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Abstract: Leaded fuel used by piston-engine aircraft is the largest source of airborne lead emissions
in the United States. Previous studies have found higher blood lead levels in children living near
airports where leaded aviation fuel is used. However, little is known about the health effects on
adults. This study is the first to examine the association between exposure to aircraft operations that
use leaded aviation fuel and adult cardiovascular mortality. We estimated the association between
annual piston-engine air traffic and cardiovascular mortality among adults age 65 and older near
40 North Carolina airports during 2000 to 2017. We used several strategies to minimize the potential
for bias due to omitted variables and confounding from other health hazards at airports, including
coarsened exact matching, location-specific intercepts, and adjustment for jet-engine and other air
traffic that does not use leaded fuel. Our findings are mixed but suggestive of adverse effects.
We found higher rates of cardiovascular mortality within a few kilometers downwind of single-
and multi-runway airports, though these results are not always statistically significant. We also
found significantly higher cardiovascular mortality rates within a few kilometers and downwind
of single-runway airports in years with more piston-engine air traffic. We did not consistently find
a statistically significant association between cardiovascular mortality rates and piston-engine air
traffic near multi-runway airports, where there was greater uncertainty in our measure of the distance
between populations and aviation exposures. These results suggest that (i) reducing lead emissions
from aviation could yield health benefits for adults, and (ii) more refined data are needed to obtain
more precise estimates of these benefits. Subject Areas: Toxic Substances, Health, Epidemiology, Air
Pollution, Ambient Air Quality.

Keywords: lead exposure; aviation fuel; air pollution; mortality; cardiovascular; elderly; epidemiology

JEL Classification: Q53; I18

1. Introduction

Lead is a neurotoxin that damages multiple systems in the body. While neurodevelop-
mental effects in children are well documented, adults are also adversely affected by lead
exposure [1]. Of particular concern is the increased risk of cardiovascular morbidity and
mortality in adults [1,2].

Piston-engine aircraft operations using leaded fuel (termed aviation gasoline, or avgas)
currently represent the largest source of airborne lead in the U.S., contributing 70% of lead
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emissions [3]. While jet-engine aircraft (which do not use leaded fuel) dominate commercial
air traffic, smaller piston-engine aircraft are widely used for non-commercial purposes
that fall under the heading of general aviation, including commuting, recreation, flight
instruction, and agriculture. There are roughly 13,000 airports nationwide, most of which
include piston-engine airplane traffic [4].

The United States Environmental Protection Agency (EPA) estimates that over 5 million
people live in census blocks located within 500 m of a runway at an airport with piston-
engine aircraft [5]. Previous studies have found an association between exposure to leaded
aviation fuel and children’s blood lead levels (BLLs) [6-8]. There is also a growing literature
examining the association between lead exposure and adult cardiovascular mortality [9-13].
However, to our knowledge, no studies have examined how exposure to leaded aviation
fuel emissions affects cardiovascular mortality.

We addressed this gap in the literature by estimating the effects of proximity to airports
and of year-to-year changes in piston-engine and general aviation aircraft operations on
cardiovascular mortality rates among older adults from 2000 to 2017 in North Carolina. Our
study used a quasi-experimental research design that examined the association between
piston-engine operations and annual cardiovascular mortality rates among individuals
age 65 and older living in census block groups closer to airports (the “treated” group) and
farther away from airports (the “control” group). We used coarsened exact matching [14]
to ensure that our treated and control groups were similar in terms of observable socioeco-
nomic characteristics that could affect cardiovascular mortality. We addressed the potential
for confounding of leaded fuel exposure with other health hazards at airports by controlling
for different types of aircraft operations that do not emit lead but do generate noise and
other pollutants such as particulate matter and volatile organic compounds associated
with cardiovascular disease. We included block group intercepts to control for unobserved
determinants of cardiovascular mortality at the neighborhood level that remain stable
over time. We also examined how these associations varied with location downwind and
upwind of airport runways.

Our findings were mixed. We found higher cardiovascular mortality rates within a few
kilometers downwind of single- and multi-runway airports, though these results were not
always statistically significant. We also found higher cardiovascular mortality rates near
single-runway airports in years with more piston-engine air traffic. The magnitude of this
association declined monotonically from 1 km to 3 km from airport runways. This adverse
effect was even more pronounced within 1 km downwind of single-runway airports.
However, we did not find consistent statistically significant adverse effects from changes
in annual piston-engine operations near multi-runway airports, where there was greater
uncertainty about which runways and block groups experienced exposures to leaded fuel
emissions. The statistically significant adverse effects were also limited to Instrument Flight
Rules (IFR) piston-engine flights, which are explicitly tracked by FAA computer systems.
We did not find statistically significant adverse effects for general aviation flights for which
the FAA data were less reliable.

2. Background on Leaded Aviation Gasoline

Tetraethyl lead is added to aviation gasoline to boost octane and prevent engine
knock. Since the 1970s, piston-engine aircraft have predominantly used a grade of avgas
called one hundred octane low lead (100LL) containing 2.12 g of lead per gallon [15].
Alternatives with lower lead levels are not widely available, and unleaded fuels that meet
the octane requirements for high-performance piston-engine aircraft have not yet been
developed [15]. Piston-engine helicopters, which are not the focus of our study, also
use leaded fuel. (Piston-engine helicopters comprise two percent of the approximately
144,000 piston-engine aircraft currently active in the U.S. and account for four percent of
hours flown [15]. The EPA’s limited characterization of lead emissions from helicopters
suggested that they generate lower air lead concentrations than fixed-wing airplanes,
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particularly during takeoff and landing [4]). In contrast, jets, military planes, and other
turbine-engine aircraft use unleaded fuel.

Piston-engine aircraft lead emissions occur throughout the phases of a flight, including
start-up, idling, taxiing, run-up, takeoff, cruising, and landing. Lead emissions are highly
concentrated during ground-based run-up operations conducted prior to takeoff, next to the
end of the runway, making this area the maximum impact site for lead air concentrations
at airports [4]. Releases also occur in maintenance and refueling areas. Piston-engine
airplanes typically take off in the direction of the wind, so the maximum impact site can
change with wind direction, particularly at airports with more than one runway:.

EPA has discussed considerations in the determination of whether aircraft lead emis-
sions endanger public health or welfare but has not yet issued a proposed determination
evaluating endangerment [16]. In 2008 and 2010, EPA established new monitoring require-
ments for sources emitting lead. As a result, state and local agencies were required to
monitor lead at airports where emissions estimates exceeded one ton per year and at a sub-
set of airports that met certain criteria [17]. The three-month average lead concentrations
at the airport monitors ranged from 0.01 to 0.33 pig/m3, with the range in concentrations
largely explained by monitor location relative to the end of the runway. Monitoring values
exceeded the National Ambient Air Quality Standard (NAAQS) for lead of 0.15 ng/ m3
over a rolling three-month average at two of the airports. In 2020, the EPA extrapolated
air quality modeling results to estimate three-month average lead concentrations at U.S.
airports nationwide and found that they ranged from 0.0075 pg/m? to 0.475 ug/m? at
the maximum impact site and up to 500 m downwind [4]. In most cases, values were not
estimated to exceed the NAAQS. However, modeling showed that it is possible for levels to
exceed the NAAQS at the maximum impact site at airports with relatively high numbers of
piston-engine aircraft operations, particularly those with a higher proportion of multi-engine
aircraft. In early 2022, the EPA announced plans to issue a proposed endangerment finding.

3. Literature Review

Previous studies have examined the effect of exposure to aviation fuel on children’s
blood lead levels. A study of six counties in North Carolina found higher BLLs among
children living within 1.5 km of airport boundaries after controlling for other lead exposure
risk factors including socioeconomic status and housing age [6]. A study in Michigan found
higher BLLs among children in census tracts up to 3 km from airports and up to 4 km from
airports for which data on monthly aviation traffic were available from the Federal Aviation
Administration (FAA) [7]. That study also found higher BLLs downwind of airports and
during months with more piston-engine air traffic. In addition, Zahran et al. found a drop
in BLLs corresponding to the grounding of air traffic after the 11 September 2001, terrorist
attacks. A recent report examining an airport in Santa Clara County, California, found
higher children’s BLLs closer to the airport, downwind of the airport, and in months with
more piston-engine air traffic [8]. Wolfe et al. did not conduct an empirical analysis of
children’s BLL but instead used air quality modeling and existing statistical relationships
between air lead concentrations, blood lead levels, and children’s IQ to estimate the social
costs of leaded avgas emissions [18]. They estimated that aircraft-related emissions cause
over USD 1 billion in losses annually due to cognitive damages that reduce children’s
lifetime earnings.

We are aware of only one peer-reviewed study examining occupational exposure to
lead from avgas. A study of aircraft maintenance workers in the Republic of Korea found
significantly higher BLLs among maintenance crews at air bases where leaded avgas was
used compared to air bases where jet fuel was used [19]. Workers” BLLs also increased
with time spent near runways where avgas was used. (A gray literature report on an
investigation of potential lead exposures at an aircraft repair and flight school facility
found that workers’ BLLs did not exceed 10 micrograms per deciliter, the CDC “level of
concern” at that time, nor did air lead levels exceed occupational exposure limits [20]. The
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investigation did not assess whether worker BLLs were significantly higher than those of
the general population of adults).

Empirical studies have also shown increases in air and soil lead levels near airports.
Carr et al.’s study of Santa Monica Airport found air lead concentrations above background
levels within 450 m of the airport boundaries when averaging over a rolling three-month
period and up to 900 m downwind of the airport on individual days [21]. A study of soil
lead concentrations near three Oklahoma airports found elevated lead levels near refueling
stations, runways, taxiways, and at downwind locations [22]. Higher soil lead levels were
also found near the two single-runway airports, possibly because emissions may have been
less dispersed than at the multi-runway airport.

The EPA’s Integrated Science Assessment for Lead found robust evidence of a causal re-
lationship between lead exposure and coronary heart disease and hypertension in adults [1].
Lead affects cardiovascular function through multiple mechanisms, including increased
oxidative stress, endothelial dysfunction, atherosclerosis, and hypertension, as well as
decreased heart rate variability [23]. Several studies have shown a statistically significant
relationship between adult BLLs and cardiovascular mortality in U.S. populations with
mean BLLs < 5 pg/dL, while controlling for other risk factors including age, sex, race, body
mass index, and smoking [9,11-13]. A systematic review and meta-analysis found that lead
exposure was associated with significantly higher relative risks of cardiovascular disease,
coronary heart disease, and stroke [10]. This literature has not examined the sources of lead
exposure, though these cohorts were likely to have been exposed to high levels of ambient
lead in air prior to the phaseout of lead in road gasoline.

The EPA noted that there is uncertainty about the timing, frequency, and duration
of lead exposure causing adverse cardiovascular effects [1]. Because adult BLLs reflect
a combination of recent lead exposure and past exposure due to endogenous release of
lead stored in bone, the studies mentioned above did not disentangle the contributions
of contemporaneous versus past exposures to adverse health effects. Recent evidence,
however, suggests that reductions in adult lead exposure can lead to near-term improve-
ments in cardiovascular outcomes. A national-level study of the 2007 voluntary phaseout
of leaded gasoline in U.S. auto racing found an immediate decline in annual cardiovascular
mortality among those age 65 and older in counties with a racetrack compared to counties
without a racetrack [24]. A clinical trial of chelation therapy to remove lead and other heavy
metals from patients with severe cardiovascular morbidity caused rapid improvements in
cardiovascular function [23].

While we are unaware of existing research on the impact of leaded aviation fuel on
cardiovascular health, several studies have examined the health effects of aviation noise
and other pollutants. A study of 89 major U.S. airports found that hospitalization for car-
diovascular disease was significantly associated with modeled zip-code aircraft noise [25].
Studies in Europe have reported associations between aviation noise and adverse cardio-
vascular effects [26]. A literature review found adverse health effects in occupationally
exposed and residential populations near airports [27]. A study of residential populations
within 10 km of California’s 12 largest airports found a significant contemporaneous in-
crease in respiratory and heart-related hospital admissions among those age 65 and older
from aviation-related carbon monoxide exposure [28]. Elevated concentrations of fine and
ultrafine particulates and other criteria pollutants have been found in residential areas and
downwind areas up to several kilometers from major airports [29-31].

Studies have also examined whether populations living near airports have different
sociodemographic characteristics than those living farther away. EPA’s analysis of popula-
tions living within 500 m of airports nationwide found, on average, a higher proportion of
White residents, a lower proportion of residents of color, and a slightly lower proportion of
children eligible for free or reduced-price lunch near airports compared to the total U.S.
population [5]. However, a study of major airport hubs found larger increases in the propor-
tions of residents of color and rental housing units near these airports over time compared
to trends in their respective metropolitan regions [32]. A working paper on residential
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property markets near airports with piston-engine air traffic found that neighborhoods
immediately downwind had lower median incomes and a higher proportion of Black resi-
dents than other neighborhoods near these airports [33] (That study did not find evidence
that property prices changed in response to information disclosures about lead emissions
at airports, except for temporary effects at two airports where lead levels exceeded the
NAAQS). Thus, previous literature suggests that it is important to address potential confound-
ing from other airport disamenities and to control for neighborhood sociodemographic trends
to identify the effect of leaded aviation fuel on cardiovascular outcomes.

4. Data

We compiled a comprehensive statewide panel dataset of cardiovascular mortality
rates in North Carolina from 2000 to 2017. Like other studies [24,28], we focused on
mortality among individuals 65 and older because most cardiovascular mortality occurs
within this age group. (Individuals age 65 and older comprise 80% of cardiovascular deaths
in the North Carolina 2000-2017 mortality registry). The use of the 18-year time series lends
statistical power to our study by increasing both the sample size and the variation in the
key explanatory variables, relative to examining a shorter time window.

The unit of observation was each 2010 census block group in each year. Mortality
records from the North Carolina State Center for Health Statistics were obtained through
an agreement with the Children’s Environmental Health Initiative (CEHI) at the University
of Notre Dame. The analysis was conducted according to a research protocol approved by
the University of Notre Dame’s Institutional Review Board. We used individual mortality
records from North Carolina from 2000 to 2017 (n = 1,436,194). The mortality records
included the individual’s date of birth, date of death, residential address at the time of
death, sex, race, and cause of death as indicated by ICD-10 codes. CEHI used residential
address to geocode each record and spatially link it with the corresponding 2010 census
block group identifier. We dropped records for individuals not living in North Carolina
at the time of death, records not matched to a census block group, and duplicate records
(134,003 observations). Because this study focused on cardiovascular mortality among
older adults, we further restricted the sample to individuals age 65 or older at the time of
death with a disease of the circulatory system listed as the primary cause of death (ICD-10
codes 100-199) (n = 321,445). (Our use of ICD-10 codes I00-199 is consistent with analyses
of the association between adult BLL and cardiovascular mortality [9,11,12]. The most
common causes of death were ischemic heart diseases (120-125), other forms of heart disease
(I30-152), and cerebrovascular diseases (160-169) (see Table S1, Supplementary Materials)).

The Federal Aviation Administration (FAA) provided data on location and aviation
traffic for North Carolina airports from a variety of sources (Table 1). We obtained the
geographic coordinates of airport runways from FAA Airport Master Records (also called
5010 forms). (FAA shared Airport Master Records for the years 1998 through 2019 at the
authors’ request. We obtained data for 2020 online [34]. Geographic coordinates correspond
to the Airport Reference Point, a calculation based on the airport runway(s) geodetics (Doug
Sage, pers. comm. November 2020)). These data indicated that there were over 400 airports
operating in North Carolina during the study period, in addition to heliports and other
aviation facilities. Airport Master Records also included data on the number of general
aviation single- and multi-engine aircraft based at the airport and the number of operations
(i.e., takeoffs or landings) of different flight user classes, including commercial air traffic
(air carrier and air taxi), general aviation, and military. However, fewer than half of the
airports reported operations data, and those that did report were not required to update the
data annually, so the operations data were not always current at the time of reporting. (Out
of 435 North Carolina airports for which we had 5010 reports, only 178 reported general
aviation operations. At 82 of these airports (46%), reported general aviation operations
were the same in every year, suggesting that they may have never been updated. For
5010 forms from 2010 on, we had data on the 12-month period that the reported operations
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data represented. These data indicated that there was, on average, a two-year lag between
the year of the 5010 form and the year the operations data corresponded to).

Table 1. FAA data sources for general aviation and/or piston-engine operations.

Number of North Engine-Type Incll.uﬁes 1 . l
Data Source Carolina Airports Information Instru.ment F.lg t Rules (IFR) Reporting Ear iest Date
Included Available? and Visual Flight Rules (VFR) Frequency Available
: Operations?
>400 (but only 178 had Annually for some
5010 forms non-missing No Yes (but not reported separately) airports, but often less 1998
operations data) frequent
Traffic Flow M. t .

sr;s o g(‘ﬁmt:“(‘%%%g 72 Yes No (IFR only) Daily 2000
Air Traffic

Activity Data System 11 No Yes Daily 1990
(ATADS)

The FAA Traffic Flow Management System Count (TFMSC) and Air Traffic Activity
Data System (ATADS) databases provide more detailed aviation traffic data but for fewer
airports [35-37]. TEMSC provides daily aircraft operations data by engine type for flights
that use Instrument Flight Rules (IFR) and are recorded in FAA’s computer system. These
data include operations for approximately 2000 of the largest airports in the United States.
TEMSC excludes traffic that flies under Visual Flight Rules (VFR) and some low-altitude
IFR traffic. The TEMSC database includes IFR flight records for 72 North Carolina unique
airport locations (one of which changed Location Identifiers during the study period). The
engine type data provided by TEFMSC were particularly useful for our study because only
piston-engine aircraft use leaded fuel. Studies of children’s blood lead levels and property
values near airports have used TFMSC data [7,8,33].

ATADS includes operations data for approximately 500 US airports with air traffic
control towers. ATADS includes both IFR and VFR operations, making it a more compre-
hensive data source than TEMSC in terms of number of operations. However, it does not
provide the engine type; instead, it categorizes operations by user class (air carrier, air taxi,
general aviation, and military). (Air carrier and air taxi are both types of commercial opera-
tions, with air taxi operations using smaller planes and making shorter trips than air carrier
operations. General aviation is defined as all civilian, non-commercial aviation activity).
The EPA estimated that roughly 70% of general aviation and 20% of air taxi operations
used piston-engine aircraft and, hence, leaded fuel [4]. The ATADS data indicated that VFR
flights comprised close to half of general aviation air traffic at these airports. ATADS only
included 11 North Carolina airports, all of which were also included in TFMSC. The EPA
has used both ATADS and 5010 data to develop estimates of lead emissions and ambient
air concentrations from piston-engine air traffic [4].

For each airport with TEMSC data, we obtained the number of IFR departures and
arrivals at each airport for each calendar year during 2000-2017 by aircraft engine type
(piston, jet, and turbine) and size (small equipment and all larger equipment types). Piston
engine flights were of primary interest in our study because they use leaded aviation
fuel. Jet and turbine aviation traffic do not use leaded fuel but are important to control
for because they generate other pollutants, such as particulate matter, volatile organic
compounds, and noise, which are associated with adverse cardiovascular morbidity and
mortality [27]. Piston-engine aircraft in our sample were almost exclusively categorized
as small equipment; jet aircraft were mostly larger sizes; and other turbine-engine aircraft
were a mix of sizes. (Weight classes in the TFMSC database included heavy, B757, large
jet, large commuter, medium commuter, and small equipment. We pooled the first five
categories together and refer to these equipment types as “large.” For our study area and
period, 99% of piston-engine operations, 1% of jet operations, and 34% of turbine-engine
operations were categorized as small equipment).

Although the data were not as detailed, we were also interested in the number of
general aviation VER operations at each airport in each year. Because most general aviation
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activity uses piston-engine aircraft, and most other flight types do not [4], we used general
aviation operations reported by ATADS and 5010 forms as a proxy for piston-engine VFR
operations. We obtained the number of annual general aviation VFR flights from ATADS
data when available. When ATADS data were unavailable, we used information from the
FAA 5010 forms on general aviation operations. The 5010 forms did not distinguish between
IFR and VER general aviation operations, so we subtracted the number of piston-engine
IFR operations indicated by TFMSC from the total number of general aviation operations
reported by the 5010 forms to derive an estimate of general aviation VFR operations at
these airports. Our data indicated that the number of general aviation IFR operations was
highly correlated with the number of multi-engine piston aircraft based at airports, while
the number of general aviation VFR operations was highly correlated with the number of
single-engine piston aircraft based at airports. We excluded six airports from our analysis
where TEMSC data were available but for which the general aviation VFR operations data
were missing from the 5010 reports.

We linked each 2010 census block group in North Carolina to the closest TFMSC
airport using geodesic distances calculated from each census block centroid to the nearest
runway at the airport. A spatially explicit FAA data layer of the runway footprints was
obtained from ESRI ArcGIS Online [38]. We conducted all GIS analyses using ArcMap
10.8.1. The distances for each block were then aggregated to the block group level by taking a
population-based weighted average. We also recorded the number of runways at each airport.

We focused our analysis on forty North Carolina airports that met the following three
criteria: (1) data on piston-engine IFR flight operations from TEMSC were available; (2) data
on general aviation operations from ATADS or 5010 reports were available; and (3) there
was at least one census block group with a centroid located within 2 km of the airport
runway(s). We focused on airports with populations within 2 km because past empirical
research found effects on children’s BLL to be concentrated within a few kilometers of
airports [6,7]. Twenty-four of the forty airports included in the analysis had a single runway,
and 16 had between two and four runways (Figure 1). Figure 2 shows the trend in annual
average piston-engine IFR operations at single-runway and multi-runway airports during
the study period.
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Figure 2. Annual average piston-engine IFR operations at single-runway and multi-runway airports
in North Carolina, 2000-2017. Note: Annual averages were calculated using CEM weights assuming
a 2 km treatment group (explained in Section 5).

Single-runway Multi-runway

In 2010, out of 6155census block groups in North Carolina, 1764 fell within 10 km of
one of the 40 airports shown in Figure 1. We focused our analysis on these block groups,
which included 92,908, cardiovascular deaths among individuals 65 and over during the
study period. While we hypothesized that any health effects from aviation fuel emissions
are likely to be concentrated within a few kilometers of airport runways based on past
literature [6,7], we included more distant block groups out to 10 km in the analysis as a
less-exposed “control” group. No census block groups in our study were within 4 km of
more than one TFMSC airport, though 1% of block groups were within 10 km of more than
one TFMSC airport.

We incorporated demographic and socioeconomic variables for each block group
into the analysis using data from the 2000 and 2010 Decennial Censuses of Population
and Housing and the American Community Survey (ACS) five-year estimates for each
five-year period from 2006-2010 to 2015-2019 downloaded from the IPUMS National
Historical GIS Information System [39]. (We treated each set of ACS five-year estimates as
representative of the midpoint year. For example, we considered 20062010 estimates as
representative of the year 2008, 2007-2011 estimates as representative of 2009, and so on).
These variables included the total population age 65 and older, the share of the population
that was Black, the share of the population that was Hispanic or Latino, the share of the
housing stock that was vacant, the share of occupied housing that was renter-occupied,
the median household income, the share of the population age 25 and over with a college
degree, and the share of housing stock built before 1950. Pre-1950 housing stock is another
potential source of lead exposure due to the widespread use of leaded paint and plumbing
in older homes. (While the federal bans on residential lead paint and lead service lines
did not go into effect until 1978 and 1986, respectively, these sources are more likely to
be present in pre-1950 houses [40,41]). We also used data on the total population and the
area of each block group to calculate the population density. We linearly interpolated these
variables from 2000 to 2008 to obtain estimates for each year in our study for which we did
not have single-year or five-year estimates. (IPUMS NHGIS provides integrated census data
over time for several variables, allowing us to include 2000 census block group data in our
analysis based on 2010 block group identifiers for all census variables in our analysis except
for median household income, percent of the adult population with a college degree, and the
share of housing stock built pre-1950. For these three variables, we imputed values for the
years 20002007 using the predicted values from regressing each variable on the 2010 value of
the variable, year, and the other census variables in our analysis for 2008-2017).
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We controlled for exposure to stationary industrial sources of lead and other air toxics
using data from EPA’s Risk-Screening Environmental Indicators (RSEI) model [42]. For
each block group and year in our analysis, the RSEI geographic microdata provided lead
air concentrations and aggregate toxicity-weighted concentrations of other pollutants at-
tributable to emissions from stationary industrial sources that report to the Toxics Release
Inventory. (Because TRI reporting requirements changed for lead and several other chemi-
cals in 2001, we did not use RSEI data for the year 2000 and instead made the simplifying
assumption that concentrations in 2000 were equal to concentrations in 2001. The measure
of aggregate toxicity-weighted air concentrations only included chemicals whose reporting
requirements have not changed since 2001). Airport emissions are not included in the
Toxics Release Inventory.

We linked each census block group to non-TFMSC airports and heliports and road-
ways, which could also be sources of lead and other pollutants. Non-TFMSC airport and
heliport locations were represented by FAA Airport Reference Points. Roadway data came
from the US Census Bureau’s TIGER/Line files [43]. We also calculated the distance to the
nearest hospital, since access to medical care can affect whether mortality occurs after a
myocardial infarction or other life-threatening emergency [44,45]. The locations of hospitals
in North Carolina were obtained from NCOneMap [46]. As with our measure of distances
to airports, we calculated distances for each census block and then aggregated up to the
block group level by taking a population-based weighted average. We also constructed a
measure of the percent of each block group exposed to over 55 decibels of transportation
noise from roadways and aviation using the 2016 National Transportation Noise Map [47].
The 2016 National Transportation Noise Map provided modelled estimates of aviation
noise at 18 of the 40 airports in our analysis, representing 69% of block groups in the study
area. We lacked temporal variation in these variables, so their effects were not identified
in our primary models that included block group intercepts, but we included them in a
spatially coarser airport intercept model.

We included two additional county-level control variables that could affect cardiovas-
cular mortality trends over time: the unemployment rate and exposure to heat waves, as
measured by the number of days exceeding 90 degrees Fahrenheit [48,49]. We obtained
annual unemployment rate data from the U.S. Bureau of Labor Statistics” Local Area Unem-
ployment Statistics program [50]. We used data on daily temperatures from the National
Oceanic and Atmospheric Administration’s Climate Data Search to construct our measure
of days exceeding 90 degrees [51]. (Temperature data were missing for seven counties in
North Carolina. We imputed values for these counties by taking the mean across counties
in the same climatic region in North Carolina [52].

Similar to other studies of aircraft emissions (e.g., [7,21,28]), we incorporated wind
direction into the analysis. We obtained data on wind direction during 2000 to 2017 from
Iowa State University’s lowa Environmental Mesonet [53]. The wind direction data were
available for the entire study period at 27 of the 40 airports in our study and were available
for part of the study period at seven more airports. Overall, wind direction data were
available for 90% of block group-year observations in our analysis dataset. Using data on
airport wind direction and the near angle of each block group in relation to the closest
TEMSC airport runway, we calculated variables denoting the percent of days during each
year of the study period during which a block group was downwind and upwind of
the closest airport runway. An examination of these data showed a bimodal pattern of
prevailing winds at many North Carolina airports, with winds blowing from the southwest
for part of the year and then from the northeast for the other part of the year. We constructed
wind variables for each airport for each year of the study period using all available wind
direction observations of at least 5 miles per hour during daytime and evening hours
during which flights typically occur (7 am to 10 pm). We calculated the percent of days
in each year the wind was blowing from each of eight directions defined by dividing the
compass rose into octants. We then calculated the percentages of days in each year during
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which a block group was located upwind or downwind of the airport using the near angle
of the block group in relation to the airport.

5. Empirical Analysis

Our outcome variable was the number of cardiovascular deaths among individuals
age 65 and older in each block group and year. Our key exposure variables were proximity
to the closest TEFMSC airport and the numbers of piston-engine and general aviation flight
operations at the closest TEMSC airport during the corresponding year.

We used a Poisson model to estimate the relationship between mortality and exposure
to aircraft operations, adjusting for several other explanatory variables (see Table 2). The
Poisson regression model and the closely related negative binomial regression model
have been used in previous studies of environmental risk factors and disease incidence
(e.g., [54,55]). The Poisson model is appropriate for count data censored at zero and yields
consistent estimates when used with fixed effects [56,57]. While the negative binomial
regression model is sometimes used as an alternative to the Poisson regression model for
modeling over-dispersed count data, it can yield inconsistent parameter estimates when
used with panel count data [57,58]. Seventeen percent of the block group-year observations
in our study had zero cardiovascular deaths among individuals 65 and older. Ordinary
Least Squares is not appropriate for count data because it can predict negative and non-
integer values. We used the natural log of the total population age 65 and older in each
block group in each year as the offset variable. The inclusion of the population offset
allows us to interpret our model as estimating the cardiovascular mortality rate among the
population of interest.

Table 2. Summary statistics by airport type and distance from airport: CEM sample.

p-Value of p-Value of
Single-Runway Airports Difference in Multi-Runway Airports Difference in
Means Means
0-2 km 2-10 km 0-2 km 2-10 km
Outcome variable
. 0.014 0.015 0.050 0.019 0.018 0.17
65+ CVD mortality rate (0.016) (0.015) (0.018) (0.019)
Exposure variables
Piston-engine IFR operations 2585.00 2593.31 0.94 4485.21 4655.30 0.23
& P (2913.69) (2967.75) (3948.67) (4054.68)
Laree jet/turbine IFR operations 1804.38 1767.71 0.85 41,810.93 53,614.51 0.01
8¢ P (4867.35) (4860.38) (116,254.7) (134,799.3)
Small iet/turbine operations 784.55 764.31 0.68 2450.56 2592.02 0.08
) P (1242.28) (1255.12) (2227.73) (2338.34)
General aviation VER operations 26,709.10 26,691.02 0.98 24,498.62 24,140.24 0.39
P (18,421.99) (18,418.29) (11,889.09) (11,793.64)
Time-variant control variables
65+ population 201.69 220.16 <0.01 170.79 179.69 0.04
(139.96) (184.57) (111.33) (121.73)
. 0.08 0.10 <0.01 0.41 0.37 <0.01
Share Black population ©.1) (0.14) (0.31) 03)
Share Hispanic population 0.06 0.06 0.12 0.08 0.08 0.91
(0.07) (0.07) 0.12) 0.1)
Population densit 0.0004 0.0005 <0.01 0.0007 0.0007 0.01
P y (0.0005) (0.0006) (0.0006) (0.0007)
Percent vacant housin 0.17 0.19 <0.01 0.12 0.14 <0.01
& (0.19) 0.22) (0.08) (0.14)
Percent rental housing 0.27 0.29 0.05 0.50 048 0.03
(0.19) (0.21) (0.24) (0.25)
. 53,311.27 53,870.52 0.56 32,361.02 34,756.85 <0.01
Median income (2010, USD) (19,716.4) (25,083.26) (15,159.38) (17,513.37)
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Table 2. Cont.

p-Value of p-Value of
Single-Runway Airports Difference in Multi-Runway Airports Difference in
Means Means
. 0.33 0.33 0.74 0.17 0.18 0.11
Percent of adults 25+ with college degree ©02) (0.21) (0.14) (014)
. 0.05 0.08 <0.01 0.15 0.14 0.04
Percent pre-1950 housing (0.05) (0.07) (0.13) (0.14)
Davs above 90 degrees 33.74 33.89 0.88 41.49 4141 0.92
4 & (25.08) (24.64) (22.57) (22.95)
Unemplovment rate 6.40 6.39 0.95 6.84 6.85 0.9
ploy (2.54) (2.54) (2.56) (2.55)
. . . . 2.12 2.04 0.58 4.20 8.42 <0.01
Toxicity-weighted lead air concentration (32) (3.5) (7.87) (31.64)
Toxicity-weighted total air concentration of 6563.45 7402.34 0.65 21,018.46 26,613.49 024
chemical releases (38,800.27) (47,412.59) (80,941.03) (145,346.2)
Charlotte Motor Speedway located within 0.01 0.00 <0.01 0.00 0.00 -
4 km x pre-2007 lead phaseout (0.09) (0.05) 0) 0)
Percent days downwind 0.05 0.05 0.17 0.08 0.08 0.20
(0.03) (0.03) (0.03) (0.03)
Percent davs upwind 0.05 0.05 <0.01 0.07 0.07 0.39
ysup (0.03) (0.04) (0.03) (0.04)
Time-invariant variables (only included in airport intercepts models)
. . . 4.70 3.09 <0.01 10.01 5.00 <0.01
Percent > 55 decibel transportation noise (5.41) (2.48) (11.58) (5.82)
. . 0.03 0.11 <0.01 0.06 0.12 <0.01
Heliport located within 2 km (0.18) (0.31) (0.23) (0.32)
. . 0.95 0.86 <0.01 0.96 0.96 0.38
Major road located within 2 km (0.21) (0.35) 02) (0.19)
. s 0.15 0.30 <0.01 0.36 0.39 0.04
Major road located within 500 m (0.35) (0.46) (0.48) (0.49)
. s 0.04 0.12 <0.01 0.10 0.18 <0.01
Hospital located within 2 km 02) (0.32) 03) (0.38)
N 774 3607 980 4526

Means calculated using CEM weights using 2 km treatment group. Standard deviations in parentheses. Percent
downwind days and percent upwind days data only available for 90% of the sample. Percent > 55 decibel
transportation noise data only available for 69% of the sample.

We first estimated a model to examine the association between cardiovascular mortality
and proximity to the closest TFMSC airport. The model includes several control variables
to adjust for other risk factors besides leaded aviation fuel emissions. These include the
sociodemographic variables discussed above, industrial stationary source emissions, and,
for 18 airports in our sample, a time-invariant measure of airport noise. While block
group fixed effects would further control for time-invariant socioeconomic and geographic
determinants of mortality, we did not include them in this model because they are perfectly
collinear with the airport proximity variables, which are of primary interest. Because
we did not use block group fixed effects, we interpreted the coefficients of this model as
correlations rather than causal effects.

The airport proximity model can be written as:

Micqr = exp(ln(p0p65it) + ‘XlDiu + Xictﬁ + Yt + By + Tat) (1)

Here, m;,; represents the number of cardiovascular deaths in the 65 and older popu-
lation in block group i, in county ¢, located closest to TEMSC airport 4, during year t. We
modeled m;.,; as a function of several variables, including the offset term representing the
natural log of the number of people age 65 and older in block group i in year t (pop65;;).
The coefficient on the offset term was constrained to equal one. D, is an indicator variable
denoting that the population-weighted centroid of block group i is within a given distance
of airport a. Due to the uncertainty about the spatial extent of any adverse effects from
aircraft operations on cardiovascular mortality, we estimated the model three separate
times using different distances to reflect possible treatment groups: 0-1, 0-2, and 0-3 km.
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To further examine heterogeneity with respect to distance, we also estimated a single
regression that includes three mutually exclusive distance indicators: 0-1, 1-2, and 2-3 km.
(In this model, D;, in Equation (1) is a vector of mutually exclusive indicators denoting
incremental distance bins).

We included a vector of block group and county control variables (Xj), including
airport noise, proximity to major roads, unemployment, and time-varying block group
socioeconomic characteristics. Year-specific intercepts for each year of the analysis (Y;) were
included to capture statewide trends over time. Separate intercepts denoting the closest
TEMSC airport (B;) captured time-invariant location- and airport-specific factors affecting
mortality rates, albeit at a relatively coarse geographic resolution. We also included a
linear time trend that is specific to each airport, represented by 1,¢, to capture local trends
over the study period. Coefficients to be estimated include a4, the correlation between
airport proximity and mortality, and S, the effects of other characteristics on mortality.
These coefficients represent the percent increase in cardiovascular mortality from a one-unit
change in the corresponding explanatory variable.

To examine the effect of year-to-year changes in air traffic on cardiovascular mortal-
ity near airports, we turned to a different specification that exploits temporal variation
in the number of piston-engine and other flight operations. This model includes block
group-specific intercept terms (B; ) to absorb time-invariant neighborhood characteristics
affecting mortality at a much finer spatial resolution than the airport intercepts included in
the airport proximity model. We did not include the airport noise or proximity variables
in this specification because they are perfectly collinear with the block group intercepts.
The higher resolution block group intercepts absorb at a more local scale all observed and
unobserved time-invariant neighborhood characteristics that are correlated with cardiovas-
cular mortality, including proximity to an airport (D;;) and characteristics of that airport
(By). We interacted airport proximity with different types of annual flight operations,
including piston-engine IFR operations and other general aviation operations that typically
use leaded fuel. Our inclusion of small and large jet- and turbine-engine flights that do not
use leaded fuel helps to control for temporal variation in aviation noise and non-leaded
fuel emissions that could have affected cardiovascular mortality.

The annual flight operations model can be written as:

Micqr = exp(In(pop65;,) + Y1PEiat + v2LGigt + ¥3SMigr + 14GAjat + 01Dy
*PEjq + 62Djg * LGigt + 63Djg  SMigt + 64D % GAjgy )
+ﬁXiCt + Yt + Bl + T,Xt)

We included the numbers of piston-engine (PE;;), large jet or turbine (LGj;), and
small jet or turbine (SM;,;;) IFR aviation operations and the number of general aviation
VER operations (GA;;;) at the closest airport a to block group i during year t. We interacted
these aviation variables with D;,, the airport proximity indicator corresponding to block
group i’s location. These interaction terms are our key explanatory variables representing
possible exposure to leaded aviation fuel emissions near airports, given by D;, * PE;;; and
Dj, * GAjs. Therefore, 61 and d4 are the parameters of primary interest. They represent the
percent change in cardiovascular mortality per piston-engine IFR operation and general
aviation VFR operation at different distances from the airport. Like the airport proximity
model, we estimated the flight operations model using three separate regressions with
different distances in each regression (0-1, 0-2, and 0-3 km). We also estimated a regression
including mutually exclusive distances (0-1, 1-2, and 2-3 km).

We clustered the standard errors by the closest airport in the airport proximity model
and by census tract in the annual flight operations model (Equations (1) and (2), respec-
tively). We used census tracts instead of block groups as the unit for clustering in the annual
flight operations model to allow for any unobserved spatial correlation in cardiovascular
mortality that may occur within broader neighborhoods.

We separately estimated these models for block groups near single-runway and multi-
runway airports. We disaggregated by the number of runways because we anticipated that
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our measure of proximity to airport traffic is more precise for single-runway airports. For
airports with more than one runway, there may have been greater dispersion of emissions
across space, and we lacked data to apportion flight operations to specific runways at each
airport, creating uncertainty about where the emissions occurred and hence which block
groups were more exposed to air traffic emissions. This potential for classical measurement
error in our measure of air traffic exposure at multi-runway airports could bias our estimates
of the impact of aircraft operations on mortality towards the null.

We also estimated specifications of the airport proximity and annual flight operations
models that incorporated wind direction. For the airport proximity model, we interacted the
percentages of days a block group was downwind and upwind of the closest TEMSC airport
with the indicators for distance from the airport. For the annual flight operations model,
we added terms capturing the three-way interactions between annual flight operations,
distance from the airport, and percentages of each year the block group was downwind
and upwind from the airports. In these models, we also included a dummy variable
indicating block group-year observations for which wind direction data were unavailable
(corresponding to 10 percent of observations).

Our original models that do not include interaction terms with wind direction estimate
average effects for all populations equidistant around airport runways. These estimates
do not reflect spatial heterogeneity that could arise if wind dispersion of lead particles
causes higher lead exposures from piston-engine air traffic for populations downwind
and lower exposures for those upwind of airports. However, because runways often run
parallel with the prevalent wind direction, models assuming directional homogeneity (as
in Equations (1) and (2)) could be more appropriate for reflecting exposures to populations
living along the sides of runways, where startup, idling, and taxiing emissions could also
generate high concentrations of lead in the air.

To ensure that the “treated” block groups located within D;, of a TEMSC airport
are comparable in terms of socioeconomic characteristics that could affect cardiovascular
mortality to the “control” block groups located farther away (but still within 10 km), our
primary estimates used coarsened exact matching (CEM) [14]. CEM is a pre-processing
algorithm that identifies observations in the treatment and control groups that match
in terms of all explanatory variables selected by the analyst, after first coarsening the
continuous variables into discrete categories. CEM also derives weights to balance the
matched distributions of the observed socioeconomic characteristics across the treatment
and control groups. All treatment observations that do not have an identical “match” in the
control group (and vice versa) are assigned a weight of zero and dropped from the sample.

We matched our treated and control samples using seven coarsened block group
sociodemographic variables and three non-coarsened variables. The coarsened variables
include median income, population density, the share of the adult population that grad-
uated from college, the share of the population that was Black, the share of population
that was 65 and older, the share of housing that was renter-occupied, and the share of
housing that was built before 1950. We divided median income into tertiles, and for all other
coarsened variables we created three categories defined by equally spaced cut points. We
matched on the 2010 values for all census variables. The three variables used for an exact
match were county, year, and closest airport. In balancing observable sociodemographic
characteristics across the treatment and control groups, this strategy may also increase
similarity in unobservable traits that are correlated with the observable characteristics.

We generated three sets of CEM weights corresponding to three possible cutoffs
delineating the treatment and control groups already discussed: 1 km, 2 km, and 3 km from
the closest TEMSC airport. The Supplementary Materials also present regression results
using the full, unweighted sample. While we found that the results were robust across the
two approaches, the CEM estimates are preferred because they improved the balance in
sociodemographic covariates across block groups closer versus farther from airports in our
sample, as discussed in Section 6.
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Our preferred approach combining panel data, block group-specific intercepts, and
matching allows us to more credibly isolate the effect of piston-engine aviation on car-
diovascular mortality based on year-to-year changes in air traffic. The airport proximity
model (Equation (1)) is less able to isolate this effect because airport proximity could be
correlated with socioeconomic or other local attributes affecting cardiovascular mortality.
The flight operations model interacting distance from the airport with annual aviation oper-
ations (Equation (2)) is conceptually similar to a quasi-experimental difference-in-difference
model, although the exposure variable representing number of flight operations varies
continuously over time rather than changing discretely at one point in time.

6. Results

Our full sample included 31,495 census block group-year observations. (This sample
excluded 357 block group-year observations estimated to have zero individuals 65 and
older, 61 observations with zero housing units, and 1 observation with an estimated
cardiovascular mortality rate greater than one). Using CEM to focus our analysis on a
more homogenous matched sample of treated and control block groups greatly reduced the
sample size. Using a treatment definition of 2 km, we kept 81% of treatment observations
and 28% of control observations and were left with 9997 observations. Since most of the
“pruned” observations were in the control group, we retained most observations in the
treatment group closest to each TEMSC airport. Therefore, CEM helped us to identify the
most appropriate counterfactual set of block groups. Using a treatment definition of 1 km
yielded a much smaller matched sample of 1552 observations, while a treatment definition
of 3 km yielded a larger matched sample of 14,245 observations.

Table 2 presents summary statistics for the CEM-weighted sample using the 2 km
treatment definition. Table S2 in the Supplementary Materials presents summary statistics
for all variables for the full sample, without matching. We present these statistics separately
for single-runway and multi-runway airports. The matched treatment and control groups
near single-runway airports have similarly high incomes and education levels, though the
control group has somewhat higher rates of vacant, rental, and older housing; a higher
percentage of Black residents; and a higher population density. Average air concentrations
for lead and for aggregate toxicity-weighted emissions from stationary industrial sources
were similar across the treatment and control groups, though the control group included
more block groups located within 4 km of Charlotte Motor Speedway, a source of lead
emissions before 2007.

The matched treatment and control groups near multi-runway airports have sociode-
mographic and housing characteristics that are similar to each other, though incomes were
somewhat higher in the control group. Air lead concentrations from stationary industrial
sources were also higher in the control group. The differences between the single-runway
and multi-runway samples are more pronounced than the differences between the treat-
ment and control groups for each airport type. Income and education levels were much
higher, and the share of Black and Hispanic residents was much lower, near single-runway
airports. These divergent demographic characteristics further support our decision to
analyze single-runway and multi-runway airports separately.

Figure 3 shows cardiovascular mortality rates near single- and multi-runway airports
during the study period in the matched and weighted sample, again using the 2 km cutoff
to define treatment and control groups near each airport type. The figure shows that
cardiovascular mortality rates were somewhat lower near single-runway airports than
multi-runway airports. Though there was substantial year-to-year variation, mortality
rates were generally similar across the treatment and control groups near each airport type.
Figure S1 in the Supplementary Materials shows trends for the full unweighted sample,
revealing a larger divergence between the treatment and control groups for each airport type
than the matched sample. This outcome suggests that CEM helped to identify treatment
and control groups that are similar in terms of the broad determinants of cardiovascular
mortality during the study period.
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Figure 3. Cardiovascular mortality rate (age 65 and older) by airport type and distance from airport:
CEM sample. Annual averages calculated using CEM weights assuming a 2 km treatment group.

Table 3a presents the airport proximity coefficients from the regressions corresponding
to Equation (1) for the single- and multi-runway airport samples. We estimated three
separate regressions, varying the cutoff between the treatment and control areas from
1km to 3 km. The treatment definition used for deriving the CEM weights matches the
distance variable included in each regression. We did not find a positive relationship
between cardiovascular mortality and proximity to single-runway TFMSC airports. In
fact, cardiovascular mortality rates were significantly lower within 1 km of single-runway
airports, and there was no statistically significant association using the 0-2 km or 0-3 km
treatment definitions. In contrast, cardiovascular mortality rates were higher closest to
multi-runway airports. Mortality was 12 to 15 percent higher within 0-1 km and 0-2 km
of multi-runway airports, though the estimate was only statistically significant using the
0-2 km treatment definition. There was no significant association between mortality and
proximity to multi-runway airports beyond this distance.

Table 3b presents the airport proximity coefficient estimates from a single regression
model that includes mutually exclusive distance bins in 1-km increments. This model
used the CEM sample and weights derived using the 3 km treatment group so that all of
the distance bins included in the regression fall within this treatment group. The results
were similar to those shown in Table 3a. Cardiovascular mortality rates were lower near
single-runway airports and higher near multi-runway airports, though the latter effect was
not statistically significant in this model. Because the models in Table 3a,b do not include
spatially refined block group intercepts, we cannot parse to what extent these associations
are due to residual confounding with factors common to these neighborhoods or due to
other lead- and non-lead-related hazards at these airports. (In the Supplementary Materials,
Table S3 shows the full set of coefficient estimates for all control variables included in this
regression. Table S4 shows the key coefficient estimates for this model using the full sample,
without CEM weights).
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Table 3. (a) Key coefficient results from separate regressions with varying treatment cutoffs: Associa-
tion between proximity to TEMSC airports with age 65+ cardiovascular mortality. (b) Key coefficient
results from single regression with 3 km treatment cutoff: Association between proximity to TFMSC
airports with age 65+ cardiovascular mortality.

()
Single-Runway Airports Multi-Runway Airports
0-1km —0.288 ** 0.120
(0.143) (0.0973)
Observations 396 1156
Pseudo R2 0.109 0.0977
0-2 km —0.0505 0.154 ***
(0.0816) (0.0557)
Observations 4381 5506
Pseudo R2 0.114 0.0602
0-3 km 0.0124 0.0579
(0.0467) (0.0529)
Observations 6365 7880
Pseudo R2 0.104 0.0681
(b)
Single-Runway Airports Multi-Runway Airports
0-1 km —0.225 ** 0.104
(0.0942) (0.128)
1-2km —0.00456 0.108
(0.0719) (0.0752)
2-3 km 0.0359 0.0132
(0.0733) (0.0706)
Observations 6365 7880
Pseudo R2 0.104 0.0684

(a) All models use CEM weights (calculated using a treatment definition consistent with the treatment group for
each regression) and include closest TEMSC airport fixed effects, year fixed effects, airport-year time trends, and
time-variant and time-invariant control variables shown in Table 2. Robust standard errors clustered by closest
airport are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. (b) This model uses CEM weights (calculated using
the 3 km treatment group) and includes closest TEMSC airport fixed effects, year fixed effects, airport-year time
trends, and time-variant and time-invariant control variables shown in Table 2. Robust standard errors clustered
by closest airport are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 4a presents the key coefficients from the flight operations regressions (Equation (2)).
This model is our preferred specification for estimating the unbiased effect of piston-engine
air traffic on cardiovascular mortality. Similar to Table 3a, we present results from three
different regressions in which the treatment definition (and corresponding CEM weights)
varies from 1 to 3 km. The results indicate that piston-engine IFR flights have a statistically
significant adverse effect on cardiovascular mortality for treatment groups that extend up
to 3 km away from single-runway airports. The effect is largest within 1 km of the runway
and declines monotonically as we expand the treatment group to include block groups
farther from the nearest single-runway airport. The coefficient estimates indicate that each
piston-engine flight operation at a single-runway airport increased cardiovascular mortality
by 0.07 percent in the 0-1 km treatment group, 0.01 percent for the 0-2 km treatment group,
and 0.007 percent for the 0-3 km treatment group.
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Table 4. (a) Key coefficient results from separate regressions with varying treatment cutoffs: Effect of

annual flight operations on cardiovascular mortality near TEMSC airports. (b) Key coefficient results

from single regression with 3 km treatment cutoff: Effect of annual flight operations on cardiovascular

mortality near TFMSC airports.

(a)

Single-Runway Airports

Multi-Runway Airports

Piston-engine IFR operations * 0-1 km 0.000721 * 0.000323 ***
(0.000382) (0.000114)
Large jet/turbine IFR operations * 0-1 km 0.00116 *** 5.02 x 1072
(0.000275) (0.000104)
Small jet/turbine IFR operations * 0-1 km 0.000164 9.84 x 107°
(0.00112) (0.000127)
General aviation VFR operations * 0-1 km ~1.33 x 1075 —2.81 x 1075 ***
(9.06 x 1070) (9.00 x 10)
Observations 396 1156
Pseudo R2 0.185 0.155
Piston-engine IFR operations * 0-2 km 0.000125 ** 1.04 x 107°
(4.95 x 1075) (2.56 x 1075)
Large jet/turbine IFR operations * 0-2 km —2.21 x 1075 —8.56 x 1077
(3.79 x 1075) (3.02 x 1079)
Small jet/turbine IFR operations * 0-2 km 3.90 x 107° 4.39 x 107°
(9.21 x 1075) (5.39 x 1075)
General aviation VFR operations * 0-2 km 1.83 x 107 —3.60 x 107°
(2.78 x 1079) (5.26 x 1079)
Observations 4381 5506
Pseudo R2 0.193 0.129
Piston-engine IFR operations * 0-3 km 7.91 x 1072 *** —9.40 x 107
(2.38 x 1075) (1.94 x 1075)
Large jet/turbine IFR operations * 0-3 km 3.30 x 107° 1.99 x 10-°
(5.23 x 1075) (1.68 x 107°)
Small jet/turbine IFR operations * 0-3 km 8.84 x 1072 * 4.78 x 107°
(5.34 x 1075) (4.68 x 1075)
General aviation VFR operations * 0-3 km —2.54 x 1070 1.35 x 107°
(2.36 x 107°) (4.03 x 107%)
Observations 6365 7880
Pseudo R2 0.189 0.145
(b)
Single-Runway Airports Multi-Runway Airports
Piston-engine IFR operations * 0-1 km 0.000857 ** 1.26 x 107°
(0.000361) (5.78 x 1075)
Large jet/turbine IFR operations * 0-1 km 0.000282 5.50 x 107°
(0.000195) (0.000102)
Small jet/turbine IFR operations * 0-1 km —4.06 x 107° 499 x 107>
(0.00110) (0.000143)
General aviation VFR operations * 0-1 km —2.66 x 1070 —1.10 x 1075 #**
(4.47 x 1079) (3.99 x 1079)
Piston-engine IFR operations * 1-2 km 0.000150 *** 1.22 x 107°
(4.88 x 1075) (2.93 x 1075)
Large jet/turbine IFR operations * 1-2 km 1.54 x 1075 —5.85 x 1078
(4.72 x 1075) (3.05 x 1079)
Small jet/turbine IFR operations * 1-2 km 7.68 x 107° 7.39 x 107°
(9.37 x 1075) (5.83 x 1075)
General aviation VFR operations * 1-2 km -9.38 x 1077 1.91 x 107
(3.15 x 1079) (6.17 x 1079)
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Table 4. Cont.

(b)
Single-Runway Airports Multi-Runway Airports

Piston—-engine IFR operations * 2-3 km 5.04 x 1072 ** —2.31x107°
(2.28 x 1075) (1.93 x 1075)
Large jet/turbine IFR operations * 2-3 km 418 x 107° 2.22 x 107°
(6.63 x 1075) (1.56 x 1076)
Small jet/turbine IFR operations * 2-3 km —381 x 107° 292 x 107°
(2.40 x 1079) (543 x 1079)
General aviation VFR operations * 2-3 km 8.77 x 107> * 2.87 x 107°
(5.07 x 1075) (5.40 x 1075)

Observations 6365 7880

Pseudo R2 0.189 0.146

(a) All models use CEM weights (calculated using a treatment definition consistent with the treatment group
for each regression) and include block group fixed effects, year fixed effects, airport-year time trends, and all
time-variant control variables shown in Table 2. Robust standard errors clustered by census tract are in parentheses.
***p <0.01, * p <0.05,* p <0.1. (b) This model uses CEM weights (calculated using the 3 km treatment group)
and includes block group fixed effects, year fixed effects, airport-year time trends, and all time-variant control
variables shown in Table 2. Robust standard errors clustered by census tract are in parentheses. *** p < 0.01,
**p<0.05*p<0.1.

We also found a significant increase in cardiovascular mortality of 0.03 percent per
piston-engine IFR operation within 1 km of multi-runway airports but found no significant
effect from changes in piston-engine IFR operations beyond this localized area. As already
noted, at multi-runway airports, we have lower confidence that the distance between
populations and airport runways is a good proxy for exposure to leaded fuel emissions
because we do not know which runway was used for each operation.

Turning to the other flight types, the results suggest that general aviation VER flights
were negatively associated with cardiovascular mortality within 0-1 km of multi-runway
airports but had no statistically significant effect on cardiovascular mortality at any other
distances. The negative association is counterintuitive, but as already noted, our VFR
flight data lack accurate year-to-year variation at most airports given their exclusion from
the TFMSC database. In addition, while most general aviation VFR flights are thought
to be piston-engine, our data did not confirm engine type (and, hence, the use of leaded
fuel). Moreover, piston-engine IFR operations are more likely than VFR operations to be
performed by twin engine aircraft, which have higher lead emissions per operation than
single-engine aircraft.

The effects from small and large jet or turbine flights on cardiovascular mortality
are also not significantly different from zero in most specifications. The exception is a
significant adverse effect of large jet and turbine operations within 0-1 km of single-runway
airports and a marginally significant adverse effect of small jet and turbine operations on
cardiovascular mortality within 0-3 km of single-runway airports. Large jet and turbine
aircraft have the potential to cause adverse effects from both conventional pollutant emis-
sions and noise near airports. In addition, if smaller jet and turbine operations emit very
fine particulates that disburse with wind, then adverse health effects could occur further
from airports. The magnitude of the coefficients on small and large jet/turbine operations
at single-runway airports is similar to that of the piston-engine IFR coefficients using the
0-3 km treatment definitions. Overall, these results suggest that piston-engine IFR flights
were relatively more harmful to cardiovascular health than similarly sized flights in areas
located closest to single-runway airports but that these effects may converge or even reverse
a few kilometers away from the airports.

Table 4b presents results of the flight operations model using a single regression that
interacts flight operations with mutually exclusive distance bins of 0-1, 1-2, and 2-3 km
from the closest airport. Consistent with the results in Table 4a, we found statistically sig-
nificant effects of piston-engine operations in block groups with centroids 0-1, 1-2, and 2-3 km
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from single-runway airports. Each piston-engine IFR flight operation increased cardiovascular
mortality by 0.09 percent, 0.02 percent, and 0.005 percent at these distances, respectively.

In contrast to Table 4a, the estimated effect of piston-engine IFR operations within
1 km of multi-runway airports was smaller and not statistically different from zero. The
main difference between these models is the treatment and control group definitions used to
calculate the CEM sample and weights. The small number of block group-year observations
within 1 km of the closest airport contributed to our uncertainty about the effect of air
traffic operations near multi-runway airports.

The estimates of the effects of other flight types on cardiovascular mortality from Table 4b
are generally similar to those from Table 4a, except that the adverse effect of large jet and
turbine operations within 0-1 km of single-runway airports is not statistically significant.

Table S5 in the Supplementary Materials presents the full set of coefficients for all
explanatory variables for the CEM-weighted flight operations model corresponding to
Table 4b. These results suggest that annual increases in cardiovascular mortality were sig-
nificantly associated with increases in the share of rental housing and the adult population
that graduated from college, decreased population density, increases in toxicity-weighted
air pollutant concentrations, and more days exceeding 90 degrees in communities near
single- and /or multi-runway airports. We also observed lower cardiovascular mortality
rates within 4 km of Charlotte Motor Speedway prior to the voluntary phaseout of lead in
racing fuel. While this result is counterintuitive, we note that there are only four census
block groups within 4 km of the Speedway in the matched sample, so the sample size on
which this comparison is based is extremely small.

The primary finding that piston-engine IFR operations had a statistically significant
adverse association with cardiovascular mortality within 0-1 and 1-2 km from single-
runway airports is robust to alternative specifications that use the full sample without CEM
weights and to models that exclude other operation types Table S6 in the Supplementary
Materials presents regression results using the full sample without CEM weights. These
results are extremely similar to the CEM-weighted model results shown in Table 4b. As
shown in Table S7 in the Supplementary Materials, the piston-engine IFR operation coeffi-
cient estimates are similar to those in Table 4b when all other operation types except for
piston-engine IFR traffic are excluded. This suggests that the primary results are not being
driven by collinearity with the other flight operation variables.

We provide an illustrative example of the magnitude of the adverse effect of piston-
engine aircraft on cardiovascular mortality by calculating the impact of a 10 percent re-
duction in operations near single-runway airports. Using the coefficients for the 0-2 km
treatment effect from column 1 of Table 4a, we estimated that reducing piston-engine IFR
operations at single-runway airports by 10 percent, which is equivalent to 258 takeoffs or
landings per airport on average, would result in a statistically significant 3 percent reduc-
tion in annual cardiovascular mortality among individuals age 65 and older, assuming that
all other flight traffic is held constant. This equates to a drop in cardiovascular deaths of
0.085 per block group, which totals to approximately five avoided deaths per year across all
block groups located within 2 km of one of the 24 single-runway airports in the study area.
If we instead assume that the reduction in piston-engine IFR flights is balanced by an equal
increase in the number of small jet or turbine IFR operations (which do not use leaded fuel),
we obtained a net reduction in cardiovascular mortality of 2 percent, equivalent to approxi-
mately three deaths per year across all block groups located within 2 km of a single-runway
airport in the study area. (This net effect when assuming an offsetting increase in small
jet or turbine IFR operations is not significantly different from zero (p = 0.28)). The latter
illustration is of interest because it may better isolate the effects associated with leaded fuel
emissions. Small jet and turbine IFR flights do not use leaded fuel but may emit similar
levels of other pollutants and noise that could contribute to cardiovascular mortality.

Next, we consider how wind direction modifies the relationship between exposure
to piston-engine aircraft traffic and cardiovascular mortality. Table 5 presents the key
coefficients from a model similar to that presented in Table 3b, except that the 1-km
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incremental airport proximity bins were also interacted with the percentages of time
the block group was downwind and upwind of the closest airport runway. We found
that cardiovascular mortality rates were higher downwind within a few kilometers of
both single- and multi-runway airports. Near single-runway airports, cardiovascular
mortality was highest downwind within 1 km of the runway, and the downwind proximity
coefficients decreased monotonically out to 3 km. Cardiovascular mortality rates were also
lower upwind within each proximity bin out to 3 km from the runway. For the most part, the
wind interaction coefficients were not statistically significant when considered individually.
Jointly, the six proximity-wind coefficients were marginally significant (p = 0.08). The wind
interaction model suggests that the counterintuitive negative association seen within 1 km
of single-runway airports in Table 3a,b was concentrated upwind of runways and did not
extend downwind.

Table 5. Key coefficient results from single regression with 3 km treatment cutoff: Associations
between airport proximity and wind direction and age 65+ cardiovascular mortality.

Single-Runway Airports Multi-Runway Airports
—0.196 —0.811 ***

0-1 km (0.208) (0.307)

ok 0.0407 0.137
-2km (0.101) (0.111)

0.0589 —0.229

2-3 km (0.142) (0.151)

) 5.839 9.177 **

0-1 km x downwind (6.173) (4.191)
_ 4.153 0.272

1-2 km x downwind (3.684) (1.663)

. 2.564 * —1.127

2-3 km x downwind (1.414) (1.684)
b - —1.231* 0.137
ownwin (0.508) (0.867)

, —5.000 0.943

0-1 km x upwind (5.108) (2.124)

. —5.858 —0.681

1-2 km x upwind (3.965) (1.051)

. —3.228 4.645*

2-3 km x upwind (2.387) (2.720)
Uowind 1.377 0.0401

p (1.246) (0.568)
Observations 6365 7880
Pseudo R2 0.106 0.0703

This model uses CEM weights (calculated using the 3 km treatment group) and includes closest TEMSC airport fixed
effects, year fixed effects, airport-year time trends, and time-variant and time-invariant control variables shown in
Table 2. Robust standard errors clustered by closest airport are in parentheses. *** p < 0.01, ** p <0.05, * p < 0.1.

Near multi-runway airports, cardiovascular mortality rates were significantly higher
downwind within 1 km of the closest runway. The other proximity-wind coefficients in
the multi-runway model did not show a clear monotonic trend and were not statistically
significant. Overall, these results suggest that cardiovascular mortality rates among indi-
viduals 65 and over were higher near and downwind (but not upwind) of both single- and
multi-runway airports. However, they do not identify to what extent these effects were
caused by aircraft operations or by residual confounding from other cardiovascular disease
risk factors that could be correlated with living downwind of airports.

Table 6 presents the coefficients from interacting runway proximity, wind direction,
and annual flight operations. Similar to Table 4b, we interacted the three 1-km incremental
proximity bins with annual piston-engine IFR aircraft operations, but we also included
three-way interaction terms between airport proximity, piston-engine IFR operations, and
location downwind and upwind of the nearest runway. We focused on piston-engine
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IFR operations in this model and excluded the other aircraft types due to concerns about
multicollinearity from including so many terms multiplied by the same upwind and
downwind variables. (Table S7 in the Supplementary Materials shows that in the primary
model without wind direction interactions, the piston-engine IFR operation coefficients do
not change substantively when other flight operations are excluded).

Table 6. Key coefficient results from single regression with 3 km treatment cutoff: Associations be-
tween annual piston-engine IFR operations and wind direction and age 65+ cardiovascular mortality.

Single-Runway Airports Multi-Runway Airports

Piston-engine IFR operations * 0-1 km (200888?7’;;; (7300%%2;275;
Piston-engine IFR operations * 1-2 km (g:ggoiof(:;) (_:1'29; 13)9;?
Piston-engine IFR operations * 2-3 km (Z;A; ;( 18:2) (_228§3><X1%)0*;j
Piston-engine IFR operations * 0-1 km x downwind 0(8%305163;* (888128)
Piston-engine IFR operations * 1-2 km x downwind (8888223) (88885;5’)
Piston-engine IFR operations * 2-3 km x downwind (7000%%2‘;:; (7000(())((])253
Piston-engine IFR operations * downwind (88882?; (_000(())(()]216324)1
Piston-engine IFR operations * 0-1 km x upwind _?OO(? 06 15 96 0;** (_000(())%2?5())
Piston-engine IFR operations * 1-2 km x upwind (888825) 2(870 (;< 0;81;5
Piston-engine IFR operations * 2-3 km x upwind (8888152) 3(390 ; 0 ;39;5
Piston-engine IFR operations * upwind 7(%'.%%?;;?;;* (7000(())(()](2)32’;§
Observations 6365 7880
Pseudo R2 0.189 0.146

This model uses CEM weights (calculated using the 3 km treatment group) and includes block group fixed
effects, year fixed effects, airport-year time trends, and all time-variant control variables shown in Table 2. Robust
standard errors clustered by census tract are in parentheses. *** p < 0.01, ** p < 0.05, * p <0.1.

Similar to Table 4a, the results still show higher cardiovascular morality rates within
0-1 and 1-2 km of single-runway airports during years with more piston-engine IFR
operations in general. In addition, within the 0-1 km distance bin, cardiovascular mortality
rates were significantly higher downwind and significantly lower upwind of the runway.
They were also significantly lower upwind at distances beyond 3 km from the closest runway.
Adverse cardiovascular effects within 1-2 and 2-3 km of the runway were not significantly
modified by location upwind or downwind. We note that it is possible for piston-engine
aircraft to emit lead along the entire runway length during idling, taxiing, and run-up.

Near multi-runway airports, cardiovascular mortality rates were not significantly
higher closer to the runways in years with more piston-engine IFR operations closer. The
downwind and upwind interaction terms also lack statistical significance both individually
and jointly (p = 0.12 for test of joint significance). These results are consistent with our
previous findings of no detectable adverse effects from year-to-year changes in piston-
engine operations near these larger, multi-runway airports.

7. Discussion

Our analysis indicates that increases in annual IFR piston-engine air traffic are associ-
ated with significant increases in cardiovascular mortality among adults age 65 and older
living near single-runway airports. However, our data have several limitations—most
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notably, the lack of data on aviation lead air emissions, which are the exposures of interest.
Blood lead surveillance data for adults or monitored air lead concentration data would
provide a more precise measure of lead exposure from piston-engine air traffic. Our re-
liance on airport proximity and aircraft operations as imprecise proxies for exposure to lead
emissions could lead to bias in our estimates. This bias could be downward due to classical
measurement error or upward due to the confounding of lead emissions with other air
emissions and noise from piston-engine operations.

Our measure of general aviation VER flights is particularly coarse as an indicator
of lead exposure. Our data source for VER general aviation flights did not distinguish
between piston- and non-piston-engine aircraft, though EPA has noted that most of these
flights are piston-engine [4]. VFR flight data are not updated annually for most airports in
our sample, introducing error into the temporal variation that we rely on for identification
in our preferred regression models. These limitations could contribute to our lack of a
significant association between general aviation VER flights and cardiovascular mortality
in most models, as well as a counterintuitive negative association in some models. VFR
flights are more numerous than piston-engine IFR flights, so they remain a potentially
important source of lead emissions.

Because leaded fuel usage can vary across parts of an airport, there is also uncertainty
about the specific location of the lead emissions, leading to classical measurement error.
This source of measurement error should be less pronounced for single-runway airports.
Our use of population-weighted block group centroids instead of individual residential
addresses to calculate both distance and downwind/upwind measurements exacerbates
this source of measurement error, further biasing our results toward the null. However, our
finding of more pronounced adverse effects near single-runway airports is consistent with
other research finding higher soil lead levels near single-runway airports in Oklahoma [22].

We incorporated wind direction to account for potential spatial heterogeneity in
air lead exposure at different distances to runways. However, our approach was not a
spatially or temporally refined atmospheric dispersion model that would reflect variation
in factors such as meteorological conditions, topography, and particulate sizes. Coupled
with our proximity and aircraft operations variables, our measures of the percent of time
each population-weighted block group centroid was downwind or upwind of the nearest
runway provide a relatively coarse proxy for air lead exposure.

Our primary analysis focused on the effects of year-to-year fluctuations in piston-
engine air traffic. A key uncertainty in the scientific literature is the timing and duration
of lead exposure resulting in adverse cardiovascular effects [1]. If cardiovascular damage
accrues over many years of exposure, which is likely the case, our results underestimate
the total contribution of piston-engine air traffic to cardiovascular mortality.

Our study was also limited to airports large enough to report data on piston-engine
IFR flights to FAA, as reflected in the TEMSC database. We cannot assume that estimates of
the impact of aviation traffic at larger airports are generalizable to smaller airports, which
are likely to have fewer based aircraft and flight operations. Some of these smaller airports
could be located closer to residential neighborhoods than larger airports if local zoning
does not require setbacks, so lead emissions from these airports could still raise public
health concerns. We did not conduct an analysis of proximity to smaller airports as a proxy
for exposure because airport location could be correlated with socioeconomic and other
determinants of cardiovascular mortality, making it challenging to isolate the effect of
piston-engine air traffic holding all other risk factors constant with this approach.

As already noted, there is potential for omitted variable bias if neighborhoods near
airports were systematically different from those farther away. We used several strategies to
minimize this potential bias, particularly in the flight operations regressions. These strate-
gies included spatially refined census block group intercepts, coarsened exact matching on
several socioeconomic characteristics that were associated with cardiovascular mortality rates,
and the inclusion of numerous time-variant control variables and linear airport-specific time
trends. To minimize bias due to the potential confounding of aircraft lead emissions with aircraft
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noise and other pollutants that can cause cardiovascular damage, we adjusted for aviation noise
in our airport proximity regressions and accounted for large and small jet- and turbine-engine
operations in our flight operations models. Despite this multi-pronged approach, we cannot
assert with 100% confidence that we eliminated all sources of bias.

Given the potential for our results to be biased towards the null, it is notable that
we estimated statistically significant increases in annual cardiovascular mortality from an
increase in piston-engine IFR air traffic for block groups up to 2 or 3 km of single-runway
airports. The magnitude of these effects is similar to findings from other studies examining
associations between airport pollution and cardiovascular disease. For example, Schlenker and
Walker found that a one standard deviation increase in aircraft carbon monoxide emissions
caused a 9 percent increase in daily mean hospital admissions for heart problems near
California airports [28]. This result corresponds to a 1.4 percent increase in hospital admissions
per 10 percent increase in carbon monoxide. Correia et al. found that hospitalization for
cardiovascular disease was 3.5% higher in zip codes with 10 dB higher 90th centile aviation
noise exposure [25]. This finding roughly translates to a 1.8 percent increase in cardiovascular
disease per 10 percent increase in 90th centile aviation noise. However, our findings are only
applicable to a highly localized area near single-runway airports, whereas these studies found
effects surrounding broader geographic areas near major airports.

8. Conclusions

Piston-engine aviation is the largest remaining source of airborne lead emissions in the
United States. Our study is the first to estimate the effect of piston-engine aircraft operations
on cardiovascular mortality among adults age 65 and older. The findings are mixed but
suggestive of adverse effects. We found higher cardiovascular mortality rates within a few
kilometers downwind of airport runways, though these results were not always statistically
significant. We did not consistently find that cardiovascular morality was significantly
higher in years with more piston-engine IFR operations at multi-runway airports, nor
do we find higher mortality in years with more general aviation VFR operations, possibly
because our measure of leaded avgas exposure is less precise in these cases. Spatial precision
is important in contexts like this one, where the disamenity is very localized. However, we
found that adults age 65 and older living within a few kilometers and downwind of single-
runway airports had significantly higher cardiovascular mortality rates in years with more
piston-engine IFR operations compared to adults living farther away from these airports.

To obtain more reliable and precise estimates of the effect of leaded aviation fuel
emissions on cardiovascular outcomes, a direction for future research is to conduct similar
analyses using a larger sample of airports with reliable flight operations data. Data on
the variation in air lead concentrations and/or adult blood lead levels over time near
airports would further expand opportunities to identify the health effects of changes in
adult lead exposure. In addition, a more comprehensive dataset of individual-level health
and location data for the entire population of adults age 65 and older living near airports—
not just those who experience a fatality or other significant adverse effect—would allow
for a more spatially refined analysis based on the distance from individuals’ residences
to the closest airport runway. In the meantime, our study presents preliminary evidence
that reducing emissions from leaded aviation fuel could have significant health benefits for
adult populations who are often overlooked in discussions of lead exposure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19105941/s1, Figure S1: Cardiovascular mortality rate (age
65 and older) by airport type and distance from airport: Full sample; Table S1: ICD-10 codes for
cardiovascular deaths among individuals age 65 and older in North Carolina, 2000-2017; Table S2:
Summary statistics by airport type and distance from airport: full sample; Table S3: Full coefficient
results using single regression with a 3 km treatment cutoff: Association of airport proximity and car-
diovascular mortality near TFMSC airports using CEM sample; Table S4: Key coefficient results from
single regression model with a 4 km treatment cutoff: Impact of airport proximity on cardiovascular
mortality within near TFMSC airports using full sample without matching; Table S5: Full coefficient
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results using single regression model with a 3 km treatment cutoff: Impact of annual flight operations
on cardiovascular mortality near TEMSC airports using CEM sample; Table S6: Key coefficient results
from single regression model: Impact of annual flight operations on cardiovascular mortality near
TFMSC airports using full sample without matching; Table S7: Key coefficient results using single
regression model with a 3 km treatment cutoff: Impact of only piston-engine annual flight operations
on cardiovascular mortality near TFMSC airports.
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