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Abstract: Infections are the primary cause of death from burns and diabetic wounds. The clinical
difficulty of treating wound infections with conventional antibiotics has progressively increased and
reached a critical level, necessitating a paradigm change for enhanced chronic wound care. The
most prevalent bacterium linked with these infections is Staphylococcus aureus, and the advent of
community-associated methicillin-resistant Staphylococcus aureus has posed a substantial therapeu-
tic challenge. Most existing wound dressings are ineffective and suffer from constraints such as
insufficient antibacterial activity, toxicity, failure to supply enough moisture to the wound, and poor
mechanical performance. Using ineffective wound dressings might prolong the healing process of a
wound. To meet this requirement, nanoscale scaffolds with their desirable qualities, which include
the potential to distribute bioactive agents, a large surface area, enhanced mechanical capabilities,
the ability to imitate the extracellular matrix (ECM), and high porosity, have attracted considerable
interest. The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel approach
to “nanoparticle dressing” that has acquired significant popularity for wound healing. Due to their
remarkable antibacterial capabilities, silver nanoparticles are attractive materials for wound healing.
This review focuses on the therapeutic applications of nanofiber wound dressings containing Ag-NPs
and their potential to revolutionize wound healing.

Keywords: composite nanofibers; silver nanoparticles; wound dressing; drug delivery; wound
healing; chronic wound management; skin tissue engineering

1. Introduction

Wound healing must be seen as a sequence of regulated and interconnected steps, as
shown in (Figure 1), such as coagulation, inflammation, deposition, fibroplasia, extracellular
matrix differentiation, contraction, remodelling, and epithelialization [1]. Acute wounds
should recover in two to three weeks at most, followed by the remodelling stage, which
may take up to two years. Scab development and little to no infection are signs of routine
healing. When an infection exists, the immune system often fights it off. However, in cases
of severe microbial disease, the immune system cannot eradicate the condition, and the
wound develops to the chronic stage and fails to heal sequentially in the expected time
frame. Chronic wounds are difficult to keep clean and are more vulnerable to bacterial
infections [2–5]. A high level of bacterial invasion distinguishes these wounds, as well
as increased inflammation, reduced oxygenation on the subepithelial tissues, damaged
fibroblast, and postponed re-epithelialization [6,7]. Leg ulcers, pressure ulcers, diabetic
foot ulcers (DFUs), fungating wounds, and other chronic wounds are among the most
typical [8,9].
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Figure 1. A diagrammatic illustration of the basic steps of cutaneous wound healing.

In addition to being a significant financial burden on healthcare systems, wounds
provide a social barrier for patients and their families. According to a retrospective review
of Medicare enrollees, 8.2 million people in the US were impacted by wounds in 2014. In
the wound category, the total cost of care ranged from USD 28.1 billion to USD 96.8 billion.
The estimated USD 9–13 billion administrative expenses for DFUs were among the highest.
Given that there are already 463 million diabetics worldwide, which is predicted to reach
700 million by 2045, these expenditures are projected to grow [10,11]. If diabetes is not
effectively treated, a diabetic person’s chance of having a DFU ranges from 15% to 25%.
Due to peripheral neuropathy and uncontrollable foot infections, DFUs have a 14% to 24%
likelihood of resulting in lower limb amputations (LLAs). Since amputation patients often
have difficulty adjusting to social and demographic situations, LLAs are linked to a worse
quality of life.

Additionally, LLAs are linked to a greater death rate in diabetes individuals; recent
research found that the 30-day postamputation mortality rate was 9.8%. The patient’s
chance of needing more amputations increases if they live beyond the 30-day mark. Ac-
cording to reports, the mortality rates for small LLAs and large LLAs at one and four years
after amputation were 18% and 45%, respectively, and 33% and 65%. In addition to other
risk factors, including age, renal disease, and other consequences of diabetes, depression
has recently been recognized as one of the risk variables leading to increased death rates
following significant LLA. Poor antibacterial activity, high toxicity, a lack of ability to
deliver adequate moisture to the wound, and a lack of mechanical performance are some
of the drawbacks of most of the wound dressings on the market [12].

The inefficient use of wound dressings can slow down wound healing. To address
this need, nanoscale scaffolds with desired properties such as the capacity to distribute
bioactive compounds, a large surface area, increased mechanical capabilities, ability to
mimic the extracellular matrix (ECM), and high porosity have piqued the attention of
researchers. At the moment, the inclusion of nanoparticles into nanofiber scaffolds is a
revolutionary method of “nanoparticle dressing,” which has gained great appeal for wound
healing [13–15]. Furthermore, AgNPs enhance wound healing due to the following benefits:
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The role of AgNPs’ anti-inflammatory properties in accelerating wound healing AgNPs
can be easily incorporated into nanofibers and dressings. This is due to elemental silver’s
meager bacterial resistance, antibacterial activity toward many bacterial strains, and facile
surface modification that aids drug delivery. The simple synthetic process can synthesize it
to create diverse shapes and sizes from 2 to 500 nm, which can be synthesized by changing
reaction parameters and simple and inexpensive large-scale production methods. This
review focuses on the therapeutic applications of nanofiber wound dressings containing
AgNPs and their potential to revolutionize wound healing.

2. Structure of the Skin

The skin is a semipermeable membrane that serves as a defence against harm and
protects the structural integrity of the human body. It is the most crucial multifunctional
organ in the human body, performing critical tasks while defending the body’s internal
tissues against pathogens and excessive water loss [16,17]. Figure 2 depicts a generic skin
schematic. The epidermis, dermis, and hypodermis are the three primary layers of the
skin. The significant functions of the epidermis are to prevent pathogenic microorganisms
from entering the body and to keep the body hydrated. The stratum comprises five layers:
basale, spinosum, granulosum, lucidum, and corneum, forming the skin epidermal layer.
These layers include a variety of non-immune and immune cells (such as Merkel cells,
melanocytes, keratinocytes, Langerhans cells, and stem cells). Keratinocytes, which contain
spinous, granular, and outermost stratum corneum layers, are produced by the proliferative
component of the epidermis. Some regions of the body, such as the foot soles and skin
palms, contain an extra stratum lucidum. The stem cells in the basal epidermis regulate
the regeneration of injured skin and the restoration of keratinocytes lost by exfoliation.
The dermis layer is placed between the epidermis and hypodermis and comprises blood
vessels, nerve cells, collagen, hair roots, mesenchymal stem cells, and lymphatic vessels.
The dermis’ primary job is to provide structural hardness to the skin. The hypodermis is
the subcutaneous fat layer that supports the epidermal and dermal layers and comprises
fibroblasts, adipocytes, vasculature, macrophages, and nerves [18,19].
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3. Brief Medical History of Silver Nanoparticles

Silver nanoparticles have been extensively used in various medicinal applications,
as shown in (Figure 3). Silver nanoparticles are already widely used in wound dressings
and burn treatment in biomedicine and also in the food and textile industries, in paints,
household items, catheters, implants, and cosmetics, as well as in combination with a
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variety of materials to prevent infection [20–25]. During World War I, they treated soldiers’
wounds with silver leaves to stop infections and help them heal [26,27]. Silver as an ion was
used in earlier civilizations, particularly in Egypt. This silver ion was used mainly in wound
dressings to treat wounds that were hard to heal. In 1998, Ziehl-Abegg was the first firm
to introduce AgNPs into wound dressings, resulting in the AgNPs antimicrobial dressing
ActicoatTM. Silver products improve efficacy compared to standard wound dressing [28,29].
Acticoat and Actisorb, two silver-based wound dressings, are commercially available [30].
Dermatology increasingly employs metal nanoparticles to expedite wound healing and to
treat and prevent bacterial infections [31].
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Indeed, AgNPs’ excellent antimicrobial properties have already been tested against
650 bacterial strains [32–34]. Because of their extensive antimicrobial properties and ability
to reduce the chance of infection from antibiotic-resistant strains, silver nanoparticles also
found their application in wound management products [35–39]. AgNPs are utilized in
wound care to prevent secondary infections since they are effective against a spectrum
of microbes that can slow down the healing process [40]. Their size and charge allow
them to enter microorganisms [41–43]. The AgNPs destroy many multi-resistant strains.
It also helps rid pathogenic microbes that can slow or stop the typical stages of wound
healing [44,45].

The biosynthesis of AgNP utilizing aqueous Bryonia laciniosa leaf extract resulted in
rapid wound epithelialization and scarless wound repair without significant inflammation
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due to effective cytokine modulation. It was used as a wound healing agent due to its
outstanding anti-inflammatory and antibacterial properties [46]. Biosynthesized AgNPs
are made from Delonix elata leaf aqueous extract for wound healing in human patients
who have had anorectal surgery [47]. Due to their sustained ability to release silver ions,
which exhibit concentration-dependent toxicity in HaCaT cells, these nanoparticles have
a high potential for usage in dermatology and wound healing [48]. Because AgNPs are
biocompatible and can avoid this involuntary inflammatory action, they are not nullified
by the immune system; thus, they could be used as anti-inflammatory agents [49]. Because
of their anti-inflammatory properties, topical application of AgNPs at the wound site
minimizes the release of inflammatory cytokines, lymphocytes, and mast cell infiltration,
promoting wound healing with minimal scarring. A. Hebeish et al. also evaluated the
anti-inflammatory effects of Ag by comparing them to indomethacin. This commercially
available anti-inflammatory drug revealed a dose-dependent reduction in inflammation
inside the rat bow edema model [50].

A study showed that AgNPs eradicate 44 strains of six fungi [51]. Gajbhiye et al. dis-
covered that biogenic AgNPs were effective against Fusarium semitectum, Pleospora herbarum,
Trichoderma spp, Phoma glomerata, and Candida albicans. They also reported a synergic effect
of AgNPs in conjunction with fluconazole [52,53]. When AgNPs were added, they changed
the growth rates of all tested fungi except Mortierella spp, meaning that Chaetomium and
Stachybotrys could not grow on gypsum products.

J.L. Speshock et al. investigated AgNPs’ potential in prokaryotic and eukaryotic
organisms, and AgNPs at about 25 nm or even less were found to have exceptional potential
for viral infection suppression [54]. AgNPs inhibited virus attachment, cell penetration,
and the cell’s ability to propagate the virus [55]. As an HIV-1 antiviral nanohybrid and
in the deactivation of SARS-Cov-2 spike proteins, TPU-Ag worked better than PVA-Ag.
TPU-Ag and PVA-Ag nanofibrous membranes displayed increased antibacterial activity
by increasing Ag content from 2 to 4 wt. Additionally, the developed membranes showed
good mechanical and physical properties and antiviral and antibacterial activities [56].

Silver synthesized from M. Domestica extracts significantly affected breast cancer
MCF-7 cells. In contrast, silver synthesized from O. Vulgare aqueous extracts had a dose-
dependent effect on the A549 cell line [57,58]. Moringa olifera stem bark extract was used
to produce AgNPs. K. Vasanth et al. investigated the anticancer properties of these
biosynthesized AgNPs. The flow cytometry analysis indicated that ROS generation caused
apoptosis in HeLa cells [59]. According to the findings, AgNPs effectively prevent the
development of HepG2 cells by inducing apoptosis [60]. Venkatesan et al. found that the
human breast cancer cells MDA-MB-231 were killed by chitosan-alginate-biosynthesized
AgNPs that were highly permeable (IC50 = 4.6 mg) [61]. A recent study found that packed
quinazolinone polypyrrole with chitosan silver chloride nanocomposite was active against
Ehrlich ascites carcinoma cells [62]. I.M. El-Sherbiny et al. found that Chitosan-silver
hybrid nanoparticles cause HepG2 cells to die by turning down the BCL2 gene and the P53
gene [63]. A significant decrease in cyclobutene-pyrimidine-dimer creation demonstrated
their chemo-preventive efficacy in HaCaT cells after UVB-induced DNA damage, which
has a good potential for avoiding skin cancer [64]. The UVB-protective effectiveness of
AgNPs in human keratinocytes is proportional to their size [65]. As a result, pre-treating
HaCaT cells with smaller AgNPs (10–40 nm) helped shield skin cells from UVB-induced
DNA damage and UV-induced apoptosis. Using 60 and 100 nm AgNPs, no prevention
was obtained. AgNPs are increasingly used in healthcare and consumer products, so
many commercial products now include these nanoparticles for topical administration to
human skin.

Over one million people die from malaria yearly, caused by protozoal vector-borne
diseases, the most prevalent and dangerous infections in wealthy nations [66]. Z. Jiang et al.
are creating novel antimalarial strategies to control the malaria vector. AgNPs were
tested against Plasmodium falciparum malarial parasites and other antimalarial medica-
tions [67]. The bio-reduction of AgNPs was 5%. The malaria vector Anopheles stephensi
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and chloroquine-sensitive and resistant P. falciparum strains were all treated with
Cassia occidentalis leaf broth [68].

4. Wound Healing Properties of Silver Nanoparticles

Compounds of silver, such as silver nitrate and silver sulfadiazine, are often used
to treat infections in chronic wounds and burns [69]. AgNPs help fibroblasts change
into myofibroblasts, which makes wounds tighter and speeds up the healing of diabetic
wounds. AgNPs accelerate wound healing by enhancing keratinocyte proliferation and
migration [70,71]. AgNPs may engage with sulphur-containing proteins in bacterial mem-
brane cells and, ideally, attack the respiratory chain, resulting in apoptosis [72]. When it
comes into contact with the injured region, they cause neutrophil apoptosis by lowering
mitochondrial function, which reduces cytokine production. As a result, the inflammatory
response is modulated or reduced, resulting in faster healing [73,74]. However, because of
their small size, AgNPs can easily penetrate biofilms and cell membranes, causing DNA
damage, inhibiting cell proliferation, and inhibiting cellular ATP production [75]. The
silver nanoparticles change the amount of m-RNA in the wound environment. Aside
from antibacterial activities, silver surgical textiles exhibit an increase in healing prop-
erties; as an outcome, silver exploitation has an optimistic effect on cell migration and
proliferation quality [76–78]. Cytokine modulation is mediated by silver nanoparticles’
anti-inflammatory activity [79]. As stated in the preceding section, Cytokines can stimulate
fibroblasts and chondrocytes to generate ROS [80]. Thus, silver nanoparticle modulation
of cytokine production can reduce ROS levels to avoid severe cellular damage and lag
wound healing [81]. Silver has many antibacterial effects, making it less likely that bacteria
will become resistant and more effective against microorganisms resistant to multiple
drugs. When the amount of AgNPs in the dressing increases, the wound area becomes
smaller and more collagen is deposited, which is linked to macrophage and fibroblast mi-
gration [82,83]. Sustained release mechanisms can decrease silver ion toxicity and stimulate
local antibacterial activity [84,85].

5. Mechanistic Understanding of Silver Nanoparticles (AgNPs)

The usual quantity of silver in human plasma is less than 2 µg/mL, and this concen-
tration comes from diet and particulate matter inhalation. Oral exposure to silver can also
come via dietary supplements, contaminated water, or from eating fish and other aquatic
species [86]. Ionic silver can be ingested orally, inhaled, or absorbed through wounds to
enter the body. AgNPs are believed to be transported inside the body by two processes:
pinocytosis and endocytosis. The development of a revolutionary medication delivery
method was prompted by the discovery that nanoscale particles penetrate far deeper than
bulk particles. Although the precise mode of action of AgNPs is not yet known, numerous
ideas for their antibacterial qualities have been put forth. Its antibacterial effect is thought
to solely be caused by the ongoing release of silver in its ionic state [87–89]. Silver ions
cling to the cytoplasmic membrane and cell wall because of the sulphur protein affinity
and electrostatic attraction. This increases the permeability of the membrane and causes
the bacterial cell to rupture and degenerate. Reactive oxygen species are produced, and the
respiratory enzymes are essentially deactivated when the silver ion enters the bacterial cell.
Reactive oxygen species, a critical element in the mechanism of action for silver, contribute
significantly to the disruption of the cell membrane and DNA damage (by interacting with
sulphur and phosphorus in the DNA molecule), which hinder replication and reproduction
and ultimately lead to microbe death. By denaturing ribosomes, silver ions also prevent the
synthesis of ATP and hinder the formation of proteins. After anchoring and observing the
cell’s surface, silver nanoparticles build up in the cellular wall pits of microorganisms, caus-
ing the denaturation and degeneration of the cell membrane. Due to their micro size, they
can easily enter cells, rupturing cell organelles and even causing cell lysis. They interfere
with the phosphorylation of protein substrates, which can cause cell death and proliferation,
which has an impact on the bacterial transduction process as well. Due to their cellular
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walls being shorter than those of Gram-positive bacteria, Gram-negative bacterial strains
are more susceptible to the effects of AgNPs [86,89]. Silver nanoparticles have a significant
downside in that bacterial biofilms make them less effective and penetrating. Due to their
intricate structure, biofilms typically change the transport chain to shield the membrane
from both silver ions and nanoparticles. The nanoparticle size, which is around 50 nm,
severely obstructs the path of penetration that is currently being used. Additionally, it
has been observed that silver nanoparticle adsorption and deposition on bacterial biofilms
reduces the nanoparticles’ ability to diffuse into bacterial cells (Figure 4). Silver’s interaction
with a molecule containing a thiol group in bacterial, fungal, and fungus cells provides
the basis for silver nanoparticles’ antibacterial effect (Figure 4). It has been observed that
bacterial and fungal cells undergo structural changes after coming into touch with silver
nanoparticles, albeit the precise process is yet unclear. Silver nanoparticles have higher
antibacterial and antifungal characteristics than normal silver particles because of their
extensive surface area, which enables better interaction with bacterial and fungal pathogens.
Additionally, the gel made of silver nanoparticles penetrates bacteria and fungi in addition
to attaching to cell membranes. Silver penetrates cells and connects to the cell membrane
and wall, which prevents the cell from respiring [90,91]. When silver is present, Escherichia
coli is prevented from absorbing phosphate and from releasing mannitol, succinate, proline,
and glutamine. As a result, silver nanoparticles can be used as effective growth inhibitors
in a wide range of microbes and are helpful in many antibacterial control systems [92,93].
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6. Silver Nanoparticles and Their Synthesis

AgNP is synthesized using either a top-down or bottom-up method, as is typical for
most nanomaterials, as illustrated in (Figure 5) [94]. Physically breaking down a large
complex into smaller parts is a critical component of the top-down strategy. Physical
and mechanical procedures such as UV irradiation, lithography, laser ablation, ultrasonic
sounds, and photochemical reduction create a strong energy/force to compress the macro-
molecule into nanoparticles [95]. The physical reduction procedures generally have quick
processing durations, yielding AgNPs with a restricted size distribution range. How-
ever, they have several drawbacks, including the tremendous amount of equipment space
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needed, the extended time required to obtain thermal stability, the energy-intensive nature
of the methods, and the difficulty in easily using them for scaling-up reasons [96]. When
creating nanoparticles from the bottom up, tiny particles such as atoms and molecules
are used as the building blocks. These smaller particles come together to form a complex
nanoparticle by self-assembly or aided assembly. Chemical, microwave, and biological
approaches are subcategories of the bottom-up strategy. For the manufacture of AgNPs
in solution, chemical techniques are often utilized. They are produced in water or other
organic solvents [97]. Chemical processes are quick and practical but represent a severe
environmental risk because they use hazardous substances as reducing agents and create
dangerous byproducts.
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New alternative techniques that are cost-efficient, energy-efficient, and environmen-
tally benign are swiftly becoming available to counteract these negative environmental
consequences. There has been a thorough literature assessment on the development of
green or biological synthesis [98–101]. In green synthesis, an ecologically friendly substance
such as microbial (fungal and bacterial) enzymes and phytochemicals from plant extracts
are used instead of the capping/stabilizing and reducing agents used in chemical reduc-
tion procedures (leaves, roots, barks, flowers, fruits, peels, and seeds). These biological
processes generate biocompatible nanoparticles suitable for pharmaceutical and biomed-
ical applications [102,103]. While utilizing microbes as reducing agents in nanoparticle
manufacturing is quite tricky and involves several methods, it is more advantageous than
chemical and physical techniques. Because they are widely accessible, simple to extract,
and do not need laborious processes, plant extracts are considered a solution to the issues
mentioned above in the manufacturing of AgNP. For the most part, because they are so
readily available, plant extracts are employed to make nanoparticles. Manufacturing Ag-
NPs with regular shapes and sizes is the main difficulty with plant-based synthesis, and
the reduction processes of biological approaches are not well understood [104–108].
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7. Electrospinning

An electrospinning machine consists of four main parts: a high-power source, a
syringe pump, a syringe needle carrying solutions, and a fiber deposition collector, as
shown in (Figure 6). A positive electrode is attached to the needle, and a negative electrode
is connected to the collector to create the applied electric field. As a result, the repulsion
charge accumulates near the hemispherical needle tip when a voltage is applied. A Taylor
cone is made when the repulsive charge surpasses the surface tension. The negative
electrode, which serves as the collector in this procedure, is where the polymer solution
is directed to create fibers. The polymer solution evaporates, leaving behind dry fibers
ranging in size from nanometers to micrometers deposited on the collector [109,110].
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Figure 6. A schematic diagram of electrospinning apparatus.

As shown in (Figures 7 and 8), electrospun nanofiber mats are an excellent choice for
chronic wound healing because of their numerous advantages and inherent properties.
In multiple medical applications, nanofiber composite materials are widely used. Silver
nanoparticle-loaded electrospun nanofiber scaffolds showed exceptional antibacterial activ-
ity, high porosity, non-toxicity, and biodegradability. Due to their hydrophilic qualities and
prolonged release pattern, these nanofiber scaffolds have become more and more well-liked
on a global scale. With the help of this delivery method, a better dressing and therapy
for ulcers and wounds in diabetic patients would be made available clinically. Silver
nanoparticles have been extensively used in various medicinal applications. Encapsulating
or coating nanofibrous scaffolds with metal-based nanoparticles can boost their therapeutic
efficacy in wound healing applications [111,112]. Synthetic polymers, particularly those
with biodegradable and biocompatible properties, may provide excellent treatment options
for severe wounds and burn injuries.
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8. Cytoprotective Effect of Silver Nanoparticle-Loaded Nanofibers

AgNPs have the potential to spread throughout the body, build up in many organs,
and cause significant damage. AgNP bystander effects are being reduced by the devel-
opment of new fabrication techniquesas shown in (Table 1). To minimize environmental
impact, disposal options must be investigated. High nanoparticle loading capacity and
controllable release mechanisms are two significant advantages that silver nanoparticle-
loaded nanofibers are putting forth. Due to the increased surface area and short diffusion
length of electrospun nanofibers, a more excellent Ag+ release is accomplished compared
to traditional wound dressing materials.

Additionally, regulated release mechanisms can improve local antibacterial effective-
ness while decreasing the dose-related systemic toxicity of silver ions. Silver ions can
be released from polymeric nanofibers in a variety of ways, including diffusion caused
by the polymer matrix swelling (a swelling-controlled system), polymer breakdown, or
a combination of the two. Long-lasting antibacterial activity can be attributed in part to
controlled release performance. It will be more effective to incorporate AgNPs into the
wound dressings rather than placing them directly on the wound bed. This layer also
worked as a sieve to prevent cytotoxicity brought on by the extensive release of AgNPs in
the area close to the wound [113,114].

Table 1. Various forms of fabricated biomaterials for wound healing applications.

S. No. Wound Dressing Materials Fabrication Techniques and Outcomes Ref.

1 Polyurethane/keratin/AgNP
biocomposite mats

Electrospinning method
The material’s keratin content increased fibroblast cell proliferation while
also having strong antibacterial properties. A histological analysis showed
that the created biocomposite mat could promote wound healing.

[115]

2 Hyaluronan and PVA
embedded-AgNP Hydrogel

Freeze-thawing method
The hydrogel’s semi-interpenetrating network aided in the AgNPs’ uniform
dispersion. The hydrogel may be used as a wound dressing since it had
strong antibacterial activity, was biocompatible, had a low swelling index,
and was nontoxic.

[116]

3
Genipin-crosslinked
chitosan/poly(ethylene
glycol)ZnO/Ag

Film casting method
The created nanocomposites showed improved mechanical characteristics
and pH-sensitive swelling behaviour, and they were successfully used as a
material for wound dressings.

[117]

4 AgNP-Calcium alginate beads
in gelatin scaffolds

Freeze-drying method
Due to their favourable swelling qualities and non-toxic behaviour against
human dermal fibroblasts, they are recommended as acceptable
wound dressings.

[118]

5 Chitosan-hyaluronan nano
composite sponges

Ionic cross-linking followed by freeze drying
The material had adequate porosity for applications involving wound
healing, good biodegradation, and improved swelling properties.

[119]

6
Methoxy poly (ethylene
glycol)-graft-chitosan
composite film

Casting/solvent evaporation method
The substance that was manufactured showed that the medication curcumin
had been loaded successfully. The film had an uneven surface without any
pores. The produced film has a significant deal of potential for use in wound
healing applications, according to an in vitro cytotoxicity research,
antioxidant effectiveness assessments, and animal trials (histological study).

[120]
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Table 1. Cont.

S. No. Wound Dressing Materials Fabrication Techniques and Outcomes Ref.

7
Tannic
acid/chitosan/pullulan
composite nanofibers

Force spinning method
It has the potential to be used in the treatment of intricate and deep wounds
since it replicates a 3D environment, exhibits good water absorption, and
encourages fibroblast cell adhesion.

[121]

8 Ag/ZnO nanocomposites

Deposition precipitation method
The porosity of composites, which ranged from 81 to 88%, the swelling ratios,
which ranged from 21 to 24, and the moisture retention period, which ranged
from 13 to 14 days, all demonstrated good results in various experiments.
These characteristics are all crucial for expediting wound healing.

[122]

9 Silver/hyaluronan
bio-nanocomposite fabrics

Wet-dry-spinning technique
According to in vivo research, fabrics improved the material’s mechanical
qualities and increased wound healing effectiveness.

[123]

10 Chitosan-Ag/ZnO composite
dressing

Lyophilisation and immersion method
In many tests, composites performed well in terms of porosity (81–88%),
swelling ratios (21–24%), and moisture retention period (13–14 days), all of
which are critical elements in improving wound healing.

[124]

11 Starch-AgNPs

Nanoprecipitation method
By using an ecologically friendly process, alkali-dissolved starch served as a
reducing and stabilising agent to create AgNPs, and this strategy may be
used for applications in the treatment of wounds.

[125]

12 Cellulose/Polypyrrole/AgNPs/
Ionic liquid composite films

Simple chemical polymerization method
Composite films demonstrated effective antibacterial action and may be
applied as patches to help heal wounds.

[126]

13 Fibrin nanoconstructs
Water-in-oil emulsification diffusion technique
It served as a reliable carrier molecule for tacrolimus,
an immunosuppressant.

[127]

9. Advantages of Silver and Fibre Platforms

The ideal wound dressing should fulfill a number of criteria, including those listed
below: (i) representing a physical barrier that is permeable to oxygen while also maintaining
or providing a moist environment; (ii) being sterile, non-toxic, and protective against
microorganism infections; (iii) providing an appropriate tissue temperature to favour
epidermal migration and promote angiogenesis; and (iv) being non-adherent to prevent
traumatic removal after healing. An ideal wound dressing should have all the qualities
listed above, but it is challenging for one kind of dressing to meet every one of these needs.
Creating a moist wound environment reduces dehydration and cell death. It facilitates
angiogenesis and epidermal migration. It preserves moisture at the site of the wound.
Excess exudate must be removed for the wound to heal, but it can also cause healthy
tissue to macerate, creating a persistent wound. It enables gaseous exchange. Oxygenation
regulates exudate levels and promotes fibroblast and epithelial growth. It prevents infection
by prolonging the inflammatory phase and preventing epidermal migration and collagen
formation; microbial infections slow the healing of wounds. Low adherence and painless
removal of adherent dressings can be uncomfortable and can worsen existing granulation
tissue damage. The cost-effective and optimal dressing should promote wound healing
while remaining reasonably priced [128–130]. The main categories of wound-dressing
materials are fibers, gels, membranes, films, sponges, and hydrocolloids, as shown in
(Table 2). Nanofiber mats are a superior option for drug delivery compared to all other
biomaterials because of their numerous advantages and inherent properties, as shown in
(Table 2). The incorporation of nanoparticles into nanofiber scaffolds constitutes a novel
approach to “nanoparticle dressing” that has acquired significant popularity for wound
healing (Table 2). Due to their remarkable antibacterial capabilities, silver nanoparticles are
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attractive materials for wound healing. Numerous wound-dressing materials have been
created in this area (Table 3), based either on synthetic or natural polymers.

Table 2. The benefits and drawbacks of the various types of nanomaterials.

S. No. Wound Dressing Type Advantages Disadvantages Ref.

1 Fibers

• nonadherent, nontoxic,
nonallergenic

• allow gaseous exchange
• remove excess exudates
• barrier against microbes
• sustain release
• maintain humidity
• tensile strength
• increase bioavailability
• fibroblast attachment and

proliferation
• keratinocyte attachment and

proliferation
• tunable porosity
• ECM mimicking
• bio-compatibility
• electro-catalytic properties
• thermal conductivity
• electrical conductivity
• structural stability
• loading efficiency
• high surface area to volume ratio
• mechanical strength

• unsuitable for third degree,
eschar, and dry wounds

• if the wound is highly
exudative, need a
secondary dressing

[131]

2 Membranes

• act as physical barriers
• membranes simulate extracellular

matrix (ECM) structure
• assure gas exchange, cell

proliferation, and nutrient supply

• the materials and solvents used
in the production process may
be harmful

[132]

3 Films

• impermeable to bacteria
• allows the healing process to be

monitored
• painless removal

• hard to handle
• non-absorbent
• adhere to the wound bed and

cause exudate accumulation

[133]

4 Hydrocolloids

• non-adherent
• high density
• painless removal
• high absorption properties

• can be cytotoxic
• have an unpleasant odor
• low mechanical stability
• maintain acidic pH at the

wound site

[134]

5 Hydrogels

• high absorption properties
• provide a moist environment at the

wound site
• water retention
• oxygen permeability
• ensure the solubility of growth

factor/antimicrobial agents

• weak mechanical properties
• need a secondary dressing [135]

6 Sponges

• high porosity
• thermal insulation
• sustain a moist environment
• absorb wound exudates
• enhance tissue regeneration

• mechanically weak
• may provoke skin maceration
• unsuitable for third degree

burn treatment or wounds
with dry eschar

[136]
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Table 3. A summary of available AgNP-based wound dressing products and their benefits.

S. No. Wound Dressing
Materials

Size of
AgNPs (nm) Target Microbe In Vivo/

In Vitro Model Advantage of Nanocoating Ref.

1
Chitosan-Poly Vinyl
Pyrrolidone (PVP)
composite

10–30 E. coli and S. aureus L929 cell line Compared to the control sample, silver nanocomposite
reduced the amount of inflammatory cells by 99. [137]

2 Plumbagin caged
AgNP-collagen scaffolds 60 nm E. coli and B. subtilis wistar

rat/Swiss 3T6

The antibacterial and wound-healing capabilities of
silver and plumbagin in the PCSN cross-linked
collagen scaffold showed the importance of
nano-biotechnology.

[138]

3 Chitosan/Poly (Ethylene
Oxide) matrix 5 E. coli - AgNPs, because of their size and structure, were found

to increase antibacterial activity when introduced. [139]

4 Chitin/nanosilver
composite scaffolds 5 nm E. coli and S. aureus L929

The scaffolds are antibacterial and have excellent blood
clotting capabilities, which will help with wound
healing. These scaffolds were hazardous to mouse
fibroblasts in vitro. Whether in vitro cytotoxicity affects
in vivo wound healing is unknown.

[140]

5 Activated Carbon coated
silver nanocomposite 50–400

S. aureus, Klebsiella
pneumoniae and
P. aeruginosa

-
When compared to plain activated carbon, the Ag
composites’ antibacterial activity was
significantly higher.

[141]

6 Silver nano-coatings on
cotton gauzes 100–300 nm S. aureus HaCaT/3T3

The developed textile materials show promise as an
alternative to traditional wound dressings due to their
antimicrobial properties and biocompatibility.

[142]

7 Polyurethane Foam
mixed Ag-NPs Dressing 100 E. coli, P. aeruginosa

and S. aureus
Human
fibroblast

Wound healing was enhanced by the use of the
foam dressing. [143]

8 AgNP gelatin hydrogel
pads 7.7–10.8 nm E. coli, S. aureus

P. aeruginosa

Human’s
normal skin
fibroblasts

Gelatin hydrogel pads infused with silver
nanoparticles have shown promise as antibacterial
wound dressings.

[144]

9 Chitosan-PEG hydrogel 75 E. coli, P. aeruginosa
and S. aureus Rabbit

On day 14, the dermal layer of skin and the collagen
pattern were both healthy in the Ag-NPs impregnated
chitosan-PEG hydrogel group.

[145]

10

AgNPs incorporated
Pluronic F127 and
Pluronic F68
thermosensitive gel

- E. coli, S. aureus and
P. aeruginosa -

Gel may disrupt the structure of bacterial cell
membranes, allowing the substance to enter the cell,
where it can condense DNA, combine and coagulate
with the cytoplasm, and ultimately kill the bacteria by
causing the cytoplasmic component to leak out.

[146]

11 Chitosan nanofiber 25 S. aureus Wistar
Hannover rats

Biological media had a substantial impact on the
release of silver; proteins blocked the release of the
metal, whereas inorganic ions slowed it down. As a
result, to elicit in vivo antibacterial activities, a high
concentration of AgNPs was required.

[147]

12 Asymmetric Wettable
Chitosan nanocomposite 25 E. coli, P. aeruginosa

and S. aureus
HEK293
cell line

The dressing has been shown to encourage cell growth
in an in vitro cytocompatibility study. [148]

13 Cellulose hydrogel 5–50 E. coli and S. aureus New Zealand
rabbit

Three days faster wound healing was seen using
nanohydrogel compared to the control group. [149]

14 Chitosan gels 15 P. aeruginosa Human dermal
fibroblasts

Chitosan gels containing AgNPs showed improvement
in biocompatibility tests on primary fibroblasts. [150]

15
Silk fibroin/
carboxymethyl chitosan
composite sponge

4.9 ± 1.9 nm S. aureus and
P. aeruginosa - This AgNP-loaded SF/CMC sponge shows promise as

a potential antimicrobial wound dressing. [151]

16 Chitosan cross-linked
bilayer nanocomposite 45 E. coli, P. aeruginosa

and S. aureus L929 cell line
The treated group’s organized and developed
epithelium was a marked improvement over that of the
control group.

[152]

17 AgNPs/Bacterial
cellulose composites 10–30 nm E. coli, S. aureus and

P. aeruginosa Epidermal cells

In vitro studies show that a nanostructured AgNP-BC
gel-membrane has the potential to be an effective
antimicrobial wound dressing with good
biocompatibility for the expedited healing of
scald wounds.

[153]

18
Silver NPs embedded
bacterial cellulose
gel membranes

30 S. aureus Westar rats A significant amount of healing (85.92%) occurred after
14 days of treatment. [154]

19 β-chitin-based
hydrogels 5 E. coli and S. aureus ERO cell line Manufactured scaffolds showed improved

whole-blood clotting ability. [155]

20
Silver
Alginate/Nicotinamide
Nanocomposites

20–80 E. coli and S. aureus Mice Significant wound healing had occurred by the fourth
day of treatment. [156]

21 Hyaluronan Nanofiber 25 E. coli and S. aureus Cell line
(NIH 3T3)

Since nanoparticles are so much smaller than typical
particles, they are able to exert a far stronger effect
on microbes.

[157]
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Table 3. Cont.

S. No. Wound Dressing
Materials

Size of
AgNPs (nm) Target Microbe In Vivo/

In Vitro Model Advantage of Nanocoating Ref.

22 Chitosan-Ag/ZnO
composite dressing 10–30 nm

Drug sensitive E. coli,
S. aureus and
P. aeruginosa

BALB/c mice
/L02 cells

These findings support the feasibility of using the
prepared chitosan-Ag/ZnO composite dressing in
wound care.

[124]

23
Chitosan-based
multifunctional
hydrogel

250 E. coli and S. aureus Rat model Following 14 days of therapy, the test organism
showed the slowest rate of re-epithelialization. [158]

10. Silver Nanoparticles Containing Nanofibers for Wound Healing

Ag nanoparticles can generally be incorporated into polymeric nanofibers in various
ways (Table 4). Electrospinning a Ag nanoparticle dispersion in a polymer solution is
one method. Such a strategy has already been demonstrated to be problematic since the
nanoparticles begin to aggregate and lose their effectiveness [159,160]. However, the pro-
cess of forming Ag nanoparticles onto polymeric nanofibers appears to be advantageous
in terms of maintaining the antibacterial activity of the nanoparticles. Table 5 depicts
some of the clinical transformation status of silver nanoparticles. Sol-gel and surface func-
tionalization are two approaches that have shown promising relevance in this respect.
Similar to the first procedure, adding a precursor salt to the polymer solution before elec-
trospinning results in uniform surface decorating of the nanofibers by the nanoparticles,
followed by hydrothermal treatment of the produced nanocomposite nanofibers [161]. An
efficient method to produce polymeric nanofibers embellished with metal nanoparticles is
surface functionalization by proteins and other substances, such as polydopamine. The
functional polymers, such as poly(acrylonitrile-co-glycidyl methacrylate) (PANGMA), can
easily link with inexpensive serum albumin proteins such as bovine serum albumin (BSA),
for example, by an amine-epoxy process. When submerged in a metal-containing aqueous
dispersion, this biofunctionalized nanofiber system can subsequently collect noble metal
nanoparticles via a metal-protein interaction. In this circumstance, the protein changes
shape from an alpha helix to a beta sheet (Figure 9a), exposing functional groups that can
grab biomolecules, metal nanoparticles, etc. (Figure 9b) [160]. Thus, as seen in Figure 9c,
the final nanocomposite nanofibers have nanoparticles evenly coated on their surface. Poly-
dopamine created by the self-polymerization of dopamine in an alkaline environment has
also provided intriguing prospects for surface functionalization (Figure 9d) [162]. This work
was motivated by mussel adhesion onto various surfaces in nature. Through the formation
of metal nanoparticles such as Ag, this coating material can diminish metal cations. The
long-lasting antibacterial action of the as-synthesized Ag nanoparticles is made possible by
their insensitivity to oxidation. The problematic control of coating thickness and surface
shape is one of the main problems with polydopamine-based coatings. This flaw prevents
the Ag nanoparticles from being distributed uniformly because it causes the surface to
become rougher due to the unwanted aggregation of polydopamine in random places [163].
In order to overcome this issue, nanofibers made of poly(dopamine methacrylamide-co-
methyl methacrylate), a copolymer inspired by mussels, were electrospun. As a result, Ag
nanoparticles can be formed on the surface of these catalytic nanofibers [13].
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Figure 9. (a) ATR-FTIR spectra for the BSA functionalized PANGMA nanofibers in different hydration
states (of dry and wet represented by the solid and dashed lines, respectively). (b) Schematic illus-
tration of the capturing process of the metal nanoparticle by the swollen functionalized nanofibers).
(c) SEM image shows uniform distribution of metal nanoparticles across the nanofibers. Repro-
duced with permission [160]. Copyright 2012, Wiley-VCH. (d) Camera image of a mussel stuck onto
a polymeric surface along with a simple representation of the amine and catechol groups of the
dopamine building block for surface coating. Reproduced with permission [164]. Copyright 2007,
Science AAAS.

The silver loaded nanofiber network has shown notable characteristics in wound heal-
ing applications (Figures 7 and 8). There are increasing studies on using AgNPs in wound
dressings, and all outcomes promoting wound healing are positive [165–167]. C. He et al.
prepared antibacterial wound dressings whose outermost layer was hydrophobic, which
inhibited external microbe adhesion and invasion. Invading microorganisms could be
hampered by a specially engineered intermediate region with a high concentration of
AgNPs. The polycaprolactone and gelatin hydrophilic surface was employed as the inner
layer adhered to the wound bed. The antibacterial activity of the nanofibers containing
10% silver nanoparticles was much higher than that of the dressings containing 1% and 5%
silver nanoparticles (Figure 10a). Furthermore, the biocompatibility was far better than that
of commercial silver sulfadiazine. This layer also worked as a screen to prevent cytotoxicity
from the abundant discharge of AgNPs in the wound’s immediate vicinity. According to
the results, the wound dressing’s sandwich structure provides good antibacterial activity
and cytocompatibility. The findings pave the path for developing more clinically-relevant
wound closure and healing dressings (Figure 10b) [168] AgNPs were evenly distributed
throughout the fibers. The XRD patterns of AgNPs and PCL/Gel-AgNPs are depicted in
Figure 11. The characteristic peaks at approximately 38◦ and 44◦ corresponded to the (1 1 1)
and (2 0 0) planes of AgNPs, respectively, proving that AgNPs were successfully doped.

Dalong Li et al. used a combination of sol-gel processing and electrospinning to
create Ag-doped mesoporous silica fibers. The main precursors used to make composite
fibers were tetraethylorthosilicate, polyvinyl alcohol, and silver nitrate. Water-soluble
PVA dispersed silver nitrate better than other polymers used in the preparation of silica
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composite fiber. After that, the electrospun fibers were heat treated to produce AgNPs via
AgNO3 reduction and pyrolyze the PVA component. XPS was performed on the composite
nanofiber and pure silica fiber to further investigate the chemical states of the Ag species
in the composite nanofiber. Compared to the XPS spectrum of pure silica fiber, composite
nanofiber exhibited new peaks attributed to Ag3d (Figure 12A). The typical fully-scanned
spectra revealed the presence of Ag, Si, O, and C in the AgNPs/silica composite nanofiber.
The C1 peak binding energy of 284.6 eV is used as the calibration standard. The two
peaks at binding energies of 368.5 and 374.5 eV, assigned to Ag0 3d5/2 and Ag0 3d3/2,
respectively, in the high-resolution XPS spectra (Figure 12B) demonstrate the metallic nature
of AgNPs [169].
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Suxia Ren et al. created nanofibers with high activity in surface-enhanced Raman
scattering (SERS) by electrospinning precursor suspensions of polyacrylonitrile, silver
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nanoparticles, silicon nanoparticles, and cellulose nanocrystals. Figure 13 displays the FTIR
spectra of the electrospun nanostructures. For pure PAN nanofibers, separate peaks at 2244,
1451, and 1096 cm−1 correlated with, respectively, the skeletal vibration of the PAN chemical
chain, CH wagging vibration, CN stretching vibration, and CH2 bending vibration. The
O-H bending of adsorbed water is thought to be responsible for the peaks of about 1658
cm−1. The aliphatic CH group vibrations of CH2 are attributed to the peaks at 1340 and
1380. The spectra of PAN/CNC/Ag and PAN/CNC/Ag/Si nanofibers, when compared
to those of pure PAN, exhibit new peaks at 1034 cm−1 and 824 cm−1, respectively, which
correspond to the characteristic absorption bands O-H of CNCs and C-H rock, respectively,
indicating the presence of CNC in the electrospun nanofibers. It is possible that there were
no chemical connections or interactions between the -CN- groups in the PAN and AgNPs
because there was no detectable -CN- bond vibration shift [170].

M.R. EI-Aassar et al. constructed a nanofiber scaffold composed of naturally bioab-
sorbable components, such as hyaluronic and polygalacturonic acid, and embedded with
silver nanoparticles for use in vivo. In the interim, silver nanoparticles in this formulation
will function as an antioxidant, as antibacterial, and as anti-inflammatory, protecting cells
from the harmful effects of high ROS and accelerating wound healing. The Ag nanopar-
ticle of the nanofiber membrane exhibited strong antibacterial zone inhibition efficacy
against Gram (+) and Gram (−) bacteria. The increased hydrophilicity and strain activi-
ties were the result of the hyaluronic acid component. In addition, the in vivo study on
albino rats demonstrated that wound epithelization and collagen deposition were at their
highest 14 days following nanofiber delivery. Therefore, it is essential to provide effective
nanofibers to heal infected wounds rapidly [171].
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J. Shao et al. produced nanofiber membranes comprised of chitosan and silver nanopar-
ticles. In vitro, membranes containing AgNP exhibited antibacterial activities commen-
surate with the silver release profile. The fibrous membranes with different amounts of
AgNPs were fabricated by electrospinning, and SEM and TEM characterized their mor-
phologies. SEM images (Figure 14A–C) showed a uniform fibrous structure for all groups
with a similar average fiber diameter of ~200 nm (p > 0.05). The TEM image (Figure 14D)
demonstrated that the electron-dense AgNPs were formed within the fibers. Figure 14E
shows the morphological changes after immersion in PBS or FBS. The membranes kept
their fibrous structure after immersion in PBS, while more and more white spots appeared
on the fibers with the increase in silver amount and immersion time. Further identification
using EDS revealed that the white spots had a high amount of silver and chloride. For the
FBS-immersed membranes, a thick layer of protein was observed on the fibrous membranes
since day 4. The study utilized an intra-operative contamination model using rat subcu-
taneous tissue to further evaluate antibacterial efficacy in vivo. The capacity for wound
healing was examined using a rat excisional wound splinting model. Researcher find-
ings indicated that AgNP inclusion can improve the antibacterial activity of biomaterials
without impairing wound healing.
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H.S. Sofi et al. developed wound dressing made of polyurethane incorporated laven-
der oil and AgNP. Compositional nanofiber dressings offer much potential for use as
multipurpose wound dressings since they can both protect from external irritants and
promote tissue regeneration. Through diffusion and penetration, lavender oil lowered
the stiffness of polyurethane fibers and changed their hydrophobicity. These composite
nanofibers dramatically improved the growth and proliferation of CEFs. Studies on cell
fixation have shown that fibroblasts grew on fiber mats containing lavender oil and AgNPs
in their natural structure [172].

N. Eghbalifam et al. aimed to fabricate a Gum Arabic-based electrospun nanofiber
membrane with the ideal porosity, water absorption, and water vapor permeability. It was
demonstrated that mat has antibacterial activity against E. coli, Candida albicans, S. aureus,
and P. aeruginosa. AgNPs nanofibers were coated with PCL using a stable and electro-
spinnable solution by combining Gum Arabic and PVA. The PCL-coated mat exhibited a
high-water absorption capacity and was water resistant. Gram (+) and Gram (−) bacteria
and a fungal strain were all suppressed from growing on the composite nanofiber [173].

B. Salesa et al. prepared Carbon nanofibers that are one-dimensional nanomaterials
with superior physical and broad-spectrum antibacterial characteristics resistant to an-
timicrobials. AgNPs are already used in various industrial applications. In HaCaT cells,
AgNPs and carbon nanofibers were tested for cytotoxicity, proliferation, and gene expres-
sion. AgNPs are smaller and have a completely different morphology than filamentous
carbon nanofibers. From pH 5–12, AgNPs displayed a more substantial negative zeta
potential than CNFs and equal time-dependent cytotoxicity. These findings hold great
potential since they allow AgNPs to be used in various tissue engineering and wound
healing applications [174].

G. Sandri et al. aimed to create an electrospun chitosan and glycosaminoglycan
membrane incorporated with AgNPs to control bacterial infections during wound healing.
The heating method crosslinked the scaffolds to create water-resistant structures, which
may also be termed a sterilization process. The systems’ preliminary enzymatic breakdown
was tested using lysozyme, which is generally secreted by white cells (macrophages and
neutrophils during the inflammatory phase). Nanofibers with a regular uniform shape, a
smooth surface, and AgNPs implanted into the polymeric mat creating the fibers were all
characteristics of AgNP scaffolds. Antimicrobial activity, primarily against S. aureus, was
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a feature of these systems. The performance of the membrane makes it a viable tool for
treating persistent skin lesions [175].

M. Mohseni et al. prepared PCL and PVA nanofibers loaded with various quantities of
silver sulfadiazine (SSD) and silver nanoparticles. Wound dressings have sufficient flexibil-
ity and hydrophilicity, resulting in satisfactory wound closure adhesion. Silver sulfadiazine
is one of the most common antibacterial medicines in wound healing. Antibacterial mats
are resistant to S. aureus, and increasing the concentration of silver sulfadiazine or AgNPs
improves action. The flexibility and hydrophilicity of PCL and PVA nanofibers allowed
the wound closure to be moistened with wound fluid loaded with cytokines and growth
factors. On the other hand, SSD was more hazardous to fibroblast cells than AgNPs [176].

Z.W. Li et al. synthesized polyvinyl alcohol, Chitosan oligosaccharides, and AgNP
nanofibers to stimulate HSF adhesion, proliferation, and cell cycle transition from the
quiescent G0/G1 phase to the active S DNA synthesis and the active G2/M phase of divi-
sion. Using RT-PCR, immunofluorescent labelling, and Western blot analysis, investigators
demonstrated that the nanofibers upregulated molecules implicated in the TGF-β1/Smad
signaling pathway, hence boosting collagen synthesis and improving wound healing by
upregulating TGF-β1 secretion and activating the TGF-β1/Smad signaling pathway during
the early stages of wound healing, boosting the adhesion and proliferation of fibroblasts.
This occurrence is followed by an acceleration in the proliferation and differentiation of
keratinocytes, an increase in the synthesis of collagen and the extracellular matrix, the
facilitation of granulation tissue development and angiogenesis, and finally, the promotion
of re-epithelialization. This research offers a significant step forward in creating novel,
enhanced drug delivery vehicles for therapeutic wound-healing medicines [177].

M. Mostafa et al. used an electrospinning approach to manufacture AgNPs loaded in
polystyrene nanofiber scaffold. In biomedical fields, this can be used as a potent bioactive
substance. Furthermore, AgNPs-polystyrene nanofibers have improved their antibacterial
effect against both S. aureus and E. coli. Various electrospinning settings were investigated,
with this nanofiber proving the most effective. DMF can be used as a reducing agent to
make Ag nanoparticles with a diameter of 21–40 nm [178].

E. Esmaeili et al. designed nanofibrous scaffolds from polyurethane and cellulose
acetate. Due to their significant antibacterial action, reduced graphene oxide/silver was
also employed in the mats. By coming into direct contact with bacteria, scaffolds could
inhibit them. Curcumin has the most significant impact on wound healing and can speed
up the healing of artificial wounds. Curcumin and graphene oxide/silver nanocomposites
can be combined to create ultrafine, bead-free nanofibers with a porous structure, making
them suitable for biomedical applications. On direct contact with microbial cells, their
antibacterial activities result in a 100% inactivation rate for Pseudomonas bacteria and a
95% inactivation rate for S. aureus bacteria. In this study, in vivo histopathological studies
revealed that adding curcumin can considerably improve wound healing and epidermal
layer regeneration [179].

H. Bardania et al. synthesized silver nanoparticles biogenically produced using Teu-
crium polium extract and implanted in PLA and PEG mat to offer an absorbable wound
dressing with antibacterial and antioxidant properties. Antibacterial tests revealed that
S. aureus and P. aeruginosa were sensitive to biosynthesized AgNPs at different concen-
trations and had a good safety profile in human macrophage cells. This green synthesis
method has proven to be a quick, cost-effective, and efficient way to make AgNPs without
needing external stabilizers or reducing agents [180].

S.M. Hong et al. developed antibacterial polyurethane nanofiber textiles with Ag
nanoparticles based on polycarbonate diol/isosorbide. The materials were pliable, with
breaking strains ranging from 355 percent to 950 percent under a tensile stress of 7.28 to
23.1 MPa. Cell proliferation was performed using the HaCaT cell line, which exhibited
cytocompatibility and no toxicity. Researchers also tested antimicrobial capabilities against
S. aureus and methicillin-resistant MRSA. Adding AgNPs to the polyurethane nanofiber
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membrane enhances physicochemical parameters such as mechanical, thermal, and biologi-
cal properties [181].

M.A. Mohamady et al. aimed to create core-shell electrospun membranes that could
promote cell proliferation and act as antibacterial agents. A polycaprolactone shell mem-
brane was used to load phenytoin. Silver-chitosan nanoparticles were placed in a PVA
core layer as biocidal agents. Researchers employed coaxial techniques to create dual-
drug delivery systems suitable for the model pharmaceuticals. The use of phenytoin to
improve the cytocompatibility of scaffolds was proposed. In the core, biocides such as
CS-coated silver nanoparticles were used as biocides, while the shell contained phenytoin,
a healing-promoting substance [182].

R. Liu et al. designed a novel hydrogel dressing created by crosslinking cellulose
fibers with gelatin and aminated AgNPs (Ag-NH2 NPs). The use of multiple components
significantly enhanced the mechanical, self-recovery, hemostatic (gelation), antibacterial,
and fluid balancing capabilities of the wound bed. In vitro and in vivo assessment of the
mat wound healing model revealed excellent biocompatibility and healing performance
(90 percent healed and 83.3 percent survival after 14 days) [183].

M. Hu et al. synthesized electrospun nanofibers of ZnO, Ag, PVP, and PCL. ZnONPs
had an average diameter of nanofibers of 40.07 ± 9.70 nm and AgNPs’ diameter of
37.46 ± 12.02 nm, respectively. The antibacterial effects of the single metal material em-
bedded scaffold were far superior to those of the single metal material-loaded nanofibers
against S. aureus and E. coli. Adding ZnO and Ag to these nanofibers lowered their cytotox-
icity against fibroblasts [184].

J.P. Ye et al. created soluble keratin from wool using keratinase and raised the molecu-
lar weight of the keratin to 120 kDa using TGase. In situ bio-reduction was used to create
Ag nanoparticles on nanofibers using the keratinase stated earlier as the reducing agent.
High molecular weight keratin had improved mechanical and hydrophilic qualities when
co-electrospun with Poly(3-hydroxybutyrate-co-3-hydroxy valerate). E. coli and S. aureus
were utilized to test the antibacterial effectiveness. The researcher demonstrated that they
both possessed potent antibacterial properties. The mats dramatically accelerated the
healing of skin wounds [185].

M.K. Ahmed et al. designed the doped antimicrobial silver nanoparticles incorporated
into nanofibrous polymeric scaffolds. Ag concentration in the scaffolds’ magnetite phase
increased the human melanocyte survival and antibacterial activity against E. coli and
S. aureus, preventing dermal and epidermal abnormalities on day 10. In rats, Ag exposure
accelerated wound healing. Large pores in this porous structure capture nanoparticles,
possibly increasing the material’s properties. Morphological studies show that Ag reduces
nanoparticle agglomerates. All compositions were highly biocompatible when tested
against a human skin melanocyte, with viability rising as Ag ions in their magnetite phase
increased [186].

C. Tonda-Turo et al. prepared antibacterial medication gentamicin sulfate or silver
nanoparticles placed into gelatin nanofibrous matrices in this study to elicit a significant
antibacterial activity against Gram (+) and Gram (−) microorganisms. Only water was
employed as a solvent throughout the process, resulting in gelatin-crosslinked nanofibers
doped with antibacterial compounds in an environmentally and cell-friendly approach to
green electrospinning. Because of their dual qualities of tissue development support and
antibacterial capabilities, the discovered matrices are potential membranes for use in wound
healing. Biomolecules (e.g., growth factors) capable of aiding the regeneration process
will be loaded into them with a minimum risk of denaturation, the green electrospun
approach [187].

M. Bagheri et al. designed silver and zinc oxide nanoparticles embedded in chitosan
nanofibers. Nanocomposites’ antibacterial and antioxidant activities against E. coli, S.
aureus, and P. aeruginosa were discovered. After 24 h of treatment, the scratches signif-
icantly improved. According to the impact of coagulation time, the nano-scaffold also
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exhibited good blood compatibility. In the wound-healing experiment, there was also a lot
of movement and growth of fibroblasts at the wound edge [188].

A.M. Abdel Mohsen et al. synthesized hyaluronan/silver bio-nano composite textiles
are used to create a novel material in which Ag-NPs are generated in situ. In-situ produced
hyaluronan and AgNPs were used to prepare fibers for the first time. Fibers were tested
against E. coli K12 and were found to have significant bactericidal activity. The fibers have
no cytotoxicity when tested against a HaCaT. The in vivo study revealed that the produced
fibers have a high healing efficacy and significantly speed up the healing process.

R. Ashraf et al. investigated a unique technique for fabricating nanofiber scaffolds
made of cellulose assimilated with TiO2 and AgNPs. The biocompatibility and bioactivity
of the produced nanofibers were determined using cell viability experiments using chicken
embryo fibroblasts. Model microorganisms were used to evaluate the antibacterial charac-
teristics of these scaffolds (e.g., E. coli and S. aureus). Electrospun nanofibers are an effective
scaffold for cell proliferation. The antibacterial ability of the scaffold was conferred by
in situ adsorption of AgNPs, as evidenced by disc diffusion techniques’ suppression of
bacterial strains [189].

A.J. Hassiba et al. synthesized a double-layered nanocomposite nanofibrous mat
made of an upper layer of PVA and chitosan loaded with AgNPs, and a bottom layer
of chlorhexidine was created by electrospinning. According to thermal measurements,
the PVP-drug-loaded layer showed maximum thermal stability, which justifies future
investigation for various wound-healing applications. The in vitro study obtained tests
against E. coli, S. aureus, C. albicans, and P. aeruginosa. In this work, researchers created
two brand-new, dual-purpose nanofiber wound dressings. The identical system used two
electrospun layers loaded with the same medication in both dressing designs. A barrier
against microbial invasion might infect the wound into the top layer. Its ability to combat
microbes results from AgNPs’ antibacterial activity [190].

Q.H. Tran et al. fabricated PU/Ag nanocomposite dressings that provide broad-
spectrum antimicrobial efficacy against microorganisms that are easy to use and offer a
warm, moist healing environment that protects and cleanses a wound while promoting the
body’s natural healing process [191].

S. Amer et al. developed biocompatible electrospun binary nanofiber mats that were
created by combining PVA and gelatin. The silver nanoparticles were added to the PVA and
gelatin mixture. Before being used as wound dressings, both types of mats were studied
using SEM evaluation. The researchers studied both kinds of wound healing, and both
enhanced the microscopic quality of the healed skin, though not at a faster rate. Both
membranes with and without AgNPs successfully combated microbial invasion into the
wound bed. Both mats increased the quality of the restored skin [192].

D. Yan et al. was the first attempt at creating optimal ocular bandages with the
ability to promote cell growth while also being antibacterial. It has the potential to rescue
patients from the problems caused by the repeated application of antibiotics to the skin
to prevent infections. Fungal keratitis is one of the most common causes of blindness,
and typical medical treatment is ineffective. In this study, investigators produced surface-
modified PLA electrospun fibers with AgNPs and cellulose nanofibrils for cell proliferation
and antimicrobial application. The scaffold had a surface modification that has excellent
biocompatibility and antibacterial characteristics. The application of membrane to their
surface wettability, which caused the value of WCA to drop substantially from 130.4 to 0◦,
increased cell proliferation, which was necessary for wound healing [193].

G. Rath et al. reported silver nanoparticle-composite collagen nanofibers, and the
histological investigation revealed increased collagen formation, re-epithelization, and
better wound contraction. These findings were attributed to silver nanoparticles’ anti-
inflammatory and aseptic properties, resulting in less reactive cell infiltration and encourag-
ing fibrous connective tissue proliferation and successive keratin layer regeneration [194].
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Table 4. Incorporation of silver nanoparticles into electrospun nanofibers for wound healing.

S. No.
AgNPs

with Polymers Solvents
Voltage, Distance, Flow Rate

Diameter (nm) Antibacterial Efficiency
(ZOI (mm), MIC or %)

Bio-
Compatability Ref.

(kV) (cm) (mL/h)

1 PLA
Methylene
chloride,

DMF
14 10 3 1.44 ± 0.32 µm S. aureus—6.5 mm

P. aeruginosa—9.3 mm
CjECs
CECs [85]

2 PCL-Gelatin Acetone 15 15 1 830–920 E. coli—1.53 ± 0.32 mm HDF [168]

3 Polyurethane THF 15 15 0.5 200–2000 E. coli—16.2 ± 0.8 mm
S. aureus—8.7 ± 1.2 mm CEFs [172]

4 Gum Arabic-
PVA-PCL

DMF
DI-water 18 15 0.5 150–250 E. coli—2.5 mm

S. aureus—2.9 mm MEF [173]

5 PCL-PVA
CHCl3,

CH3OH,
H2O

27 - 3 - S. aureus—90 mm HDF [176]

6 Polystyrene DMF 2–3 - 1–3 96–471 E. coli—11 mm
S. aureus—4.0 mm - [178]

7 Polyurethane HFP 17 20 1.5 500 S. aureus—20.41 mm
MRSA—18.24 mm HaCaT [181]

8 PVA-PCL
CHCl3 ,

CH3OH,
Water

23 15 0.02 70 nm E. coli—14 mm
S. aureus—18 mm NIH3T3 [182]

9 PCL water 18 16 1 0.38 µm S. aureus—79.2 ± 4.5 %
E. coli—80.1 ± 4.9% HFB4 [186]

10 PVA-TPU Water:
DMF 25 10 1 230–280 S. aureus—50 µg/mL

E. coli—25 µg/ml - [188]

11 Chitosan-
PEO Acetone 20 14 - 100–300 E. coli—20 ± 2 nm HDF [123]

12 PCL-Cellulose
acetate

Acetone:
DCM 22 16 1 2–6.3 µm S. aureus—18 mm

P. aeruginosa—10 mm HOB, HFB4 [190]

13 Collagen HFIP 18 10 25
mL/min 300–700 S. aureus—3.2 cm

P. aeruginosa—2.3 cm
No toxic on

rat skin [194]

14 PLA-PVP DCM 20–30 15 2 500–650 E. coli—96.7 %
S. aureus—96.9 % – [195]

15 Cellulose
acetate-PVAc

Acetone
water 25 10 0.8 1.33 ± 0.63µm S. aureus—9.2 ± 1.6 mm

E. coli—8.2 ± 0.9 mm CEFs [196]

Table 5. Clinical transformation status of some silver nanoparticles-based products.

S. No. Study Title (ClinicalTrial Identifier ID) Status of Clinical Trails

1 Topical Application of Silver Nanoparticles and
Oral Pathogens in Ill Patients (NCT02761525) Completed

2 Topical Silver Nanoparticles for Microbial
Activity (NCT03752424) Unknown

3 Silver Nanoparticles in Multidrug-Resistant
Bacteria (NCT04431440) Completed

4 Efficacy of Silver Nanoparticle Gel Versus a
Common Antibacterial Hand Gel (NCT00659204) Unknown

5
P11-4 and Nanosilver Fluoride Varnish in
Treatment of White Spot Carious Lesions
(NCT04929509)

Recruiting

6
Evaluation of Diabetic Foot Wound Healing
Using Hydrogel/ Nano Silver-based Dressing vs.
Traditional Dressing (NCT04834245)

Completed

11. Conclusions Challenges and Perspective

Wound healing with nanofibrous platforms loaded with silver nanoparticles has been
studied biologically in vivo and in vitro as well as mechanically in this review. Because of
their unique physicochemical and biological characteristics, AgNPs have drawn significant



Polymers 2022, 14, 3994 25 of 34

attention from researchers working on applications for wound healing. Ag nanoparticle-
loaded electrospun nanofiber scaffolds also showed exceptional antibacterial activity, high
porosity, non-toxicity, and biodegradability. Due to their hydrophilic qualities and pro-
longed release pattern, these nanofiber scaffolds have become more and more well-liked
on a global scale. By promoting and hastening the healing process, they contribute sig-
nificantly to wound dressing. Additionally, silver nanoparticles and other antibacterial
substances together showed synergistic antibacterial properties. The effectiveness of silver
nanoparticles in wound healing and skin regeneration has been established in numerous
papers from various researchers. Without a doubt, additional research will produce scaf-
folds with unique properties beneficial for treating chronic wounds. However, since it
avoids hazardous chemicals, manufacturing silver nanoparticles using green chemistry is
an intelligent strategy. Silver nanoparticles can be produced through green chemistry and
used for wound dressings to make them non-toxic and compatible with the body. Much
research has been conducted on silver nanoparticles to improve the antibacterial capabil-
ity of medical products such as wound dressings. Nonwoven mats made of electrospun
nanofibers offer a great deal of potential for use in wound healing since they structurally
resemble native extracellular matrix.

Various biomedical applications, including leading-edge research aimed at healing
chronic diabetic wounds, have investigated potential methods of nanotechnology-based
medication delivery. In addition to their nanometric size, AgNPs were discovered to have
possible use in treating diabetic wounds to lessen the likelihood of limb amputation. Their
excellent antibacterial activity, anti-inflammatory response, and non-toxic nature make
them an ideal and suitable alternative to other nanomaterials for wound dressing. AgNPs’
advantageous physicochemical characteristics support antibacterial effectiveness, and their
surface charge also enables surface functionalization by coordinating particular ligands
on the surface to try target-specific delivery. Consequential research has demonstrated
the biocompatible AgNPs’ promise for treating diabetic wounds effectively, and a handful
of the compounds have already been approved for commercialization. Several might be
available soon with improved efficacy as an optimal dressing for successful wound healing
in diabetes patients, according to a concurrent clinical study in human subjects.

Additionally, those investigators found a combination of AgNPs and biopolymers
to be more effective, and the inclusion of growth factors or phytochemicals may hasten
wound healing by correcting any tissue damage. The exponential rise in research papers
on green synthesis, when considering the AgNPs synthesis methods, is a drawback since
it demonstrates the value and interest of plant materials in the production process. The
synthesis rate of AgNPs is increased by using this economical and ecologically beneficial
technique. However, morphological traits play a significant role in how effective AgNPs are.
For the AgNPs to have the desired features, such as superior wound healing properties, it
is necessary to standardize the optimization of the plant extracts and other reactive product
characteristics.

Additional research is required to link the physiological attributes of AgNPs with
the physiological milieu in which they act. Before widespread usage in wound care prod-
ucts, careful consideration of their toxicity must be made because silver nanoparticles
are incredibly active relative to their bulk. Extensive research into short- and long-term
toxicity studies should be necessary to ascertain the underlying mechanism, and it should
take thorough in vivo investigations into consideration as one of the future possibilities in
developing AgNPs for wound healing. Additionally, special care must be given to the ideal
AgNP dosage in formulations and suitable pairings to achieve a superior response in the
diabetic wound. In recent years, nanotechnology has enabled the fabrication of various
forms of AgNPs. However, AgNPs’ efficacy is hindered by their propensity for aggregation;
surface passivator reagents are usually required to avoid accumulation. Further, silver
oxidation may produce reactive oxygen species and radicals that can harm intracellular
micro-organelles (such as mitochondria, ribosomes, and vacuoles) and macromolecules
such as DNA, protein, and lipids. AgNPs are biocompatible but can occasionally result in
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argyria, according to research on how risk-free they are for people with DFU infections.
However, most current studies on electrospun nanofibers throughout wound healing have
been limited to pharmacodynamic assessments. As a result, the precise mechanism under-
lying nanofiber-assisted wound healing is unknown. Despite their increasing applications,
comprehensive biological information still requires additional research due to several con-
troversial results published on their safety. Researchers used chemical reduction methods
to create a stable and colloidal dispersion of AgNPs using borohydride and hydrazine
as reducing agents. Whereas these reduce the agent’s hyperactivity, they are toxic to the
environment, limiting their applications.
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