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DNA methylation (DNAm) plays an important role in the pathogenesis of psoriasis
through regulating mRNA expressions. This study aimed to identify hub genes
regulated by DNAm as biomarkers of psoriasis. Psoriatic skin tissues gene expression
and methylation datasets were downloaded from Gene Expression Omnibus (GEO)
database. Subsequently, multiple computational approaches, including immune
infiltration analysis, enrichment analysis, protein–protein interaction (PPI) network
establishment, and machine learning algorithm analysis (lasso, random forest, and SVM-
RFE), were performed to analyze the regulatory networks, to recognize hub genes,
and to clarify the pathogenesis of psoriasis. Finally, the hypermethylated genes were
used to immune cell infiltration analysis, which revealed that psoriasis skin tissues were
mainly composed of activated dendritic cells, resting mast cells, T follicular helper
cells (cTfh), etc. Differentially expressed-methylated genes (DEMGs) were identified
and partitioned into four subgroups and the 97 significantly hypermethylated and
downregulated (hyper-down) genes accounted for the highest proportion (47%). Hyper-
down genes were mainly enriched in glucose homeostasis, AMP-activated protein
kinase (AMPK) signaling pathway, lipid storage disease, partial lipodystrophy, and insulin
resistance. Furthermore, insulin receptor substrate 1 (IRS1), Rho guanine nucleotide
exchange factor 10 (ARHGEF10) and retinoic acid induced 14 (RAI14) were identified
as potential targets. These findings provided new ideas for future studies of psoriasis on
the occurrence and the molecular mechanisms.

Keywords: psoriasis, DNA methylation, gene expression, AMPK signaling pathway, IRS1, ARHGEF10, RAI14

INTRODUCTION

Psoriasis is a chronic skin disease mediated by immune mechanisms that affect 2–3% population
of the world, and the WHO considers psoriasis to be chronic, painful, non-infectious, incurable,
disabling, and disfiguring [World Health Organization (WHO), 2014]. A higher prevalence
of 4.6–4.7% in North America, whereas the prevalence in African and Asian populations
is 0.4–0.7% (Perera et al., 2012; Parisi et al., 2013). Plaque psoriasis accounts for 80–90%
of all cases, characterized by keratinocyte abnormal differentiation and hyperproliferation
with a large number of inflammatory cell infiltration, which is the most common psoriasis
subtype (Greb et al., 2016). It is a systemic inflammatory disease associated with hypertension,
hyperlipidemia, metabolic syndrome, adverse cardiac events, etc., which will increase the
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incidence of malignant tumors, inflammatory arthritis, obesity,
and other comorbidities (Lebwohl et al., 2014; Takeshita et al.,
2017; Kaushik and Lebwohl, 2019). The pathogenesis is mainly
T-cell-mediated immune dysfunction and is related to genetics
and the environment (including infection, drugs, mental stress,
and climate) (Armstrong and Read, 2020).

As we all know, epigenetics mediates the occurrence of
autoimmune diseases and cancers mainly by regulating biological
modification and cell differentiation and cycle (Zhang et al.,
2013; Feinberg, 2018). DNA methylation (DNAm) is a type
of epigenetic modification. Studies on the pathogenesis of
many immune-related diseases (such as psoriasis) and tumors
have shown that DNAm is a very important molecular
mechanism (Zhang et al., 2013). Many studies had shown
that epigenetic changes, including abnormal DNAm patterns,
differentially methylated sites (DMSs), differentially methylated
regions (DMRs), and histone modifications, were involved in
psoriasis (Roberson et al., 2012; Zhou et al., 2016; Mazzone et al.,
2019; Shao and Gudjonsson, 2020). Previous studies had shown
that the DNAm level of skin samples from patients with psoriasis
was positively correlated with the Psoriasis Area and Severity
Index (PASI) score, and the levels of DNAm in skin lesions
and peripheral blood monocytes (PBMCs) were significantly
increased in patients with psoriasis (Chen et al., 2008; Zhang
et al., 2010). Chen et al. (2016) identified the characteristics
of human leukocyte antigen (HLA)-C hypermethylation in
psoriasis skin lesions, which can be used as an epigenetic
marker of psoriasis.

In this study, we integrated psoriasis DNAm datasets and
gene expression datasets downloaded from the Gene Expression
Omnibus (GEO) database to measure gene methylation levels.
The proportion of immune cells with hypermethylated gene
expression profiles in psoriatic and normal tissue samples was
quantified using the CIBERSORT method. Machine learning
algorithms are increasingly being used to screen gene targets, and
we used this method to identify potential biomarkers of psoriasis,
providing a certain research basis for further research on the
pathogenesis of psoriasis.

MATERIALS AND METHODS

Microarray Data Collection
The flowchart for this study was shown in Figure 1. The
datasets of DNAm and mRNA expression profiles in psoriatic
skin tissues and adjacent normal skin samples required for this
study were obtained from the National Center for Biotechnology
Information (NCBI), GEO database. We included datasets of
the same platform to reduce the heterogeneity between different
datasets. Only two DNAm datasets were up to the selection
criteria, genome-wide DNAm profiling array (GSE115797),
containing data from 48 samples with 24 paired tissues
(Chandra et al., 2018), and genome-wide DNAm profiling array
(GSE73894) including 82 samples with 41 paired tissues (Zhou
et al., 2016; Shen et al., 2018), both datasets were generated
by the platform GPL13534 (Illumina HumanMethylation450
BeadChip) from the United States.

Gene expression profiling array (GSE30999) (Suárez-Fariñas
et al., 2012; Correa da Rosa et al., 2017) provided mRNA
expression data from 170 skin biopsy samples with 85 psoriasis
lesions and 85 matched non-lesional skin. A total of 48 samples
with 24 psoriasis lesions and 24 matched non-lesional skin were
obtained from the GSE41662 (Bigler et al., 2013) gene expression
profiling, both datasets were generated by the platform GPL570
(Affymetrix Human Genome U133 Plus 2.0 Array) from the
United States.

Differential Gene Expression Analysis
The R package named “Limma” (Ritchie et al., 2015) was used
to screen differentially expressed genes (DEGs) from the gene
expression matrix, and the screening threshold was set as adj.p-
value < 0.05 and |log2FC (fold change)| > 1. It should
be noted that when multiple probes correspond to one gene,
the average value of such genes should be calculated, probes
corresponding to multiple genes and those without matching
genes should be eliminated.

Differential DNA Methylation Analysis
Illumina HumanMethylation450 BeadChip can detect 450,000
CpG sites, which cover the body (the area between the ATG
start site and the stop codon), and 1st exon (the first exon
of a gene), TSS1500 (Transcription start site 200–1,500 bases),
TSS200 (Transcription start site 0–200 bases), 3′untranslated
region (3′UTR) and 5′untranslated region (5′UTR) are widely
used in DNAm studies.

Because of the two datasets based on the same platform
GPL13534. Besides, the methylation chip datasets GSE73894 and
GSE115797 had 48 and 82 samples, respectively, compared with
the gene expression profile chip dataset GSE30999 (170 samples),
the use of a small number of samples could affect the performance
of statistical analysis and provide unreliable results. Therefore, we
first integrated the two methylation chip datasets to significantly
improve the number of samples. Given that the two datasets have
different populations, we chose the ComBat method to remove
the batch effect between the two datasets to reduce the potential
heterogeneity (Leek et al., 2012). The ComBat method was used
to normalize the beta values from different batches or platforms.

The methylation level of the gene was represented by the
average beta value of CpG in different regions of the gene. The
beta value matrix was analyzed by the R package named “limma”
to screen differentially methylated CpGs (DMCs) sites, DMRs,
and DMGs. The thresholds for judging difference were set as
adj.p-value 0.05 and |log2FC (delta Beta)| > 0.05. The diagram
drawn by the R package named “Rideogram” would be used
to show the distribution of DMCs on different chromosomes
(Hao et al., 2020), and the diagram drawn by the R package
named “Upset” would be used to show the distribution of
DMCs in different gene regions (Conway et al., 2017). The
intersection of DEGs and DMGs was represented by DEMGs.
The intersection of differentially methylated genes and DEGs
(the threshold of differential analysis was adj.p-value < 0.05) was
represented by DMEGs.
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FIGURE 1 | Flowchart of the analysis process.

Immune Infiltration Analysis
Through CIBERSORT1 algorithm to predict the immune cells
associated with psoriasis DMEGs infiltration ratio, cluster
analysis was performed according to the relative abundance of
immune cells in different samples, and heatmap was drawn
using the R package “pheatmap” to show the clustering results.
Then, a box plot was used to show the difference of infiltration
of different immune cells between psoriasis and the control
group, which was plotted through the R package “ggplot2.”
Finally, the correlation coefficient among immune cells was
calculated with the R package “Corrplot,” and the relevant
situation was plotted.

Functional Enrichment Analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed
by the R package named “clusterProfiler” (Kanehisa and Goto,
2000; Yu et al., 2012; Consortium, 2017). Disease Ontology
(DO) enrichment analyses and DisGeNET (DGN) enrichment
analyses were implemented by the “DOSE” packages in R
(Yu et al., 2015).

1https://cibersortx.stanford.edu/

Protein–Protein Interaction Network
Establishment and Module Analysis
To explore the interaction between hyper-down genes, we
uploaded these genes to the STRING database2 to get
the interaction relationship information between genes,
and the cutoff value was set to 0.4. Then, the interactive
information was imported into Cytoscape to construct
protein–protein interaction (PPI) network diagram (Shannon
et al., 2003). Modular analysis using Molecular Complex
Detection (MCODE) plugin in Cytoscape with threshold
nodes numbers > 4, k-score = 2 and MCODE scores > 3
(Bader and Hogue, 2003).

Machine Learning Algorithm Target
Recognition
To minimize the risk of bias in potential target predictions,
we used three machine learning algorithms to screen for key
characteristic genes that are distinguishable from psoriasis and
normal samples. The least absolute shrinkage and selection
operator (LASSO) performed by the R package, named “glmnet,”
was a regression analysis method that uses regularization to

2https://string-db.org/
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reduce the prediction error (Tibshirani, 2011). Random forest
algorithm and support vector machine (SVM) algorithm were
both supervised learning methods. Random forest algorithm
could generate one decision tree forest, and then through 10-
fold cross-validation method to screen out characteristic genes
(Rodriguez-Galiano et al., 2012), we used the SVM-recursive
feature elimination (SVM-RFE) method to identify the most
suitable characteristic genes (Huang et al., 2014). Finally, the
genes analyzed by each kind of algorithm were intersected.
These overlap genes would be the core genes screened by the
final machine learning algorithm. The reliability of these gene
predictions would be verified in the external GSE41662 dataset.

Statistical Analysis
Statistical analyses were conducted using R (version 4.0.3) and
Python (version 3.8.2) developed by Guido van Rossum in the
Netherlands. The accuracy of predicted potential target genes was
judged by receiver operating characteristic (ROC) curve analysis,
p < 0.05 were regarded statistically significant.

RESULTS

General Characteristics of Different
Analyses of Different Datasets
To identify the DEGs in the tissues of psoriasis patients
compared with matched normal samples, one microarray dataset
(GSE30999) had been analyzed and identified 1,589 significant
DEGs in psoriasis lesions compared with matched normal
skin, in which 634 genes are downregulated and 955 genes
are upregulated.

We integrated and corrected the methylation datasets
(GSE115797 and GSE73894) and the density plots before and
after batch correction were shown in Supplementary Figure 1.

We found that DMCs were not distributed on the short
arms of chromosomes 13, 14, 15, 21, and 22, as shown in
Figure 2. A total of 3,265 DMCs were identified by analyzing
the DNAm microarray of psoriasis skin tissue (GSE115797 and
GSE73894). Through analysis, it could be seen that 666 DMCs
were hypomethylated, and 2,599 DMCs were hypermethylated.
In addition, we found that 2,406 DMGs were identified, of
which 1,953 genes were hypermethylated and 569 genes were
hypomethylated. Similarly, the 1,188 hypermethylated genes
accounted for 77.2% of all methylated genes in DMEGs
(Figure 3A). The details of the different analysis results of
different datasets were shown in Supplementary Table 1.

By analyzing the distribution of DMCs in different gene
regions in DMGs and DEMGs, it was found that the distribution
of DMCs in different gene regions was mainly concentrated
in the body, as shown in Figures 3B,C. Then, we divided
DEMGs into hypomethylated and upregulated groups (hypo-
up), hypermethylated and downregulated groups (hyper-down),
hypomethylated and downregulated groups (hypo-down), and
hypermethylated and upregulated groups (hyper-up) according
to the gene methylation level and expression level. Finally,
the distribution of DMCs in different gene regions in each
group was analyzed, which was similar to the above analysis
results, as shown in Figure 3D. We also found that almost
all DMCs accounted for the largest proportion in each gene
region were hyper-down genes, and these 97 hyper-down genes
were the highest proportion accounting for 47% of the four
kinds of DEMGs, this revealed the importance of hyper-down
genes in epigenetic regulation of psoriasis (Figure 3D and
Supplementary Table 1).

Through the above analysis, we found that each gene region
had DMCs, but it was not clear whether there were DMCs
in multiple regions of one gene. Therefore, we found that
more than 90% of genes were single-gene region methylated by

FIGURE 2 | Distribution of differential methylated CpGs (DMCs) on chromosomes. The figure shows the distribution of differentially methylated genes (DMGs) on 22
autosomes, X and Y chromosomes. The red area represents the hypermethylated region, and the blue area represents the hypomethylated region.
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FIGURE 3 | Gene methylation status and DMCs distribution in different gene regions. (A) Venn plot of DEGs in dataset GSE30999 and DMGs in the combined
GSE115797 and GSE73894 datasets. (B) Bar plot of DMCs in different regions of DMGs. (C) Bar plot of DMCs in different regions of DEMGs. (D) Bar plot of DMCs
in different regions of four differentially expressed-methylated genes (DEMGs) groups.

drawing the UpSet maps, no matter hypermethylated genes or
hypomethylated genes, and the main focuses were on TSS200,
TSS1500, body, 3′UTR, or 5′UTR. About 1% of the genes were
polygenic region methylation, for example, there were four gene-
region methylations in one gene of hypermethylated genes and
hypomethylated genes, respectively (Figures 4A,B).

Immune Infiltration Analysis of
Hypermethylated Genes
The hypermethylated genes accounted for 77.2% of all
methylated genes in DEMGs (Figure 3A), which were used
for immune cell infiltration analysis. Through cluster analysis,
we found that psoriasis skin tissues were mainly composed
of activated dendritic cells (DCs), resting mast cells (MCs), T
follicular helper (cTfh) cells, neutrophils, monocytes, resting
natural killer (NK) cells, and activated NK cells compared with
normal skin tissues (Figure 5A). The correlation of the different
types of immune cells was calculated (Figure 5B). We found
considerable differences of immune cell composition between
psoriatic skin and the normal group (non-lesional skin). Results

revealed that M0, M1, and M2 macrophages, eosinophils, resting
memory CD4 T cells, resting DCs, naive CD4 T cells, and CD8 T
cells were significantly decreased in psoriatic skin, while plasma
cells, resting MCs, resting memory CD4 T cells, monocytes, naive
and memory B cells, resting MCs, resting NK cells, activated NK
cells, activated DCs, neutrophils, and plasma cells were notably
increased (Figure 5C).

Functional Enrichment Analysis of
Hyper-Down Genes
Through enrichment analysis of hyper-down genes, we learned
the relationship between these genes and functions, pathways,
and diseases. These genes were enriched in the function of glucose
homeostasis and carbohydrate homeostasis (Figure 6A). The
main pathways were the AMP-activated protein kinase (AMPK)
signaling pathway and the regulation of lipolysis in adipocytes
(Figure 6B). The diseases were mainly enriched in partial
lipodystrophy, insulin resistance, polycystic ovary syndrome,
and lipid storage disease (Figures 6C,D). Interestingly, these
enrichment results were all related to metabolism.
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FIGURE 4 | UpSet plots of DMCs. (A) The UpSet plot of DMCs in different regions of hypermethylated genes. (B) The UpSet plot of DMCs in different regions of
hypomethylated genes.

Protein–Protein Interaction Network
Establishment and Module Identification
To elucidate the interaction between hyper-down genes,
Cytoscape visualized the STRING-based PPI network for hyper-
down genes. By analyzing 97 hyper-down genes, we got a network
interaction graph with 43 nodes and 60 edges, where nodes
represented genes, edges represented connections between two
genes, and degree value represented the strength of association
between genes (Figure 7A). More precisely, the top 10 hub
genes of hyper-down genes were insulin receptor substrate 1

(IRS1), PPARG, PPARGC1A, LEP, EBF1, FBXO32, PLIN1, SDC2,
MYOCD, and ZNF423 (Figure 7A). One module was identified
by MCODE arithmetic (Figure 7B).

Identification and Validation of Potential
Gene Targets
We screened 15 candidate genes through the LASSO regression
algorithm (Figure 8A) and selected 24 candidate genes through
the random forest model algorithm (Figure 8B). Four key genes
were identified by the SVM-RFE algorithm (Figure 8C). Then,
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FIGURE 5 | Visualization of immune infiltration analysis of hypermethylated genes. (A) Heatmap of immune cell infiltration between psoriasis tissues and normal skin.
(B) Heatmap of the relationship between different types of immune cells. The strength of the correlation is represented by the dot size and the color depth. The
direction of the correlation is represented by the color, red represents negative correlation, and blue represents positive correlation. The darker the color, the stronger
the correlation. (C) A box plot of the proportion of different types of immune cells between psoriasis tissues and normal skin.

the potential target genes obtained by the three algorithms were
intersected, and finally, three overlapping genes (IRS1, RAI14,
and ARHGEF10) were obtained (Figure 8D).

The three genes were analyzed in the datasets GSE41662
and GSE30999 and found that the expression levels of IRS1,
RAI14, and ARHGEF10 were lower in psoriasis skin lesions
compared with the normal control group (Figures 9A,B). The
ROC curve analysis in the dataset GSE30999 found that the area
under the curve (AUC) of IRS1 was 0.961, the AUC of RAI14
was 0.953, and the AUC of ARHGEF10 was 0.956, as shown
in Figure 9C. The ROC curve analysis results in the dataset
GSE41662 showed that the AUC of IRS1 was 0.961, the AUC
of RAI14 was 0.953, and the AUC of ARHGEF10 was 0.956, as
shown in Figure 9D, indicating that the three biomarkers had
high reliability.

DISCUSSION

Identifying epigenetic regulation patterns and certain biomarkers
from skin tissues would help diagnose, treat, monitor psoriasis,
and help clarify the pathogenesis of psoriasis. In this study, we
found that hypermethylated genes accounted for 77.2% of all
methylated genes in DEMGs. Therefore, the hypermethylation
state of genes in psoriasis lesions was the main methylation state.
At the same time, we analyzed and quantified the proportion
of immune cells in psoriasis lesions and adjacent normal tissues
through the expression of these hypermethylated genes in
DEMGs. Through further analysis, we found that 97 hyper-down
genes accounted for 47% of the four types of genes and showed
the pathways and diseases rich in these genes. About 97 hyper-
down genes were constructed by the PPI network and filtered
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FIGURE 6 | Enrichment analysis of the hyper-down genes. (A) Gene ontology (GO) functional enrichment analysis. (B) Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis. (C) Disease Ontology (DO) enrichment analysis. (D) DisGeNET (DGN) enrichment analysis.

by machine learning algorithms; the intersection was obtained,
and new biomarkers that could be regarded as a treatment for
psoriasis were obtained. To verify the results of bioinformatics
data analysis, we used the external dataset to verify the expression
level of these genes.

We could know from the chromosomal distribution map that
DMCs were more or less distributed on every chromosome,
which revealed that the methylation regulation was very
important pathogenesis of psoriasis. We also observed that
hyper-down genes played major roles in the epigenetic regulation
of psoriasis, which was consistent with the studies of Roberson
et al. and Zhou et al. that sites with inverse correlations between
methylation and nearby gene expression and were important
discriminators of psoriasis (Roberson et al., 2012; Zhang et al.,
2013; Zhou et al., 2016; Verma et al., 2018). However, in this
study, DMCs were also observed on the sex chromosomes, this
might indicate a gender difference in the incidence of psoriasis.
A cross-sectional study in Sweden measured the PASI scores
of 5,438 patients with psoriasis and showed that there were
differences in the degree of psoriasis lesions between men and
women (Hägg et al., 2017). Another study also showed that
men had predominance over women, and gender differences
might be caused by race, living habits, social taboos, etc.
(Iskandar et al., 2021), so these differences might also cause

differences in DNAm on sex chromosomes (Higgins, 2010;
Parisi et al., 2013).

This research has found that almost over half of DMCs in
DMGs and DEMGs were concentrated in TSS1500 and body
regions. When we divided DEMGs into two groups according to
the level of gene methylation, we found that the psoriasis lesions
were mainly characterized by hypermethylated genes, which was
in line with the findings of recent studies (Zhang et al., 2010;
Mervis and McGee, 2020). The DEMGs were further divided into
four groups and found that hyper-down genes were the main
methylation genes in the development of psoriasis.

The types of immune cell infiltration calculated by the
expression of DMEGs hypermethylation genes in psoriasis tissues
mainly included CD4 T cells, NK cells, DCs, and so on. CD4
T cells were key components of the immune system and had
been shown to play an important role in the pathogenesis of
psoriasis (Fry et al., 2015). Recent studies have found that
the CD4 T cell subset circulating cTfh cells were related to
the development of many diseases including psoriasis (Ma and
Deenick, 2014). The cTfh cells were activated in psoriasis with
the expression of ICOS, Ki-67, PD-1, and HLA-DR at higher
levels and increased production of interleukin (IL)-21, IL-17, and
interferon (IFN)-γ. The ratio of cTfh cells and the production of
cytokines were significantly reduced after 4 weeks of treatment
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FIGURE 7 | Protein–protein interaction (PPI) network establishment and module analysis of the hyper-down genes. (A) PPI network of 97 hyper-down genes.
(B) Module network with MCODE = 3.3.

(Wang et al., 2016). NK cells were well known for their dual
functions of cytotoxicity and immune regulation. Studies had
shown that more NK cells were infiltrated in the lesions of
psoriasis (Son et al., 2009; Zeng et al., 2013; Polese et al., 2020).
NKG2C was an active receptor of NK cells and may bind to
HLA-E. The NK cells with high expression of NKG2C killed
autoreactive T cells and respond to virus-infected cells, which
might have an impact on psoriasis prevention (Patel et al.,
2013). The inactivation and activation of DCs was an important
mechanism to maintain a moderate immune response, which not
only played a role in maintaining psoriasis inflammation but also
participated in the initiation of inflammation (Wang and Bai,
2020; Novoszel et al., 2021). The neutrophils/lymphocyte ratio
and neutrophils activity were significantly increased in patients
with psoriasis compared with healthy controls (Wang and Jin,
2020). During the pathogenesis of psoriasis, neutrophils mainly
produced IL-17A, which was an important cytokine leading to
psoriatic dermatitis (Katayama, 2018). Monocytes (MONs) were
pro-inflammatory in psoriasis and were participants in active
and dynamic cytokine-mediated signaling (Golden et al., 2021).
MCs were important immune cells for the establishment of
adaptive and innate immunity, and MC microvesicle interactions
might also play a promoting role in the development of psoriasis
(Shefler et al., 2014). Therefore, the immune infiltration analysis
of hypermethylated genes might provide a new perspective for
the study of psoriasis.

The DO and DGN enrichment analyses suggested hyper-down
genes, mainly enriched in polycystic ovary syndrome, inherited

metabolic disorder, hypertriglyceridemia, lipodystrophy, etc.
These diseases are related to metabolism. A previous meta-
analysis including 12 studies, either cross-sectional or case–
control, indicated a strong connection between metabolic
syndrome and psoriasis (OR: 2.26, 95%CI: 1.70–3.01) (Singh
et al., 2016). An update of this meta-analytic study including 6
cross-sectional studies and 11 case–control studies found that
the association between psoriasis and metabolic syndrome, high
blood pressure (OR range: 1.2–2.6), elevated plasma glucose
levels (OR range: 1.2–4.6), and a higher prevalence of abdominal
obesity (OR range: 2.1–3.8) was noted in patients with psoriasis
compared with non-psoriatic controls (Armstrong et al., 2013).
A recent meta-analysis of the association between metabolic
syndrome and psoriasis included 63 studies (including 15,939
patients with psoriasis and 103,984 controls) and found that
30.29% of patients with psoriasis reported having metabolic
syndrome, compared with 21.70% in the control group. The
prevalence of metabolic syndrome was increased in patients with
psoriasis (OR: 2.077; 95% CI: 1.84–2.34) (Choudhary et al., 2020).

Studies had suggested that the comorbidity of psoriasis and
metabolic diseases were due to the excessive production of
pro-inflammatory mediators by psoriasis skin lesions [including
IL-6, IL-1, IL-23, IL-22, IL-17, vascular endothelial growth
factor (VEGF), tumor necrosis factor (TNF)-α, etc.], which
could migrate to the systemic circulation, potentially inducing
circulatory endothelial dysfunction, increased angiogenesis,
systemic insulin resistance, hypercoagulability, and increased
oxidative stress. These pathological conditions would in turn
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FIGURE 8 | Screening of potential gene targets. (A) Least absolute shrinkage and selection operator (LASSO) model to screen gene targets. (B) Random Forest
model algorithm to screen diagnostic markers. (C) Support vector machine-recursive feature elimination (SVM-RFE) algorithm to screen gene targets. (D) The venn
diagram shows the intersection results of genes screened by three machine learning algorithms.

induce the occurrence of psoriasis (Arican et al., 2005; Canavese
et al., 2010; Lynde et al., 2014; Luan et al., 2015; Gisondi et al.,
2018; Martinez-Moreno et al., 2020).

Further KEGG and GO analyses showed that hyper-down
genes were mainly enriched in the AMPK signaling pathway and
glucose homeostasis, which might be the cause of the comorbidity
of psoriasis and metabolic diseases. AMPK, a key sensor of
the energy state of all eukaryotic cells, occurred in the form
of heterotrimers that catalyze α subunits and regulate β and
γ subunits (Carling et al., 2012; Oakhill et al., 2012; Hardie,
2014). Once activated, AMPK restored energy homeostasis by
promoting catabolic pathways, leading to ATP production, and
inhibiting anabolic pathways that consume ATP (Hardie et al.,
2016). In addition to maintaining intracellular energy balance,
AMPK also regulated systemic energy metabolism (Hardie et al.,
2016; Carling, 2017). Given its key role in controlling energy
homeostasis, which was believed to be an important factor in
driving changes in a variety of human diseases, AMPK has
attracted wide attention as a potential therapeutic target for
metabolic diseases, such as type 2 diabetes, obesity, and cancer
(Cool et al., 2006; Giordanetto and Karis, 2012; Xiao et al., 2013;
Carling, 2017).

A recent study had shown that metformin prevented
and treated psoriasis by inhibiting IL-1β targeting AMPK
in keratinocytes (Tsuji et al., 2020). Immunosuppressant
methotrexate (MTX) had been widely used in the treatment
of psoriasis vulgaris (Cribbs et al., 2015; Gladman, 2017),
which returned to the normal function of peripheral blood
regulatory T cells in plaque psoriasis via the AMPK/CD73/mTOR
pathway (Yan et al., 2018). Liraglutide is an antidiabetic
drug, a glucagon-like peptide-1 (GLP-1) analog, that blocks
keratinocyte inflammatory signals by activating AMPK and
inhibiting macrophage migration and is considered as a
new treatment approach for psoriasis (Yang et al., 2019).
Therefore, DNAm in skin tissues affects metabolic function
mainly through the AMPK signaling pathway, leading to
psoriasis-like lesions. Similarly, improving metabolic function by
regulating the AMPK signaling pathway can also be used in the
treatment of psoriasis.

We found that through the establishment of a PPI network
and machine learning algorithm screening for 97 hyper-down
genes, IRS1 was not only one of the three core genes obtained
by the machine learning algorithm but also the highest degree
value of the PPI network. Insulin could promote wound healing

Frontiers in Genetics | www.frontiersin.org 10 August 2021 | Volume 12 | Article 722803

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-722803 August 20, 2021 Time: 15:13 # 11

Liu et al. Differentially Expressed-Methylated Biomarkers in Psoriasis

FIGURE 9 | Validation of diagnostic markers. (A) The three markers are downregulated in gene set GSE30999. (B) The three markers are downregulated in gene set
GSE41662. (C) ROC curves analysis of gene set GSE30999. (D) ROC curves analysis of gene set GSE41662.

(Goren et al., 2006, 2009), so insulin resistance was not conducive
to wound healing. The epidermal changes caused by psoriasis
(such as dysdifferentiation and hyperplasia) were consistent
with the process of wound healing (Boehncke et al., 2012), so
insulin resistance seemed to be an important perspective for
studying comorbidities of psoriasis (Brazzelli et al., 2021). IL-1β,
a pro-inflammatory cytokine, could induce insulin resistance in
psoriasis (Boehncke et al., 2012; Coban et al., 2016).

Aganirsen is an antisense oligonucleotide that can inhibit
keratinocyte proliferation and imiquimod induced psoriasis-like
dermatitis via IRS1 Ser312 and dephosphorylation of Tyr612
in keratinocytes, upregulate the expression of IRS1 and GLUT2
proteins in the human hepatocarcinoma cell line (HepG2), and
improve insulin resistance (Li et al., 2019; Xuguang et al., 2019).

Although we had identified potential targets using gene
expression and DNAm datasets and explored the pathogenesis
of psoriasis, there were two limitations to be considered.
First, it was only a study of publicly available data, the
biological functions of some related target genes should be
explored and verified. Second, even if we integrated datasets
of the same platform and selected the ComBat method to
remove the batch effect between the two datasets, which could
reduce the potential heterogeneity, but some clinical covariates,
such as infections, diet, obesity, medications, psychological

factors, etc., contributed to the psoriasis process, which could
increase the potential heterogeneity (Kaushik and Lebwohl, 2019;
Armstrong and Read, 2020).
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