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Abstract

New information is rarely learned in isolation; instead, most of what we experience can be incorporated into or
uses previous knowledge networks in some form. Previous knowledge in form of a cognitive map can facilitate
knowledge acquisition and will influence how we learn new spatial information. Here, we developed a new
spatial navigation task where food locations are learned in a large, gangway maze to test how mice learn a
large spatial map over a longer time period—the HexMaze. Analyzing performance across sessions as well as
on specific trials, we can show simple memory effects as well as multiple effects of previous knowledge of the
map accelerating both online learning and performance increases over offline periods when incorporating new
information. We could identify the following three main phases: (1) learning the initial goal location; (2) faster
learning after 2 weeks when learning a new goal location; and then (3) the ability to express one-session learn-
ing, leading to long-term memory effect after 12weeks. Importantly, we are the first to show that buildup of a
spatial map is dependent on how much time passes, not how often the animal is trained.
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Significance Statement

While most tasks in human behavioral research are based on and embedded in familiar efforts and environ-
ments, rodents tend to be naive to the behavioral tasks and can draw only little benefit from previous experi-
ence. We developed a new task that can investigate the effect of previous knowledge on new memory
acquisition. Within the task, we can differentiate between different previous knowledge effects. We show
that different phases in this task are suitable for different approaches to memory: from simple reference
memory to rapid consolidation once a map is established. Further, we show that building up a knowledge
network is dependent on how much time passes and not how much training an animal receives.

Introduction
How does one learn new spatial environment? And

once a spatial layout of an environment is learned, how is it
used when incorporating new information? After infancy, we
rarely acquire new information in isolation; instead, most of
what we learn throughout our lives can be associated with
previous knowledge. For example, Harlow (1949) described
learning sets as the “learning to efficiently learn” process of
generalizing previous experience in a class of problems to

new problems of the same class. Further, schemas, as pro-
posed by Bartlett (1932) and expanded on by Ghosh and
Gilboa (2014), are associated network structures based on
previous experience that expedite long-term memory.
Previous knowledge can also affect spatial and map learn-
ing: the more experience you have with an environment, the
easier it will be to navigate through it and learn new goal lo-
cations (GLs) within it. In the past decade, more research
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into how previous knowledge affects learning in rodents has
been provided, but howmice learn a very large, complex en-
vironment over a longer time period has not been investi-
gated so far. The present project aims to tackle the question
of which steps map–knowledge affects learning and pro-
vides a large, comprehensive dataset on mice spatial navi-
gation for others to use with 16 mice over ;10 months with
a total of130 000 trials.
Outside laboratory settings, rodents will learn the spa-

tial layout of their home environment with likely food and
water resources as well as danger zones. Further, they
will also learn the complex layout of their home burrow
system. Surprisingly, laboratory tasks rarely tap into this
spatial ability of learning large spatial environments.
Further, most experiments using more complex spatial
abilities have been done in rats and not mice. Rat burrows
have been used to test for path integration and general
navigation patterns (Zanforlin and Poli, 1970; Zuri and
Terkel, 1996; Alyan and McNaughton, 1999), and mazes
composed of four or more connected square environ-
ments have been used to test whether rats take novel
shortcuts (Roberts et al., 2007; Grieves and Dudchenko,
2013). Less has been done with mice. The most promi-
nent spatial task with mice is the star maze by Rondi-Reig
et al. (2006) and Fouquet et al. (2013). The star maze is a
circular gangway maze that has five arms going off the
main circular path. However, the maze is generally used
to test how animals learn one single goal location with ei-
ther an allocentric strategy based on cue-related naviga-
tion or a motor sequence strategy based on body turns.
This goal location remains stable during training, and no
changes are introduced to the environment. How previous
knowledge of the environment is used to incorporate new
information, such as a goal location switch, has not been
investigated so far.
The distinction between early spatial learning and the

incorporation of new information once the original spatial
map has been established is critical. How much previous
knowledge exists when learning something new will influ-
ence the rate of learning and consolidation as well as neu-
ral underpinnings. Relevant brain areas can show a shift
in the presence of previous knowledge (Wang and Morris,
2010; van Kesteren et al., 2012; Squire et al., 2015;

Genzel and Wixted, 2017; Alonso et al., 2020). In human
research, the previous knowledge effect has been long
established (Bartlett, 1932), but it was not introduced to
rodent research until the seminal study of the paired-as-
sociates task introducing the schema effect on system
consolidation in rats (Tse et al., 2007). During the task,
rats initially learn a small map of six flavor–location asso-
ciations: they receive a flavored pellet in the start box
and learn that more of the same flavored pellets can be
found in one specific sand well in an open field environ-
ment. After learning six flavor–location pairs over 9 weeks
creating a mental map of paired-associate locations or
“schema,” this map can be updated with new flavor–loca-
tion pairs. In a sequence of articles, it was shown that pre-
vious knowledge accelerates learning to a one-trial event
as well as the rate of systems consolidation (i.e., the pro-
cess of memories that are initially hippocampal depend-
ent becoming hippocampal independent) from weeks to
days (Tse et al., 2007; Bethus et al., 2010). Further, in ad-
dition to the hippocampus, the medial prefrontal cortex
needs to be active during encoding for memories to last
(Tse et al., 2011; Wang et al., 2012). In these experiments,
the schema is based on the map of flavor locations and
not simply on the rule that flavors will be associated with
locations, as they could show in a critical control experi-
ment with an unstable map. The involvement of the medial
prefrontal cortex as a structure for the schema effect—the
expedition of long-term memory—was then later con-
firmed in humans (van Kesteren et al., 2010a,b; Ghosh
and Gilboa, 2014; van Buuren et al., 2014). How experi-
ence of a complex spatial map will influence navigation
and new learning has been investigated in humans (Patai
et al., 2019), but so far not in rodents. This is surprising,
since the concept of a cognitive map representation in the
brain is of long standing (O’Keefe and Nadel, 1978). With
place cells in the hippocampus and grid cells in the ento-
rhinal cortex, we have learned about the basic building
blocks of how the cognitive map is coded in the brain
(McNaughton et al., 2006; Moser et al., 2008). These
same fundamental building blocks have been shown to
also be harnessed for nonspatial memory representation
and associations between these (Behrens et al., 2018).
Therefore, map learning can be the ideal model for us to
understand how we build up as well as update (UP) our
knowledge systems.
In the present study, we aimed at developing a new be-

havioral task in which we focus on map learning of a larger
environment and how mice can use this type of previous
knowledge to navigate to and flexibly update information
about goals. Further, in this task we can investigate the
role of previous knowledge on new memory acquisition
and consolidation across different time-points in training.
To achieve this, it is important that during both initial
buildup of the knowledge network as well as later up-
dates, the difficulty of the task and thereby the cognitive
load remain the same. Thus, we chose to train mice in a
large environment to navigate to a single goal location.
We expect to see different types of previous knowledge
effects on the performance of the mice, reflected in the
length of their navigational paths: learning the general
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task principles (static food location and allocentric naviga-
tion from different starting positions), enhancing memory
encoding (increased performance on the second up to the
last trial of a session), and enhancing memory consolida-
tion (increased long-term memory and performance on
the first trial of each session). To test how quickly new in-
formation can be incorporated into this map, we changed
the goal locations every few sessions.
We could show that mice learn this complex spatial

map in the following three main phases: (1) Learning the
initial goal location; (2) faster learning after 2 weeks when
learning a new goal location; and then finally (3) a third
phase after 12weeks to express one-session learning,
leading to long-term memory. Importantly, the map build-
up is dependent on how much time passes (weeks), not
how often the animal is trained (training days). In addition
to the enhancement of long-term memory after map ac-
quisition, we can distinguish a simple memory effect, re-
flected by better performance across the first couple
sessions of the first goal location. Furthermore, an initial
learning set effect after 2 weeks of training is seen in the
first goal location switch as well as a late learning set
effect after 12weeks of training. This initial learning set ef-
fect is not expressed in the first trial of a session (long-
term memory and thus different from the previous de-
scribed effect) but does facilitate the increase of overall
session performance. Finally, focusing on later learning after
12weeks, we could show that the degree of overlap with pre-
vious knowledge influences navigational performance on the
first session of a change (i.e., how quickly new information
could be incorporated online). Thus, the HexMaze task allows
the distinguishing of four effects of previous knowledge on
memory expressed across three phases in time, ranging from
learning set to rapid consolidation and within-session updat-
ing. With this task, we can provide a very rich dataset
(130,000 individual trials) that allows the investigation of spa-
tial navigation patterns of mice and how they develop within a
session as well as across weeks of experience with the spa-
tial map of themaze.

Materials and Methods
Subjects
Five cohorts with four male C57BL/6J mice in each

(Charles River Laboratories), which were 2 months of age at
arrival, were group housed in the Translational Neuroscience
Unit of the Centraal Dierenlaboratorium at Radboud University
(Nijmegen, Netherlands). They were kept on a 12 h light/dark
cycle, and before training were food deprived overnight during
the behavioral testing period. Weight was targeted to be at
90 to 85% of the estimated free-feeding weight of the ani-
mals. All animal protocols were approved by the Centrale
Commissie Dierproeven (protocol #2016–014-018). The first
cohort (coh 1) was used to establish general maze and task
parameters, and was not included in the current analysis.

HexMaze
The HexMaze was assembled from 30 10-cm-wide

opaque white acrylic gangways connected by 24 equilat-
eral triangular intersection segments, resulting in a

distance of 36.3 cm center-to-center between intersec-
tions (Fig. 1A). Gangways were enclosed by either 7.5- or
15-cm-tall white acrylic walls. Both local and global cues
were applied to provide visual landmarks for navigation.
Barriers consisted of transparent acrylic inserts tightly
closing the space between walls and maze floor as well as
clamped plates to prevent subjects bypassing barriers by
climbing over the walls. The maze was held 70 cm above
the floor to allow easy access by the experimenters.

Video acquisition and tracking
Two USB cameras (model C270, Logitech) were in-

stalled 2.1 m above the gangway plane with an overlap-
ping field of vision (FOV) to provide full coverage of the
arena and reduce obstruction of vision by maze walls.
Image data (15 frames/s, 800� 600 square pixels per
camera) was acquired on a low-end consumer PC
(Ubuntu version 19.04, AMD Ryzen 2200G processor, 8
GB RAM) with custom Python scripts (Anaconda Python
version 3.7, OpenCV version 4.1.0) at controlled bright-
ness and exposure levels. Images were immediately com-
pressed and written to disk for offline analysis. In parallel,
online tracking was applied for feedback to the experi-
menter and adjustments of the paradigm. Briefly, for each
camera view a mask was generated at the beginning of
the experiment based on the contrasting brightness of the
maze and experimental room floor. This arena outline
mask was applied to new frames, and a foreground mask
was generated using the OpenCV MOG2 background es-
timation implementation (Zivkovic and van der Heijden,
2006). The resulting foreground mask was cleaned, and
the centroid for the largest detected foreground object in
a tracking search window was calculated as the putative lo-
cation of the mouse in the maze. The location was smoothed
over time using a Kalman filter, interpolating occasional oc-
clusions by the maze walls and similar detection failure
modes. The detected location was mapped to the closest
node, and visually presented to the experimenter as well as
logged for offline path analysis. Synchronization between
cameras for offline analysis was enabled by presenting a
blinking LED (1Hz, 50%duty cycle) in the overlapping FOV of
both cameras. Experimenters could indicate start and offset
of trials using a remote presenter (model R400, Logitech).

Behavioral training
After arrival and before training initiation, mice were

handled in the housing room daily for 1week (until animals
freely climbed on the experimenter, see videos on https://
www.genzellab.com/#/animal-handling/) and then habitu-
ated to the maze in two 1 h sessions (all four cage mates
together) with intermittent handling for maze pickups (tub-
ing; Gouveia and Hurst, 2017). Mice were trained either
on Mondays, Wednesdays, and Fridays (coh 1–3, group
1) or Tuesday and Thursday (coh 4 and5, group 2). Per
training day (session), each mouse underwent 30min of
training in the maze, resulting in up to 30 trials per ses-
sion. The maze was cleaned with 70% ethanol between
animals (later clean wipes without alcohol to avoid dam-
aging the acrylic and to encourage returning in the next
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Figure 1. The Hex Maze. A, Shows the maze with intramaze and extramaze cues (left) and the maze from the view of the mouse
(right; also see Movie 1). B, The main performance metric is the log-normalized path (pathnorm), with the lengths of the paths taken
by the animal divided by the shortest possible path to the GL (indicated by the X). Thus, for all subsequent figures the number in
brackets of the log is the relative length of the path taken by the animal, with 2 indicating that the path was twice as long as the
shortest possible path. C, During training, animals started each trial from a different location and had to navigate to a fixed GL. A
first trial measures long-term memory performance and was used as a probe trial on critical sessions (no food present).
Performance on all trials of the session measure general working memory/navigational performance in the known environment. D,
After the animals had acquired the general maze knowledge during the Build-Up, Updates were performed with inclusion of new

Research Article: New Research 4 of 23

July/August 2021, 8(4) ENEURO.0554-20.2021 eNeuro.org

https://doi.org/10.1523/ENEURO.0554-20.2021.video.1


trial), and a heap of food crumbles (Coco Pops, Kellogg’s)
was placed at a previously determined GL, which varied
for each animal. GLs were counterbalanced across ani-
mals, as well as within animals across GL switches (e.g.,
one of four animals), and one of four GLs per animal
would be located on the inner ring of the maze while the
others were on the outer ring (to shape animal behavior
against circling behavior). Start locations for each day
were generated based on their relation to the GL and pre-
vious start locations (locations did not repeat in subse-
quent trials, and at least 60% of the trials had only one
shortest path possible, the first trial was different from the
last and first trial of the previous session, and locations
had at least two choice point distances to each other as
well as the GL). On average, 30 start locations, which
were generated the day before training, were needed per
day per mouse. After the mouse reached the food and ate
a reward, the animal would be manually picked up with a
tube, carried around the maze to disorient the mouse, and
placed at the new start location. All pickups in the maze
were performed by tubing (Gouveia and Hurst, 2017).
After placing the animal at the start location, the experi-
menter quickly but calmly moved behind a black curtain
next to the maze to not be visible to the animal during
training trials. Each cohort had multiple experimenters
(bachelor and master interns, both female and male ex-
perimenters), and different cohorts were run by different
sets of students. Each mouse was habituated to each ex-
perimenter before training in the maze. Each training day,
the animals were brought to the training room at least
20min before training start.
Training consisted of two blocks: Build-Up and Updates.

During probe sessions [each second session of a GL switch
and additionally in Build-Up; GL1, session 6 (S6); GL2, S5;
GL3–5, S4], there was no food in the maze for the first trial of
the day and each time for the first 60 s of the trial to ensure
that olfactory cues did not facilitate navigation to the GL.
After 60 s, food was placed in the GL while the animal was
in a different part of the maze (to avoid the animal seeing
the placement). All other trials of the day were run with
food at the GL. Probe trial and GL switches were initially
minimized to help shape the animal behavior. In the first
trial of the day, animals would not find food at the last
presented location for both the first session of a new GL
as well as probe trial days (e.g., always the second ses-
sion of a new GL); thus, these sessions were interleaved
with normal training sessions with food present at the
last known location in the first trial of the day to avoid
the animals learning the rule that food is initially not
provided.

To measure the performance of the animals, the actual
path a mouse took was divided by the shortest possible
path between a given start location and the GL, resulting
in the log of normalized path length (Fig. 1B) and function-
ing as a score value. Given a sufficient food motivation
and an established knowledge network of the maze, a
mouse should navigate the maze efficiently. A score of 0
indicated that the mouse chose the shortest path and na-
vigated directly to the goal. On average, animals would
improve from a 3 times to a 1.5–2 times longer path length
than the shortest path, corresponding to 0.4 and 0.2–3
log values. Random walks (random choice at each node)
through the maze are estimated with a model to result in a
4 times longer path (0.6 in log). A more refined random
walk with random choices at each node and once in a
while a long diagonal run are included in the companion
article (Vallianatou et al., 2020). The normalized path
length of any first trial of a session was used to measure
long-term memory since training sessions were 2–3 d
apart.
The first trials of the second sessions (probe trials) of

each goal location in Build-Up and Update phase were
watched to score the number of times that animals
crossed their current and previous goal location as well as
the amount of time they dwelled there. As a control, the
same method was applied to two other nodes, one on the
inner ring of the maze and the other on the outer ring.
These nodes were selected in such a way that they were
not close to each other and to the goal locations, with at
least three gangways between them. Further, to control a
false-positive result, nodes that were in the way between
goal locations were not chosen as a control.
Food motivation was ensured by restricting access to

food for 8–24 h before training and confirmed by both
the number of trials run each day as well as the count of
trials during which the animal ate food at the first en-
counter with the food in each trial. If animals were not
sufficiently motivated, the count of both would de-
crease. Additionally, animals were weighted three times
a week and the average weekly weight was ensured to
not fall below an estimated 85% free-feeding weight,
which was adapted for the normal growth of each ani-
mal across time.

Data analysis
The normalized path length for all trials was calculated

using MATLAB 2017b (MathWorks). Repeated-measures
ANOVAs were run in SPSS Statistics 25 (IBM) to deter-
mine the effect of goal location switches and session on

continued
Bars, new goal Locs, or the inclusion of L1B. E, The general training schedule for all animals during the whole experiment. Animals
were trained to one GL in a given session. For group 1, the GL was kept constant for seven sessions of GL1, then five or six ses-
sions for GL2, and five or seven sessions each for GL3–5. Additionally, three of the initial five locations were repeated with each of
three sessions. For group 2, the GL was kept constant for seven sessions of GL1, then five sessions for GL2–3, and seven sessions
each for GL4. Finally, for all cohorts, each Update contained three sessions. The sequence of the Update types was counterbal-
anced across animals (session 1 of each update indicated with an arrow). Each Update type was repeated two to three times.
Throughout all phases, the first trial of the second session and during Build-Up first trial of the fourth, fifth, or sixth session were
used as probe trials. Group 1 was trained 3 d/week (3dw), group 2 was trained 2 d/week (2dw). F, G, Example paths of the Build-Up
(F) and Updates (G) are shown (Movies 2, 3, 4, 5, 6, 7, 8, 9). T1, Trial 1. Data are in Extended Data Figure 1-1.
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the log-normalized path length during the Build-Up and
across the three different types of Updates. Within-sub-
ject factors were goal location, update type, session and
trial. The only between-subject factor was training 2d/
week (group 2) versus training 3d/week (group 1). If sphe-
ricity was not given, the Greenhouse–Geisser correction
was used.

Results
The HexMaze
The HexMaze is arranged as six regular densely packed

hexagons, forming 12 two-way and 12 three-way choice
points (nodes) 36.3 cm apart, in total spanning 2 � 1.9 m
(Fig. 1A). Gangways between nodes were 10 cm wide and
flanked by either 7.5- or 15-cm-tall walls. Maze floor and
walls were white and opaque, with local and global cues
applied in and around the maze to enable easy spatial dif-
ferentiation and good spatial orientation, leading, overall,
to a complex, integrated maze. During training, food was
placed in one of the nodes and the animal had to learn to
navigate efficiently from different start locations to the
goal location. To measure performance in this maze, we
divided the taken path of each trial by the shortest possi-
ble path (Fig. 1B; for comparison of different performance
parameters see below; see also Fig. 9). To eliminate the
resulting skewness (skewness, 3.33), we used the log of
the normalized path (skewness, 0.72). The reason for the
skew of the data is that ;30% of the trials are direct runs
(paths), resulting in values of 1 and 0 (without and with
log, respectively), and animals cannot perform better than
a direct run (i.e., there is a ceiling effect and maximum val-
ues for best memory performance). Thus, no normal dis-
tribution can be achieved with this type of data. Using the
log decreases the skew and allows for use of GLM in anal-
ysis. However, the data without log (see last section in
Results; see also Fig. 9) show the same learning curves
and effects. Each session lasted 30min per animal, result-
ing in 25–35 trials per session with each trial starting from
a different location within the maze (Fig. 1C). Evaluation of
the performances of only the first trials of the sessions
measures long-term memory performance, and during
critical sessions (e.g., the second session of a new GL), to
measure long-term memory after one session learning,
this first trial was used as a probe trial where the food re-
ward was not present for the initial 60 s to control for ol-
factory cues. In contrast to the first-trial evaluation for
long-term memory, looking at the performance over all tri-
als gives a measure of the overall working memory and
navigational performance within the environment.
Animals went through the following two phases of

training: Build-Up and Updates. In the Build-Up, the
animals should create a cognitive map of the maze envi-
ronment; in contrast, during Updates, stable perform-
ance is achieved, and they should be simply updating
the cognitive map. These two phases also differed in the
frequency of GL switches: during Build-Up, the GL re-
mained stable for five and more sessions, while during
Updates a change occurred every three sessions (see
also below). Different Update types were performed,

including barriers in the environment (Bar), changing the
goal location (Loc), and doing both (L1B; Fig. 1D).
Five cohorts (coh 1–5) of four animals each were trained

in the maze (Fig. 1E). Coh 1 was a pilot cohort to establish
maze size, food deprivation, and other parameters, and is
not included in the data. Group 1 (coh 2 and 3) was trained
three times a week, while group 2 (coh 4and5) was trained
two times a week. The GL was switched during the Build-
Up every five to seven sessions (GL1, seven sessions; GL2,
five of six sessions; GL3–5, five of seven sessions) to test
when rapid updating could occur. Faster switches were ini-
tially avoided, to help shape the behavior of the animal. In
the first trial of the day, animals would not find food at the
last presented location for both the first session of a new GL
as well as probe trial days (e.g., always the second session
of a new GL); thus, these sessions were interleaved with
normal training sessions with food present in the first trial at
the last known location to avoid the animals learning the rule
that food is initially not provided.
After 12weeks of Build-Up, all groups were tested in

the Updates, where a change (given by the different
Update types) was introduced every three sessions. The
sequence of the different Update types (Loc, Bar, L1B)
was counterbalanced across repetition and cohorts.
Further, the GLs were also counterbalanced across ani-
mals within a cohort as well as across cohorts. To ensure
that the identity of individual GLs did not account for
learning effects over time, the sequence was reversed be-
tween cohorts (e.g., GL1 of the first animal in coh 2 would
be GL5 of the first animal in coh 3).
Overall performance for each group across time can be

seen in Figure 1E. Different learning effects were found as
highlighted in individual paths (Fig. 1F,G, Movies 1, 2, 3,

Movie 1. Mimicking animal view in the maze. [View online]
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4, 5, 6, 7, 8, 9), as follows: on the first trial of the first train-
ing day of the Build-Up, the animals show random move-
ment through the maze and just by chance find the GL
(Fig. 1F, Movies 2, 4). On the next day at the first trial,
some but not all animals already show more goal-directed
behavior (Fig. 1F, Movies 3, 5). In contrast, during the
Updates on the first trial of a new GL, the animals still
show random exploration, since the goal location is un-
known, but are then more likely to show memory effects
and goal-oriented behavior in earlier trials of session 1
(Fig. 1G, Movies 6, 8). And in the succeeding session of

the Updates most animals had already shown more goal-
oriented navigation to the reward location on the first trial
(Fig. 1G, Movies 7, 9).

Building and updating themap
To formally investigate the effects seen in the individual

paths, we analyzed group-level performance in more detail.
Group 1 (total, n=8) was trained Monday/Wednesday/
Friday (Fig. 2A, example study schedule) and during the
Build-Up showed a significant improvement in navigation to
the GL (all trials, which includes the first trial) across

Movie 2. Three trials of S1 during the Build-Up Mouse 12. [View
online]

Movie 3. Three trials of S2 during the Build-Up Mouse 12. [View
online]

Movie 4. Three trials of S1 during the Build-Up Mouse 17. [View
online]

Movie 5. Three trials of S2 during the Build-Up Mouse 17. [View
online]

Research Article: New Research 7 of 23

July/August 2021, 8(4) ENEURO.0554-20.2021 eNeuro.org

https://doi.org/10.1523/ENEURO.0554-20.2021.video.4
https://doi.org/10.1523/ENEURO.0554-20.2021.video.5
https://doi.org/10.1523/ENEURO.0554-20.2021.video.6
https://doi.org/10.1523/ENEURO.0554-20.2021.video.7
https://doi.org/10.1523/ENEURO.0554-20.2021.video.8
https://doi.org/10.1523/ENEURO.0554-20.2021.video.9
https://doi.org/10.1523/ENEURO.0554-20.2021.video.2
https://doi.org/10.1523/ENEURO.0554-20.2021.video.4
https://doi.org/10.1523/ENEURO.0554-20.2021.video.3
https://doi.org/10.1523/ENEURO.0554-20.2021.video.5
https://doi.org/10.1523/ENEURO.0554-20.2021.video.6
https://doi.org/10.1523/ENEURO.0554-20.2021.video.8
https://doi.org/10.1523/ENEURO.0554-20.2021.video.7
https://doi.org/10.1523/ENEURO.0554-20.2021.video.9
https://doi.org/10.1523/ENEURO.0554-20.2021.video.2
https://doi.org/10.1523/ENEURO.0554-20.2021.video.2
https://doi.org/10.1523/ENEURO.0554-20.2021.video.3
https://doi.org/10.1523/ENEURO.0554-20.2021.video.3
https://doi.org/10.1523/ENEURO.0554-20.2021.video.4
https://doi.org/10.1523/ENEURO.0554-20.2021.video.4
https://doi.org/10.1523/ENEURO.0554-20.2021.video.5
https://doi.org/10.1523/ENEURO.0554-20.2021.video.5


sessions as well as across GLs (GL1–5; session: F(4,28) =
6.2, p=0.001; GL: F(4,28) = 3.3, p=0.026; interaction, F(16,112)
= 1.4, p=0.15). For both session and GL, the linear contrast
was significant (session, p=0.027; GL, p=0.043; Fig. 2B). In
the Updates, the animals overall performed better than in
the Build-Up (F(1,7) = 8.2, p=0.024) and continued to show a
significant improvement of performance over the three ses-
sions (session: F(2,14) = 12.9, p=0.001; linear contrast,
p=0.005). Additionally, there was an effect of Update type
(Bar, Loc, L1B) as well as a type � session interaction: in
contrast to the Update types with location changes, animals

already performed well in session 1 of the barrier updates
(type: F(2,14) = 3.5, p=0.058; with linear contrast across Bar,
Loc, and L1B, p=0.027; interaction: F(4,28) = 2.6, p=0.059;
orthogonal comparison session 1 Bar vs Loc/L1B,
p=0.01). During the first trial of each session, the animal
had to rely on long-term memory (2–3 d between sessions)
to navigate to the current GL. To minimize olfactory cues (e.
g., chocolate smell and markings), the maze was cleaned
with alcohol between animals, further on critical sessions (e.
g., second session after a change to test for one-session
learning), and no food was present in the maze for 60 s

Movie 6. Three trials of S1 during the Update Mouse 6. [View
online]

Movie 7. Three trials of S2 during the Update Mouse 6. [View
online]

Movie 8. Three trials of S1 during the Update Mouse 19. [View
online]

Movie 9. Three trials of S2 during the Update Mouse 19. [View
online]
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Figure 2. HexMaze performance group 1 3d/week training. A, Shows schedule examples for the Build-Ups and Updates. Orange
boxes indicate days with probe trials (no food for 60 s of the first trial). B, Performance across all trials (including first trial) measures
general working memory/navigational performance within the environment. During Build-Up, there was a significant effect across
session and across the five GL switches. In contrast, during Updates, only if a location switch was involved in the update (Loc/
L1B), performance was worse during the first session of the change and an improvement across sessions is visible. C,
Performance on the first trial of each session measures the ability to remember the GL from 2–3 d ago. During the Build-Up, long-
term memory improved across sessions. During the Updates, there was an improvement across sessions as well as a difference be-
tween types with larger changes in the environment (linear from Bar to both L1B), leading to worse performance. This is especially
noticeable in session 1 for Loc and L1B switches where the goal is initially unknown, whereas for a Bar update only an adaptation
of the route is involved. *p, 0.05, **p, 0.01. Error bars are the SEM. The number in brackets of the log is the relative length of the
path taken by the animal (taken path T/shortest path S), with 2 indicating that the path was twice as long as the shortest possible
path.
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during the first trial. These probe trials were performed in
sessions 2 and 4/5 or 6 during the Build-Up and in session 2
during the Updates (Fig. 2A). Across sessions, long-term
memory improved independent of the GL during the Build-
Up (Fig. 2C ; session: F(4,28) = 4.0, p=0.01; linear contrast,
p=0.056; GL: F(4,28) = 0.4, p=0.77; interaction: F(16,112) =
1.1, p=0.34). In the Updates, long-term memory increased
across sessions as well as differed between Update types
(session: F(2,14) = 3.7, p=0.053; with linear contrast,
p=0.009; type: F(2,14) = 3.7, p=0.052; with linear contrast
across Bar, Loc, L1B, p=0.028; interaction: F(4,28) = 0.58,
p=0.68). Similar to the all-trials performance, in barrier
Updates performance was better than in the other two types
of Updates where the GL changed.

Time versus training
In contrast to group 1, group 2 (n=8) were trained only

2 d/week, which resulted in a shift between the training
day and the time alignment between both groups (Fig.
3A). As with 3 d/week training, 2 d/week training lead to
an improvement in all-trials measurement across sessions
as well as across GLs (GL1–4; session: F(4,28) = 18.3,
p, 0.001; linear contrast, p, 0.001; GL: F(3,21) = 4.7,
p=0.011; linear contrast, p=0.044); further, in contrast to
the 3 d/week training, there was a session � GL interac-
tion (F(12,84) = 2.7, p=0.004) with a faster improvement
across sessions in later GLs (Fig. 3B). Long-term memory
(first-trial performance) improved across sessions (ses-
sion: F(4,28) = 12.5, p, 0.001; linear contrast, p=0.001),
but there was no change from one GL to the next
(p=0.49), as also seen with group 1. Including both group
2 and group 1 in one ANOVA revealed a GL � session �
training type interaction for all trials (F(12,168) = 1.9,
p=0.039), and for first trials it revealed a training-type
main effect (F(1,13) = 6.7, p=0.023) as well as a marginal
session� training type interaction (F(4,52) = 2.4, p=0.066).
As one of the goals was to evaluate whether general

performance was determined by the amount of time that
had passed in contrast to how much training the animals
had received, we included the same training day of group
1 and group 2 as well as the session of group 1 that corre-
sponded to the same week of training as group 2 in a uni-
variate analysis (F(2,21) = 5.253, p=0.014; group 1: training
day 11, session 4 of GL2, during week 4 and training day
17; session 4 of GL3, during week 6; group 2: training day
11, session 4 of GL2, during week 6). These specific ses-
sions were chosen, since only then did the same session
number (here, session 4) occur at the same time in weeks
as well as the day within the week across groups; thus, it
was the only training day that could compare time versus
training overall but could still control for the amount of
training to the current goal location as well as how long
ago the last training session was performed. Group 2 per-
formed in a similar manner to group 1 when compared
with how much time had elapsed, but was significantly
better than group 1 with the same amount of training (Fig.
3C). Thus, performance in the HexMaze was more de-
pendent on the time period in which the animals had been
exposed to the maze and not how much training or expo-
sure itself was involved.

To further validate whether this also applies to the previ-
ous knowledge effects, we focused as a next step on the
Updates (Fig. 3D). Both the all-trial as well as first-trial
measure showed an improvement across sessions (F(2,28)
= 9.5, p=0.001; with linear contrast, p=0.005) as well as
a marginal session � training interaction (F(2,28) = 3.1,
p=0.06), but did not expose an effect of training amount
(p=0.87; Fig. 3E). Only during the first session did group
2 perform worse than group 1 (p=0.01). Thus, despite the
decreased amount of training, rapid updating was still
possible, indicating that the creation of a cognitive map is
dependent on time, not on training.
The 2 d/week training schedule also allowed us to in-

vestigate how many sessions are necessary for memory
persistence as the training schedule naturally alternated
with 2 and 5 d gaps between sessions (Fig. 3D). While one
session was sufficient for the animals to remember where
the food was located in the first trial 2 d later, this memory
did not last 5 d (Fig. 3F). However, after two sessions of
training (Fig. 3F, 2 d condition), the animals did remem-
ber the GL in the third session (5 d after the second ses-
sion; session: F(2,14) = 8.1, p= 0.005; with linear contrast,
p= 0.016; interaction session � delay: F(2,14) = 3.6,
p= 0.054; delay overall, p= 0.34). In contrast, general
navigational performance (an all-trial measure) did not
show a difference between the two delays (interaction,
p= 0.24; delay, p= 0.9; session: F(2,14) = 34.7, p, 0.001;
with linear contrast, p,0.001).

Three phases of map learning
Combining the data from groups 1 and 2, let us delve

further into different phases of map learning. The main dif-
ference between the learning phases is how quickly the
animals can adapt their performance to new information
(e.g., a new goal location). First, all-trial performance was
evaluated and separated for the four goal locations during
Build-Up and the different Update types, and each of
these for sessions 1, 2, and 31 (sessions 3–5/7 for Build-
Up, only session 3 for Updates since no other sessions
were run). This analysis highlights three phases of learning
(Fig. 4A; GL/UP: F(6,90) = 4.7, p, 0.001; session: F(2,30) =
40.1, p,0.001; GL/UP � session interaction: F(5.4,81.6) =
2.8, p=0.018). When learning the first goal location, the
animals need three and more sessions to reach good per-
formance (phase 1). In contrast, when learning the second
goal location, the animals already perform better at the
second session (phase 2). Finally, during GL4 and the
Updates, the animals already perform better in the first
session but also have additional gains to the second ses-
sion (phase 3). Importantly, already in the first few goal lo-
cations during Build-Up the animals reach their best
possible performance in the later sessions. The difference
to the Update phase is that during Build-Up it takes more
sessions to reach that optimal performance level. Once
the animals reach the Update phase, performance is sta-
ble. Therefore, the different phases in map learning are
expressed in how quickly they can adapt to new goal lo-
cations and are not confounded by a general, continuous
increase in performance.
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Figure 3. HexMaze group 2 performance 2d/week training. A, Shows schedule examples for the Build-Up. The schedule for group
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boxes indicate days with probe trials (food not present for 60 s of the first trial). B, Performance across both the all-trials measure-
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gaps ensued during the Updates. E, Comparing only the 2 d Updates of group 2 with the Updates of group 1 (also 2 d gaps)
showed only an Update difference during the first session. F, Plotted is the performance during Updates for group 2 for both the 2
and 5 d delays. One session of training only led to significant long-term memory that lasted 2 d not 5 d, whereas two training ses-
sions did indeed lead to a 5 d memory persistence visible in the third session (2 d condition for session 2). *p, 0.05, **p, 0.01,
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To further focus on changes in the first two sessions
across the different learning phases, the first and last trial
of session 1 of a change and the first trial of session 2 are
plotted for the different goal locations in the Build-Up and
Updates (Fig. 4B-E). The first trial of session 1 was consis-
tently high across all phases with the exception of the bar-
rier updates, reflecting the fact that only in that Update
type was the current goal location known and that the first
trial did not represent a search for the new goal location
(F(1,112) = 6.5, p,0.001; orthogonal comparison barrier vs
other, p=0.0018). The final trial of session 1 was also
quite consistently stable across all phases, emphasizing
that gains because of within-session learning also re-
mained similar across phases (F(1,112) = 0.1, p=0.96). The
main difference among the three learning phases can be
seen in the first trial of the second session, reflecting
long-term memory after one-session learning (F(1,112) =
3.6, p=0.017; orthogonal comparison Build-Up and
Updates, p=0.0037). There were gains from the very first
goal location to subsequent goal locations during Build-
Up but even more gains during the Updates, highlighting
the stepwise increase in long-term memory performance
over the different learning phases. These gains are also
reflected when comparing performance on the last trial of
session 1 to the first trial of session 2 (Fig. 4E). In the first
goal location of Build-Up, this metric is positive, reflecting
worse performance after the 24 h break, while during the
other goal locations of Build-Up it is approximately zero,
showing that they sustain their final performance level
across the offline period. In the Updates, negative values
are seen (one-sample t test to 0: t(71) = 4.2, p, 0.001),
which shows that they perform even better at the first trial
of the second session compared with the final trial of the
first session, thus showing an offline gain in performance.
In sum, there seem to be three phases in map learning:

(1) learning the new goal location; (2) learning the second
goal location 2 weeks later, when performance gains
close to optimal performance are already seen in the sec-
ond session but are not yet expressed in long-term mem-
ory (first trial of the second session); and finally, (3) after
12weeks, when performance gains are already expressed
in the first session to a new goal location and also trans-
late to long-term memory effects with good performance
at the first trial of the second session. This analysis also
helps to distinguish among task–rule learning (e.g., “I
need to run to a goal location”), maze learning (maze lay-
out and surrounding cues), and goal learning (where in the
maze is the food). In Figure 4E, the amount of training for
one goal is controlled for, thus excluding the general ef-
fect of goal learning (for each data point, the amount of
exposure to the current goal is the same: one session).
The general task should be learned by the animal by
GL2 or at the latest by GL3 (by then the animal learned
that goal locations can change). Thus, only maze layout
learning can explain the additional benefit seen in the
Updates.

Previous knowledge effects
Different effects of previous knowledge could be ob-

served in the resulting data, so, next we will focus on spe-
cific sessions and trials to highlight some of these effects.
The simplest effect is already seen in the first GL during
the Build-Up, where a significant session effect indicates
that each session benefits from the experience of the pre-
vious session (groups 1 and 2: n=16, F(6,90) = 5.6,
p, 0.001; Fig. 5A). This simple learning effect, while often
not considered as a previous knowledge effect, does af-
fect session performance and, thus, must be considered
even in experiments that just focus on each session indi-
vidually, as seen in most electrophysiological experiments
(Roux et al., 2017; Lopes-Dos-Santos et al., 2018; Michon
et al., 2019).
The second previous knowledge effect can be eval-

uated by how well an animal can navigate within an envi-
ronment and how fast this navigational capability can be
adapted to a new goal as soon as it has learned a specific
task. Here, this was tested at every GL switch from the
beginning of the Build-Up to the end of the Updates
(groups 1 and 2, n=16). Including the first two sessions of
the first two GLs during the Build-Up as well as during the
Updates (averaged across all types) revealed three dis-
tinct steps (Fig. 5B; session: F(1,15) = 12.6, p=0.003; GL:
F(2,30) = 8.3, p=0.001; interaction: F(2,30) = 3.9, p=0.031).
For the first GL, performance does not increase from the
first session to the next, but, as seen in Figure 5A, a per-
formance improvement develops over seven sessions.
After the first GL switch (GL1 to GL2), performance de-
creases to the level of performance during the first ses-
sion of GL1. However, a significant improvement is
exposed already for the second session of GL2 (3 weeks
after training start). Finally, as a third step, we find that
these improvements occur in any first Update session, in-
cluding additional gains in the second Update sessions
(12weeks after training start). These effects are visible
across all-trial performance measurements and are likely
a result of a mix of learning set effects (Harlow, 1949) as
well as of an effect of increased knowledge of the maze
layout. When averaging the performance across all ses-
sions (Fig. 5C; groups 1 and 2, n=16), animals overall had
already reached plateau performance at the second GL
switch during the Build-Up.
By focusing in more detail on the first and second ses-

sions during the Updates alone, we can consider the
amount of information animals need to incorporate during
the Updates (groups 1 and 2, n=16). We found a signifi-
cant main effect of session and an interaction between
session and Update types (session: F(1,15) = 26.1,
p, 0.001; type: F(2,30) = 2.9, p=0.072; interaction F(2,30) =
6.3, p=0.005). The follow-up test revealed that within
session 1 the amount of novel information that needs
to be integrated into the existing map affects the within-
session online performance (just a barrier, just a new loca-
tion, or both; linear contrast in S1, p=0.003; Fig. 5D).

continued
***p, 0.001. Error bars are the SEM. The number in brackets of the log is the relative length of the path taken [taken path (T)/short-
est path (S)] by the animal, with 2 indicating that the path was twice as long as the shortest possible path.
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Figure 4. Three phases of map learning. A, Plotted are all trials separated for the four GLs during Build-Up as well as the different
Update types with separate lines for first session, second session and third session onwards (for Build-Up, it is S3–5/7; for
Updates, it is just S3 since no further sessions were run). Three learning phases are noticeable: learning the first goal location, learn-
ing the second goal location with better session 2 performance, and learning the Updates with already good session 1 performance.
B–E, The first trial of session 1 (B), the last trials of session 1 (C), the first trials of session 2 (D), and the change from the last trial of
sessions 1 to the first trials of session 2 (E) are shown for the different goal locations during Build-Up (GL1–4 as well as the different
update types). The first trial performance during session 1, when the goal is unknown, first became worse in GL2–4 compared with
GL1, most likely because of animals first navigating to the old goal location. Only in the Barrier updates (light blue) was performance
better than in all other GLs and updates since the location did not change. At the end of session 1 (last trial), there is no difference
between the different GLs and updates. The three phases of learning are again noticeable in the first trial of session 2, reflecting
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However, this difference is eliminated by the second ses-
sion, indicating that the information had been completely
incorporated during the offline period.
As a final step, we tested for the enhancement of long-

term memories by comparing the same two sessions but
only including the first trial. Similar to the all-trial perform-
ance measurement, the first session performance was
worse for conditions including a GL switch (Loc and
L1B) compared with just a barrier switch, but this differ-
ence disappeared by the second session (Fig. 5E; groups
1 and 2, n=16; session: F(1,15) = 14.4, p=0.002; type:
F(2,30) = 7.2, p=0.003; interaction: F(2,30) = 1.2, p=0.3).
Finally, to investigate whether this enhancement of long-
term memory after one-session learning was missing ini-
tially during Build-Up, the first trial performance during
the second session of the Build-Up was compared with
the first trial during the second session of the Updates
(only Loc and L 1 B). This revealed a significantly better
long-term memory in the second session in the Updates
compared with the Build-Up (Fig. 5F; groups 1 and 2:
n=16, t(15) = 2.1, p=0.049). To confirm this effect with a
different performance parameter, we counted the number
of crossings for the new goal location, the previous goal
location, and two control nodes (one in the inner ring of
the maze, one in the outer ring) during this trial, since, be-
cause it was a probe trial, no food was present during
the first trial of each second session. As can be seen in
Figure 6, animals crossed both the current and last
goal locations significantly more often than the control
nodes starting with the second goal location, and an
additional increased number of crossings were seen
during the Update phase (groups 1 and 2 GL2-4 and
Loc Update for full model, n = 16; node: F(3,45) = 22.3,
p, 0.001; GL2-4/Loc: F(3,45) = 10.7, p,0.001; interac-
tion: F(9,135) = 2.0, p = 0.044). Interestingly, this analy-
sis also highlighted that animals did retain the memory
of the old goal location after a goal location switch,
since they tended to go more often to both the current,
new goal location as well as the last goal location com-
pared with control nodes.

How updates affect path length
To characterize how the Updates themselves affect

path length, the path lengths (in terms of the number of
nodes) for the shortest path and the taken path are shown
in Figure 7, and the normalized path length (log of taken/
shortest path) is shown as used in the other figures for
both the final trial before an update (usually, a session 3)
and the first trial of the Update. If a barrier was included
(Bar and L1B Update), there was a significant change in
the shortest possible path (Bar: t(15) = 4.39, p=0.001;
L1B: t(15) = 3.69, p=0.002), indicating that the inclusion
of barriers does change the overall map geometry in the
maze. However, the taken path only showed a significant

change if the goal location was changed (taken path: Loc,
t(15) = 3.29, p=0.005; L1B, t(15) = 3.77, p=0.002; normal-
ized path: Loc, t(15) = 3.20, p=0.006; L1B, t(15) = 1.83,
p=0.087). This emphasizes again that only the inclusion
of barriers did not affect the performance of the mice and
that the animals could rapidly adapt to this change, as
was also seen in Figure 5.

Within-session learning
To measure within-session learning, and to enable

comparison across different phases of learning, trials
were binned into trial blocks with trial 1, trials 2–10, trials
11–20, and trials 21–30. This was done for S1–3 of the
first goal location and goal locations 2–5 in the Build-Up
as well as in each Update type (Fig. 8). Since for the first
goal location very few animals managed .20 trials in
each session, for the overall analysis we included only up
to 20 trials. There was a significant effect of training
phase, session, trial block, as well as interactions be-
tween training phase and session, training phase and trial
block, as well as between session and trial block (phase:
F(4,60) = 12.6, p, 0.001; session: F(2,30) = 21.2, p, 0.001;
trial block: F(1.3,18.8) = 8.9, p=0.001; phase � session:
F(8,120) = 3.7, p=0.001; phase � trial block: F(4.2,63.1) = 2.6,
p=0.041; session � trial block: F(2.5,37.5) = 5.0, p=0.008).
For the first goal location, neither session nor trial block
showed a significant effect (p. 0.39; Fig. 8A) in contrast
to the subsequent goal locations of the Build-Up, during
which each factor as well as the interaction showed a sig-
nificant effect (session: F(2,30) = 30.8, p, 0.001; trial
block: F(1.6,23.4) = 13.2, p, 0.001; session � trial block:
F(3.4,50.5) = 7.8, p,0.001; Fig. 8B). This emphasizes that
while the first goal location did not show strong within-
session learning during these first three sessions, for the
subsequent goal locations during Build-Up the main
learning occurred between trial 1 and the next trial block
during session 1 and trial 1 of sessions 2 and 3 started
lower but additional within-session improvement could be
observed in the next block. During the Updates of Loc
and L1B, a linear improvement during session 1 was
seen across trials, and now performance was sustained
to session 2 and 3 with no strong additional gains from
the first trial to subsequent trials. Thus, Loc showed sig-
nificant effects of session and trial block but no interaction
(session: F(2,30) = 15.3, p, 0.001; trial block: F(1.9,29.3) =
6.5, p=0.004; session � trial block, p. 0.79; Fig. 8D),
and for location and barrier Updates the interaction be-
came significant as well (session: F(2,30) = 6.4, p=0.005;
trial block: F(3,454) = 4.0, p=0.013; session � trial block:
F(6,90) = 3.6, p=0.003; Fig. 8E). In contrast, the perform-
ance of barrier Updates started trial 1 of the first session
well and remained stable, resulting in no significant effect
of any factor or interaction (session, p=0.07; other,
p. 0.2; Fig. 8C).

continued
long-term memory after one session of training. This showed a stepwise function, improving in GL2–4 in contrast to GL1 and im-
proving even more during the updates. The same is reflected in the difference values presented in E (updates; one-sample t test to
0: t(71) = 4.2, p, 0.001).
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Figure 5. Previous knowledge effects. In these panels, we highlight some previous knowledge effects A, The whole session per-
formance for the first GL during the Build-Up. The significant session effect reveals a performance increase dependent on experi-
ence, indicating a more efficient working memory/navigational performance. B, Plots the performance for the first two sessions of
the first two GLs during the Build-Up, as well as Updates (averaged for all types). Already for the second GL (3 weeks since training
start), a significant increase in performance (decrease of path length) is seen in the second session compared with the first session.
This overnight (offline) performance increase is comparable to the increase found after seven sessions for the first GL. This may rep-
resent a more efficient consolidation and updating effect, but is expressed only in the whole session average (not long-term memory
present in the first trial; Figs. 2, 3). During the Updates, this performance increase is already visible in the first session with additional
offline gains found in the second session. This three-step performance gain is reminiscent of a learning-set effect (Harlow, 1949). C,
Considering all sessions, we find that animals already reach overall plateau performance by the second GL. D, Zooming in on the
performance during the first and second session during the Updates, another previous knowledge effect is revealed across the dif-
ferent Update types. The Bar, Loc, and L1B differed in their overlap of previous knowledge (or need for updating that knowledge),
which influenced how well they performed (all-trial) in the first session. E, The same effect but now only for the first trials. Only in the
presence of a goal switch did performance in the first session decrease. However, by the second session this performance differ-
ence was gone, revealing that one session is sufficient for the memory update. F, The performance of only the first trial of the sec-
ond session during the Build-Up and Updates (only Loc and L1B) where long-term memory (2–3 d) after one session of learning a
new GL improves from Build-Up to Updates. Thus, it seems that once a cognitive map is established, only one session of training
leads to better long-term memory performance. Orange boxes indicate that the trial was used as a probe trial, meaning food was
not present for the initial 60 s. *p, 0.05, **p, 0.01, ***p, 0.001. Error bars are the SEM. Data were taken from both groups 1 and
2. The number in brackets of the log is the relative length of the path taken by the animal [taken path (T)/shortest path (S)], with 2 in-
dicating that the path was twice as long as the shortest possible path.
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Other performance parameters
In the present analysis, we focused on using the nor-

malized path length (the taken path in number of nodes di-
vided by the shortest path), and since these values
showed a strong skew, we used the log thereof to enable
using GLM. However, other parameters, such as the nor-
malized path length without the log transformation, the
percentage of trials that were a direct run, the percentage
of trials that were a direct run after the second node (since
mice often would initially run in a heading direction and
then stop to consider where to go), and the percentage of
correct choices (Fig. 9), could also be extracted from our
dataset. For the percentage of correct choices, we ana-
lyzed for each node whether the choice would bring the
mouse closer to the food (correct) or not (incorrect) and
created an average per trial across all traversed nodes. As
can be seen in Figure 9, the same effects seen in the log
of the normalized path length can also be seen in the
other parameters. And while only ;30% of the trials
showed a direct run from the starting location, ;60% of
the trials showed a direct run two nodes after the starting
location. In the accompanied data table, we share the raw
data of all trials with all these different variables that can
be used by others for further, more detailed investigations
into spatial learning in mice.

Discussion
In the present study, we aimed at developing a new ro-

dent task that enables the investigation of map learning
on memory encoding and consolidation. More specifi-
cally, we tested how mice build up and update knowledge
of a large spatial map and how their navigation abilities
change over time. We could show that mice learn this
complex spatial map in the following three main phases:

(1) learning the initial goal location, (2) faster learning after
2 weeks when learning a new goal location, and then fi-
nally (3) a third phase after 12weeks during which they ex-
press one-session learning leading to long-term memory.
The data from the HexMaze allow the investigation of
many different aspects of spatial navigation and memory.
Here, we focused on previous knowledge effects on per-
formance and learning. These effects ranged from simple
day-to-day performance increases to effects reflected by
offline consolidation and online learning. Initial application
reveals that this task can be used to test different aspects
of memory while simultaneously controlling for difficulty
of learning across each phase in training: from the buildup
of knowledge to updates testing both across-session as
well as between-session performance development. The
data from the .30,000 trials are supplied with this article
and can be used for many more investigations and analy-
sis of spatial navigation in mice. In the accompanying arti-
cle (Vallianatou et al., 2020), the data were used to model
the strategies used by mice in the task.
How do we build up and use knowledge of a large spa-

tial environment or map? And how will experience in a
maze shape new learning? Previous knowledge will affect
behavior and learning (Bartlett, 1932; Harlow, 1949; Tse
et al., 2007), and, thus, needs to be considered when ap-
plying any particular training paradigm. To test how mice
learn a map, we used a large spatial environment, more
naturalistic in its complexity. Mice were trained to find a
food location from different starting points in a maze,
thereby enforcing allocentric learning to one fixed goal lo-
cation per session over two training phases: Build-Up (12
weeks) and Updates (9 weeks). During the Build-Up, the
goal location was kept constant for five to seven sessions
before switching to a new one, while during the Updates
switches occurred every three sessions. The difference

GL1 GL2 GL3 GL4 Loc
setadpUpU-dliuB

Count of Goal Location Crossings during Session 2 Trial 1 (Probe Trial)
Current Goal
Previous Goal

Control Node Inner Ring

0

2

4

6

8

10
Control Node Outer Ring

Figure 6. Probe trial analysis (each session 2, trial 1). Across the goal location switches during Build-Up and during the Updates, an
increase in the number of crossings could be seen for both the current and previous goal locations compared with the two control
nodes (groups 1 and 2, GL2–4 and Loc for full model, n=16; node: F(3,45) = 22.3, p, 0.001; GL2–4/Loc: F(3,45) = 10.7, p, 0.001; in-
teraction: F(9,135) = 2.0, p=0.044).
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between the Build-Up and Update phases is character-
ized by how quickly new information could be incorpo-
rated into the spatial map and thus influence the
navigational behavior of the mice. Three different types of
updates were introduced during this final phase: including
barriers blocking certain paths, changing the goal loca-
tion, and including both new barrier locations and new
goal locations. Across all phases, memory effects were
revealed, reflected by performance increases from one
session to the next (measured in the normalized path
lengths). Further, four previous knowledge effects modu-
lating performance and learning of the spatial map are
highlighted. Thus, we could show how different spatial
map knowledge properties are developed stepwise over
learning and could identify three main phases of learning.

Highlighting some previous knowledge effects
The simplest and most obvious previous knowledge (or

memory) effect of the spatial map is already visible in the
first few sessions of the Build-Up where navigation to the

invariable goal location becomes more efficient from one
day to the next. This simple memory effect is what most
rodent memory tasks would capture [e.g., using a radial-
arm maze (Jarrard, 1995) or a watermaze, testing refer-
ence memory (Morris et al., 1982)]. While one could argue
whether this simple spatial memory effect is a “previous
knowledge” effect, it is important to consider it as its sim-
plest form: knowledge gained in previous training days af-
fects performance the succeeding day.
The second previous knowledge effect of learning a

spatial map is found when comparing the performance for
the very first goal location with the performance after the
first and other goal location switches. Already the second
goal location exposed a significant improvement in overall
navigational performance to the goal location within the
known map during the second session compared with the
first, thus resulting in a different learning curve across ses-
sions when comparing with the performance for the very
first goal location. This change characterizes the second
phase of general map learning. This effect is then en-
hanced once again during the Updates as performance
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Figure 7. Changes because of updates. A, B, Always the last trial before an update (S3 of previous condition) and the first trial of
the update (A) and the difference values (subtraction) for these (B). From left to right the shortest possible path, the taken path, and
the relative path are presented. If barriers were included (Bar and L1B), the shortest possible path would increase from the previ-
ous trial. But only if location was changed (Loc and L1B) did the taken path increase, for the Bar update the taken path only in-
creased by the same amount of the shortest path (two nodes). Interestingly, because of the change in shortest path, the relative
change (taken/shortest) actually decreased in the Bar update. #p=0.087, **p, 0.01, ***p, 0.001; A, paired t tests; B, one-sample t
test to 0. Data taken from both groups 1 and 2. Error bars are the SEM. The number in brackets of the log is the relative length of
the path taken by the animal [taken path (T)/shortest path (S)], with 2 indicating that the path was twice as long as the shortest pos-
sible path.
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improvement is already present in the first session and is
maintained from the first to second session as well.
However, this initial effect during the second goal location
did not yet translate to good performance on the first trial
of the second session; thus, no one-session updating
leading to long-term memory was seen this early in learn-
ing. This is reminiscent of the learning set effect (Harlow,
1949). The results obtained in the HexMaze indicate that
this learning-set effect can be expressed in three phases:
(1) naive, (2) gains after offline consolidation, and (3) online
as well as offline gains in the final stage. However, it re-
mains unclear whether this is the result of the animals
learning the rule (there is one constant food location) or
the general spatial map, but most likely it is a mixture of
both.

The third previous knowledge effect on spatial map up-
dating is tied to the third phase of the learning set effect
(corresponding to online gains) and is present across the
different Update types: the amount of new information in-
corporated into the map affected how rapid online learn-
ing could occur during the first session of each update.
When only the general maze structure was changed (in-
clusion of barriers), the animals were able to rapidly adapt
their routes to the goal and additional sessions were not
needed to reach optimal performance. In contrast, when
the goal location or both goal location and the maze struc-
ture (L1B) were manipulated, online learning was slower,
resulting in a performance decrease during the first ses-
sion (linear relationship with the number of elements
changed). However, offline consolidation eliminated this
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A Goal Location 1
trial blocks

B Goal Location 2-5
trial blocks

C Barrier Updates
trial blocks
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trial blocks

E Loc+Bar Updates
trial blocks
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Figure 8. Within-session learning. A–E, The change in performance within session (trial 1 and then blocks of 10 trials) always across
the first three sessions (S1–3), the very first goal location (A), averaged across the subsequent goal locations of the buildup (B), for
barrier updates (C), for location updates (D), and for location and barrier (Loc 1 Bar) updates (E). The first goal location did not
show strong within-session learning during these first sessions; in contrast, later on (B) the main learning occurred between trial 1
and the next trial block during session 1 and trial 1 of sessions 2 and 3 started lower, but additional within-session improvement
could be seen in the next block. In the barrier updates, performance was starting trial 1 of first session well and remained stable.
For the other updates, a linear improvement during session 1 was seen across trials, and now performance was sustained to ses-
sions 2 and 3 with no strong additional gains from the first trial to subsequent trials. For statistics, see the main text. Data were
taken from both groups 1 and 2. Error bars are the SEM. The number in brackets of the log is the relative length of the path taken
by the animal [taken path (T)/shortest path (S)], with 2 indicating that the path was twice as long as the shortest possible path.
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Figure 9. Different performance parameter buildup and updates. Shown are the log of normalized path length (top row, as used
throughout the article), normalized path length, percentage of trials that was a direct run (second from top), percentage of trials that
was a direct run after the second node since mice often would initially run in heading direction and then stop to consider where to
go (third from top). As a final parameter, we took for each node whether the choice would bring the mouse closer to the food (cor-
rect) or not (incorrect) and created an average per trial across all traversed nodes. Each left, all trials; right, first trials for Build-Up
(Group 2) and Updates (all). Error bars are the SEM. Lines are polynomial fits. The same effects seen in the log of the normalized
path length can also be seen in the other parameters.
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effect and by the second session animals performed simi-
larly for all Update types. This effect could potentially be
linked to a schema or schema-like effect of the knowledge
of the cognitive map. Considering the degree of change
compared with the previously learned information could
explain some differences in schema effects in previous ro-
dent and human studies. In the original paired-associate
task (Tse et al., 2007), the hippocampus was necessary
during update encoding, and this hippocampal involve-
ment was also observed in a similar human schema
task testing for a recently acquired, simple schema
(card–location associations; van Buuren et al., 2014). In
contrast, during human schema tasks that involve long-
established, real-world schemas, the hippocampus
tends not to be active, and instead the prefrontal cortex
directly communicates with the other cortical regions
(van Kesteren et al., 2010a,b, 2012). It would be tempt-
ing to speculate that there may be a gradient across the
complexity or extent of an existing schema, which in
combination with the amount of new information over-
lap, results in a shift from hippocampal to cortical in-
volvement (Alonso et al., 2020). (1) If no schema is
present, the hippocampus is necessary for weeks to
months; (2) if a simple schema is present, the hippocam-
pus is necessary for memory encoding but new informa-
tion becomes more rapidly hippocampal independent;
and (3) if a complex schema is present, the hippocampus
is not even necessary for encoding, similar to fast map-
ping (Coutanche and Thompson-Schill, 2014, 2015; but
also see Cooper et al., 2019). For a more detailed review
of this concept, please see the study by Alonso et al.
(2020).
The fourth previous knowledge effect of knowing the

spatial map is reflected in long-term memory performance
(first trial of each session) and is the critical difference be-
tween our Build-Up and Update phases, and thus is indic-
ative of the third phase of spatial map learning. Initially,
during the Build-Up, the animals show poor long-term
memory (2–3 d) after one training session to a goal loca-
tion; during the Updates, the consistent development of
long-term memory is accelerated and detectable in the
probe trials (critical trial for this is the first trial of the sec-
ond session). Interestingly, counting the crossings of both
the new as well as the last goal location revealed that ani-
mals retained the memory of the last goal location as well
as learning the new one. Thus, new information did not
overwrite the old information. However, one training ses-
sion only led to a 2 d and not 5 d memory here in mice.
For long-term memory to last 5 d in mice, two training
sessions were required. This acceleration of consolidation
has previously been linked to the schema effect (Tse et
al., 2007), and therefore it could be speculated that the
knowledge of the map may be linked to schema or
schema-like effects.
The HexMaze also revealed interesting features of map

effects in mice. First, we are the first to show that the
Build-Up of the cognitive map is dependent on time but
not training or experience. This was revealed by training
animals either two or three times a week. When compar-
ing these two training conditions, performance was more
similar when aligned to time (weeks since start of training)

than to the number of days already spent in training.
Further, after the 12 week Build-Up with either 36 or 24
sessions of training, all animals showed rapid consoli-
dation during the Updates, confirming the established
cognitive map was independent of training amount.
Thus, time dependency, and not experience depend-
ency, indicates that the buildup of a knowledge net-
work requires a remodeling of the network, which,
importantly, occurs offline and for a certain time period
and cannot be facilitated by a training increase. This is
reminiscent of the massed versus spaced memory ef-
fect: massed training creates a stronger initial memo-
ry; however, spaced training creates a memory trace
that lasts longer (da Silva et al., 2014; Nonaka et al.,
2017).

Schema versus learning set
Can a cognitive map, as tested in the HexMaze, be con-

sidered as a schema? There are many definitions of
schema, as we recently reviewed (Alonso et al., 2020).
Human schema investigations have used different types
of schema from spatial maps of object–location pairs (van
Buuren et al., 2014); semantic concepts (van der Linden
et al., 2017); visual–texture combinations (van Kesteren et
al., 2010b), and movies (van Kesteren et al., 2010a). In
contrast, many rodent studies have used the term schema
more loosely [e.g., to describe the first experience with a
linear track (Dragoi and Tonegawa, 2013) or a daily
changing sequence of goal locations on a circular track
(McKenzie et al., 2013)]. Recently Ghosh and Gilboa
(2014) summarized the following four key features of
schemas: (1) an associative network structure, (2) based
on multiple episodes, (3) a lack of unit detail, and (4)
adaptability. The requirements are present in our task
for testing a spatial map: the multiple extramaze and in-
tramaze cues together with the maze layout represent
the associate network structure; training takes multiple
sessions or episodes; and we have shown adaptability
in the Updates. However, we did not test the same ani-
mals in a similar maze with different extramaze cues.
Further, animals could have used episodic memory of
the last event/trial to solve the task, although by using
different starting points in each trial we ensured that
each trial did have a different path. At this point, it re-
mains disputable whether the task does test extracted
commonalities and shows a lack of unit detail. It is pos-
sible that the animals used specific features of the
maze, rather than an abstract and general knowledge
and therefore schema. Therefore, while it is tempting to
speculate that in this task the map of the environment
acts as a schema, currently there is not enough evi-
dence for this. What we could show is that knowledge
of the map after 12 weeks of learning led to expedited
long-term memory. Expedited long-term memory has
been argued to be a key feature of schemas (Ghosh and
Gilboa, 2014; Fernández and Morris, 2018; Alonso et
al., 2020).
Another argument that spatial maps in general can be

seen as schema is that they use the same underlying
mechanisms. With place cells in the hippocampus and
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grid cells in the entorhinal cortex, we have learned about
the basic building blocks for how the cognitive map is
coded in the brain (McNaughton et al., 2006; Moser et al.,
2008). These same fundamental building blocks have
been shown to then also be harnessed for nonspatial
memory representation and associations between these
(Behrens et al., 2018). Therefore, in general, map learning
can be the ideal model for us to understand how we build
up as well as update our knowledge systems and there-
fore schemas.
One criticism of schema tasks such as the paired-as-

sociated task is that usually pretraining on the schema
and the updates differ in difficulty and cognitive load
because the amount of items learned was differed in
the build-up versus the update (Tse et al., 2007; van
Buuren et al., 2014), which could account for the rapid
updating effect that is the hallmark of schemas. The
advantage of our framework is that during both the
Build-Up and Updates only one goal location is pre-
sented for multiple sessions, thereby keeping the task
difficulty constant.
Another previous knowledge effect described in the

literature is learning sets (Harlow, 1949). The difference
between learning sets and schemas is that learning
sets describe learning a set of rules that can be applied
to new information. This is in contrast with schemas
that are an associated network structure that can ac-
commodate new learning. Our task-learning set would
be the animal learning about the principle that there is
one goal location within the maze that stays constant
for a certain amount of time but then can change. We
believe that this effect can be seen when the animal is
learning the first and second goal locations during
buildup.

How the task can be applied
The three different phases in the HexMaze are optimal

to apply to different types of experiments. For example, if
the goal is to test classic reference memory, simply using
the first seven sessions to the goal location is sufficient. In
contrast, if the aim would be to measure neural correlates
of navigation within an environment with many days of
data for direct comparisons, training should first be to one
goal location, but analysis would be applied from the sec-
ond session of the second goal location onward when
performance is stable over time (i.e., from the ninth train-
ing day). As a third application example, the investiga-
tion of offline memory consolidation would occur during
the Updates as here, each change is comparable to the
next (plateau performance). One key advantage of the
HexMaze to many other rodent tasks is the following:
because of the naturalistic paradigm, mice rapidly ha-
bituate to the maze (two 1 h sessions of habituation
with all cage mates at once primarily for stress-free
pickups with tubing) and do not require other pretrain-
ing/shaping.
One noticeable challenge in the behavior of the mice

in the maze, is that they never reached perfect per-
formance. Instead, even when a specific goal location
was experienced for multiple sessions, the mice only

performed perfectly with direct runs from start in
;30% of the trials, which increased to ;60% if you
considered performance after the animals passed the
first two nodes. This lack of perfect goal-oriented be-
havior from the starting location may be because of the
difficulty of the task, but more likely is because of the
nature of the species itself. In contrast to rats, mice
move rapidly in bursts and show more shuttling and
random movements, which is likely inert behavior to
avoid predators (Jones et al., 2017), and even in known
environments use random movement strategies (Gire
et al., 2016). The prevalence of random movement pat-
terns could be confirmed in the HexMaze by using a
modeling approach to the data (Vallianatou et al.,
2020). Instead of increased goal-directed behavior
from the starting location, learning is expressed in in-
creased foresight: the point of direct run to the goal lo-
cation will move further away from the goal as
experience with the maze increases. However, impor-
tantly the modeling approach also confirmed that the
behavior of the mice in the HexMaze is better than a
random run through the maze once they learned the
goal location (Vallianatou et al., 2020). We are currently
developing a rat version of the HexMaze and can con-
firm that rats show much more goal-oriented behavior
in the maze than mice.

Conclusion
In sum, we have developed a flexible rodent task in

which different effects of previous knowledge of a spatial
map on navigational and memory performance, encoding,
and updating can be investigated and both offline long-
term memory and online navigational performance can be
evaluated separately. We could show that mice learn this
complex spatial map in the following three main phases:
(1) learning the initial goal location, (2) faster learning after
2 weeks when learning a new goal location, and then fi-
nally (3) a third phase after 12weeks to express one-ses-
sion learning leading to long-term memory. We have
highlighted different effects that can be seen in this very
rich dataset with .30,000 trials, here focusing on the
metric of normalized path length and previous knowl-
edge effects. However, many more metrics such as bi-
nary choices at each node and the presence of direct
runs are provided in the dataset as well. Thus, the data-
set (Extended Data Fig. 1-1) can be used for many other
applications and investigations into mouse navigation,
as also seen in the accompanying article (Vallianatou et
al., 2020).
Further, the task itself will enable future studies investi-

gating the principles of memory updates and the involved
mechanisms. While we have not yet investigated whether
the effect of rapid systems consolidation (hippocampal
independency) is present in this task as well, we did find
a behavioral rapid updating effect that is likely to be ac-
companied by the consolidation effect. Overall, our
brains are tuned to remembering things that are new, but
how novel something is will depend on our experiences
(Duszkiewicz et al., 2019).
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