection-
over-union and F1-score metric, respectively.
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3.2. Dental Caries Detection Results

The proposed DCDNet model consists of a pre-trained backbone network, MCF and
MPO structures. Four different models were chosen as the backbone network. In this way,
the highest performances are aimed for. The results obtained with the different backbone
networks of the DCDNet network are given in Table 3. In addition, sample images from
the dataset and the estimation results of the models are given in Figure 3.
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Table 3. F1-score results obtained with different backbone networks of DCDNet architecture (%).

DCDNet Models Type I (Occlusal Caries) Type II (Proximal Caries) Type III (Cervical Caries) Weighted Averages of F1-Score

Mobilenet V2 73.45 66.15 11.21 61.86
Inception-V3 69.25 64.86 14.29 60.20
EfficientNet 71.93 68.01 12.90 62.67

ResNet50 70.79 67.65 18.64 62.79
VGG16 64.88 64.32 7.55 57.76

As can be seen in Table 3, the highest performance was obtained with the ResNet50-
DCDNet architecture for the average F1-score values. In addition, an average of F1-score
(62.67%) was achieved when the EfficientNet backbone network, which has achieved
successful performance in many areas and recent articles, was used. On the other hand, on
average, the lowest F1-score was obtained with the VGG16-DCDNet network.

Detailed performance results of the proposed models are given in Table 4.

Table 4. Detailed results of the proposed models for Type I, Type II and Type III.

DCDNet Models Metrics Type I
(Occlusal Caries)

Type II (Proximal
Caries)

Type III
(Cervical Caries)

MobilenetV2
Precision 76.02 71.48 20.00

Recall 71.04 61.56 7.79
F1-Score 73.45 66.15 11.21

Inception-V3
Precision 73.89 72.86 24.14

Recall 65.17 58.45 10.14
F1-Score 69.25 64.86 14.29

EfficientNet
Precision 75.93 74.58 37.50

Recall 68.33 62.50 7.79
F1-Score 71.93 68.01 12.90

ResNet50
Precision 72.00 70.55 29.73

Recall 69.61 64.97 13.58
F1-Score 70.79 67.65 18.64

VGG16
Precision 70.78 71.53 14.81

Recall 59.89 58.43 5.06
F1-Score 64.88 64.32 7.55

When considering each type of caries separately in Table 4, the methods yielded a
precision, recall and F1-score of over 60% for Type I and Type II caries, while Type III gave
generally low results.

In the image results given in Figure 3, it was observed that the proposed models
produced effective results for Type I and Type II caries detection. However, the proposed
DCDNet model for detecting Type III caries remained weak.

3.3. Comparison of the Proposed Model with Other Methods

This section compares the proposed DCDNet network with other Unet, FPNet, Mobile-
UNet and Eff-Unet models in the literature. For comparisons, the same experimental
studies were performed using Unet, FPNet, Mobile-UNet and Eff-Unet networks. The
results obtained in the experimental studies are given in Table 5.

Table 5. F1-Score Performance comparison of DCDNet and other models.

Models Type I
(Occlusal Caries)

Type II
(Proximal Caries)

Type III
(Cervical Caries)

Weighted Averages
of F1-Score

ResNet50-DCDNet 70.79 67.65 18.64 62.79
Unet 12.97 16.08 01.88 13.44

FPNet 14.68 11.02 02.24 11.10
Mobile-UNet 18.36 16.53 00.20 15.46

Eff-Unet 17.69 16.91 00.40 15.69
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As can be seen in the results given in Table 5, Unet, FPNet, Mobile-UNet and Eff-Unet
models produced results below 20%.

3.4. Comparison of Models in Terms of Time Consumption

The DCDNet network proposed in this study produced effective results for caries
detection. As shown in the previous sections, it produced high performance against other
models thanks to its three-output structure. In this experimental study, the comparison of
the proposed model in terms of time consumption is structured. The times for each model
to process an image are given in Table 6 in seconds and milliseconds.

Table 6. Comparison of deep learning models in terms of time consumption (ms: milliseconds, s: seconds).

Models FPS (ms) FPS (s)

Mobile-UNet 18.9 0.0189
Unet 23.0 0.0230

Eff-Unet 33.0 0.0330
FPNet 37.5 0.0375

Mobilenet-DCDNet 80.0 0.0800
VGG16-DCDNet 85.7 0.0857

InceptionV3-DCDNet 97.3 0.0973
EfficientNet-DCDNet 97.9 0.0979

ResNet50-DCDNet 98.3 0.0983

As seen in Table 6, the time consumption of DCDNet models varies between 80.0 and
98.3 milliseconds. The fact that the proposed DCDNet models have three outputs requires
more time compared to other models. On the other hand, single-output models Mobile-
Unet, Unet, Eff-Unet and FPNet have become more economical. However, compared to the
results given in Section 3.3, the success of these models is quite low. In comparison, the
DCDNet models, although costlier in terms of time consumption, achieved much higher
success (see Sections 2 and 3) compared to other models.

In the time comparison of DCDNet models, the fastest model was the Mobilenet-
DCDNet model. In addition, this model provided the highest scores for Type 1 caries
detection, as seen in the results in Table 3. However, this model produced lower results
than the ResNet50-DCDNet model in detecting other types of caries. On the other hand,
the ResNet50-DCDNet model required 0.093 s to process an image. Although the ResNet50-
DCDNet mode is costly in terms of time consumption, it is the model with the highest
average F1 score (Table 3). As a result, less than 0.1 s is required to process an image
on all recommended DCDNet models. These results are sufficient for the detection of
dental caries.

4. Discussion

Accurate, fast and timely diagnosis of dental caries is vital for both the physician and
the patient in terms of restoring teeth without further treatment. Advanced treatments,
besides causing time and economic loss, may adversely affect the success and the duration
of the tooth in the mouth. The availability of automatic detection software that will help
and guide physicians in the detection of dental caries and other pathological conditions
will add a different dimension to dentistry. In the present study, a deep learning model
used to segment dental caries on panoramic radiographs successfully detected occlusal
and proximal caries.

To evaluate the performance of artificial intelligence programs, studies on root mor-
phology [18,33], automatic tooth detection and numbering caries detection, [34–36] and
classification on panoramic radiographs [37,38] were carried out. Caries detection and
classification studies with artificial intelligence in panoramic radiographs are limited in
number. Lee et al. [39] detected dental anomalies, including the category of dental caries,
using artificial intelligence on panoramic radiographs. The study divided dental caries
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into four groups according to their clinical features: dental caries, cervical caries, proximal
caries and secondary caries. In this study, we examined caries in three groups: occlusal
caries (Type I), proximal caries (Type II) and cervical caries (Type III).

In this study, MobileNetV2, VGG16, ResNet50 and EfficientNet and Inception network
architectures, backbone networks of the DCDNet network architecture which is known to
have highly successful performance in recent studies in the segmentation and classification
of dental caries, were compared. As a result of the comparison, the ResNet50-DCDNet
network architecture gave the highest F1-score (62.79%). Then, the ResNet50-DCDNet
network architecture was compared with the Unet, FPNet, Mobile-UNet and Eff-Unet
models. As a result, the compared models showed a very low F1-score (highest Eff-
Unet: 15.69%) compared to the model we proposed. The main reason for this may be
that these models, which are the only way of distinguishing between softmax and caries,
cannot provide adequate detection by not being able to distinguish varieties of caries, since
the types of caries in the study are similar to each other. The DCDNet network, whose
development is based on this problem, produces separate outputs with an MPO block for
each caries as shown in Figure 2. Thus, higher success was achieved by creating a separate
mechanism for caries. Vinayahalingam et al. [38] achieved high success (accuracy of 0.87)
with the MobileNet V2 deep learning model, which they used to classify carious lesions in
third molar tooth images cropped from 253 panoramic X-rays. Zhu et al. [40] segmented
shallow, moderate and deep caries in panoramic X-rays with Caries Net deep learning
architecture. They achieved a mean 93.64% Dice coefficient and 93.61% accuracy at three
different caries levels. Haghanifar et al. [41] detected dental caries on (470) panoramic
X-ray images close to those in our study and achieved 90.52% caries detection accuracy.
In our study, 70.79% F1-score success was found in the detection of occlusal caries and
67.65% F1-score in the detection of proximal caries with the ResNet50-DCDNet learning
architecture. Lian et al. [37] compared the caries depths classified by expert dentists on
1160 panoramic X-rays with the efficiency of the artificial intelligence program. As a result
of the study, they found the performance of the artificial intelligence program and expert
dentists to be similar.

Studies show that even experienced dentists are not consistent in diagnosing proximal
caries [42]. When early lesions are missed, the chance to perform minimally invasive proce-
dures may be lost. Li et al. [43] marked 953 pits and fissures in 712 intraoral photographs
and 1002 approximal caries. While they found over 88% sensitivity in pit and fissure caries
and approximal caries detected by the deep learning-based prototype artificial intelligence
system, this compares with an over 67% F1-score in the same type of caries in our study.
One of the reasons for the 18.64% F1-score success rate in the detection of cervical caries
in our study may be that the proposed DCDNet architecture could not learn this type
of caries adequately due to the insufficiency of the dataset in this type, which we call
type III. Another reason may be that panoramic radiographs are 2D images and this type
of caries is usually located in the vestibule and lingual of the teeth, so it overlaps with the
denser healthy tooth tissue and, at the same time, it can be challenging to detect because of
overlapping with the radiolucent reflection of the pulp chamber on the radiograph.

The limitations of this study are the insufficient dataset, especially for cervical caries.
In addition, the panoramic radiographs used in the study could not be supported by clinical
examination of the patients. As a result, dental caries whose cavitation has just begun to
form in the mouth may have been overlooked in the panoramic radiographs and some
dental caries detected by artificial intelligence may have been evaluated as false positive
by experts when they were present in the mouth, and vice versa. At the same time, the
superposition of the teeth, which is frequently seen in panoramic radiographs, may have
caused some dental caries not to be detected.

It is indisputable that the use of artificial intelligence as an auxiliary diagnostic tool in
dentistry will be of great benefit in reducing the workload of the dentist and in making an
accurate diagnosis. There is a need for further studies on the use of artificial intelligence in
different areas of dentistry, its possible negative effects and the development of artificial
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intelligence programs and deep learning methods that will enable higher levels of success
to be achieved.

5. Conclusions

Within the limitations of this study, while the deep learning-based artificial intelligence
system successfully detected occlusal and proximal caries, it showed low performance in
detecting cervical caries. More powerful datasets and new network architectures could
enable the detection of cavities in different locations with higher success rates. Thus, deep
learning-based artificial intelligence systems may become one of the favorite elements in
dental clinics by increasing the success rate of dentists in diagnosis and treatment and
providing dentists with ease of work.
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