
R E S E A R CH A R T I C L E

Evaluating denoising strategies in resting-state functional
magnetic resonance in traumatic brain injury (EpiBioS4Rx)

Marina Weiler1 | Raphael F. Casseb2 | Brunno M. de Campos2 | Julia S. Crone1 |

Evan S. Lutkenhoff1 | Paul M. Vespa3 | Martin M. Monti1,4 | for the EpiBioS4Rx Study

Group

1Department of Psychology, University of

California Los Angeles, Los Angeles,

California, USA

2Neuroimaging Laboratory, University of

Campinas, Campinas, São Paulo, Brazil

3David Geffen School of Medicine, University

of California Los Angeles, Los Angeles,

California, USA

4Department of Neurosurgery, Brain Injury

Research Center, University of California Los

Angeles, Los Angeles, California, USA

Correspondence

Martin M. Monti, Department of Psychology,

University of California Los Angeles, 1285

Franz HallBox 951563, Los Angeles, CA

90095, USA.

Email: monti@psych.ucla.edu

Funding information

Foundation for the National Institutes of

Health, Grant/Award Numbers:

1K99NS104243-01, U54 NS100064

(EpiBioS4Rx); Fundação de Amparo à Pesquisa

do Estado de São Paulo, Grant/Award

Numbers: 2013/07559-3, 2020/00019-7;

Interuniversity Cluster Project University of

Vienna - FWF Austrian Science Fund

Connecting Minds, Grant/Award Number:

CMW 30-B; Tiny Blue Dot Foundation

Abstract

Resting-state functional MRI is increasingly used in the clinical setting and is now

included in some diagnostic guidelines for severe brain injury patients. However, to

ensure high-quality data, one should mitigate fMRI-related noise typical of this popu-

lation. Therefore, we aimed to evaluate the ability of different preprocessing strate-

gies to mitigate noise-related signal (i.e., in-scanner movement and physiological

noise) in functional connectivity (FC) of traumatic brain injury (TBI) patients. We

applied nine commonly used denoising strategies, combined into 17 pipelines, to

88 TBI patients from the Epilepsy Bioinformatics Study for Anti-epileptogenic Ther-

apy clinical trial. Pipelines were evaluated by three quality control (QC) metrics across

three exclusion regimes based on the participant's head movement profile. While no

pipeline eliminated noise effects on FC, some pipelines exhibited relatively high

effectiveness depending on the exclusion regime. Once high-motion participants

were excluded, the choice of denoising pipeline becomes secondary - although this

strategy leads to substantial data loss. Pipelines combining spike regression with

physiological regressors were the best performers, whereas pipelines that used auto-

mated data-driven methods performed comparatively worse. In this study, we report

the first large-scale evaluation of denoising pipelines aimed at reducing noise-related

FC in a clinical population known to be highly susceptible to in-scanner motion and

significant anatomical abnormalities. If resting-state functional magnetic resonance is

to be a successful clinical technique, it is crucial that procedures mitigating the effect

of noise be systematically evaluated in the most challenging populations, such as TBI

datasets.
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1 | INTRODUCTION

Over the last few decades, the assessment of spontaneous oscillations

in the blood oxygenation level-dependent (BOLD) measured by

resting-state functional magnetic resonance (rsfMRI) has increasingly

been used to aid diagnosis and prognosis in neurological disorders

(Baker et al., 2014; de Vos et al., 2018; Franzmeier et al., 2020;

Wolters et al., 2019; Woodward et al., 2012). Yet, despite the appeal

and wide adoption of this technique, it suffers from significant limita-

tions for distinguishing oscillations associated with neural activity

from those induced by nonneural sources (Birn, 2012; Murphy

et al., 2013; Power et al., 2017). In-scanner head motion can system-

atically generate artifactual correlations across brain regions and spu-

rious functional connectivity (FC) results regardless of how they are

assessed (e.g., seed-based analysis, graph theory, and amplitude of

low frequency fluctuations) (Power et al., 2012; Satterthwaite

et al., 2012; Van Dijk et al., 2012).

In the context of severe brain injury and disorders of conscious-

ness, some international guidelines (Kondziella et al., 2020) now sug-

gest incorporating rsfMRI in the diagnostic process given its ability to

complement bedside neurobehavioral assessments and provide prog-

nostic information (Demertzi et al., 2019; Madhavan et al., 2019; Silva

et al., 2015; Vanhaudenhuyse et al., 2010). Controlling for head

motion in clinical samples, however, represents a major obstacle when

compared to healthy participants given the patients' tendency to be

more restless and noncooperative and, in turn, exhibit more move-

ment in the scanner. Patients with traumatic brain injury (TBI), specifi-

cally, present frequent abnormal movements (alternatively described

as dyskinesias or “paroxysmal” motor phenomena) such as posturing,

shivering, and seizures, which dominate the early period following

TBI, while other abnormal movements, including tremor, dystonia, tics,

parkinsonism, and chorea, may be seen several months following TBI

(Hannawi et al., 2016).

While this issue could be mitigated with the use of sedative

agents, these will affect any subsequent analysis of brain network

function (Monti et al., 2013), thus making the development of ana-

lytical approaches to mitigating in-scanner motion a more desirable

strategy. In this sense, a large number of analysis pipelines have

been proposed to address the issue (Muschelli et al., 2014; Power

et al., 2015). However, most of this work has been developed and

evaluated in neurotypical individuals or clinical populations that do

not usually present significant anatomical and functional abnormali-

ties (Burgess et al., 2016; Ciric et al., 2018; Parkes et al., 2018;

Power et al., 2020; Raval et al., 2020). No pipeline has ever been

validated with respect to patients exhibiting the degree of in-

scanner motion (Hannawi et al., 2016; Monti et al., 2015) and the

extensive brain pathology (such as atrophy and trauma-induced

deformations) known to lead to suboptimal and biased performance

of conventional analysis software (Lutkenhoff et al., 2014). If

rsfMRI is to be a successful technique used in routine clinical prac-

tice (Kondziella et al., 2020), it is crucial that procedures mitigating

the effect of noise be systematically evaluated also in the most

challenging populations.

To address this gap, we extend a prior large-scale evaluation of

different pipelines (Parkes et al., 2018) to the very challenging popula-

tion of moderate-to-severe TBI to provide a quantitative comparative

assessment of different denoising strategies. Specifically, we applied

nine commonly used denoising strategies, combined into 17 pipelines,

to TBI patients from the Epilepsy Bioinformatics Study for Anti-

epileptogenic Therapy clinical trial (EpiBioS4Rx) (Vespa et al., 2019)

and evaluated the ability of each one to remove noise from the BOLD

signal. We conclude by providing a framework for clinicians and trans-

lational scientists interested in using fMRI to select the pipeline that

balances the ability to mitigate noise with the constraints and aims of

their study.

2 | METHODS

2.1 | Subjects

This study included 88 patients from the EpiBioS4Rx dataset, a longi-

tudinal study that aims to discover and validate observational bio-

markers of epileptogenesis after TBI (Vespa et al., 2019). As described

elsewhere, patients were enrolled across 12 sites within 72 h follow-

ing TBI involving frontal and/or temporal hemorrhagic contusion,

according to criteria previously published (Vespa et al., 2019). Our

sample consisted of 21 females and 67 males, with mean age of 41.1

(7–84) years, level of consciousness after TBI measured by the Glas-

gow Coma Scale at the emergency department arrival (Teasdale &

Jennett, 1974) of 7.8 (1–15), and time since injury of 11 (0–36) days.

Informed consent was obtained from a surrogate family member or

legally authorized representative, using IRB-approved consent

methods.

2.2 | Image acquisition and processing

Data were acquired on 1.5 or 3 T MR system, including an anatomical

(T1-weighted) and functional (T2*-weighted echo-planar images)

acquisitions (see Tables S1 and S2 for detailed parameter listing). Data

were processed using code adapted from Parkes et al. (2018) (https://

github.com/lindenmp/rs-fMRI).

The T1-weighted high-resolution structural image was processed

using the following steps: neck and lower head removal using FSL's

robustfov, and segmentation into white matter (WM), cerebrospinal

fluid (CSF), and grey matter (GM) probability maps using SPM8's New

Segment. To minimize WM/CSF signal correlation with the GM mask,

we applied five erosion cycles to the WM mask and two erosion

cycles to the CSF mask following extraction of the ventricles

(i.e., masking out of the CSF surrounding the sulci/gyri of the cortex;

Power et al., 2017), followed by a nonlinear spatial transform to MNI

space using Advanced Normalization Tools (ANTs; Avants et al., 2008)

with default settings (using the antsRegistrationSyN.sh script).

All functional data underwent a common set of preprocessing

steps, before and after the denoising step, which consisted of:
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remotion of the first four volumes using FSL's fslroi; realignment

of volumes to acquire raw motion parameters, slice-time correc-

tion, and realignment of all volumes to the first volume (first pass)

and then to the mean volume (second pass) using SPM8; co-

registration of EPI data to the native, cropped, T1-weighted image

via rigid-body registration using ANTs; application of the inverse

nonlinear transform derived from the T1-weighted image proces-

sing pipeline to the co-registered EPI data using ANTs; linear

detrending of the spatially normalized BOLD time series; intensity

normalization of the EPI data to mode 1000 units and finally,

application of the denoising pipeline. After each registration step,

we visually confirmed accurate alignment in all three dimensions

using FSLView. Following the denoising, images were filtered with

a band-pass 0.008–0.08 Hz using REST v1.8, and spatially

smoothed with a 6 mm FWHM kernel using SPM8 (with an excep-

tion for ICA-AROMA, which requires smoothing before noise

correction).

2.3 | Denoising strategies

Denoising is achieved by removing variance attributable to head

motion and respiration/cardiac-induced noise from the BOLD signal.

What is debated is how to best measure, operationalize, and remove

these sources of noise. Table 1 summarizes the denoising approaches

used in our analysis. We combined these approaches into 17 pipelines,

as done in prior work that used a different clinical sample (Parkes

et al., 2018).

2.4 | Head movement estimation (in-scanner
motion)

As shown in Table 1, some pipelines rely on the ability to pinpoint vol-

umes corrupted by excessive motion. In general, motion in a volume is

quantified by the Derivative of the root mean squares VARiance over

voxelS (DVARS; Power et al., 2012; Smyser et al., 2011) and frame-

wise displacement (FD; Jenkinson et al., 2002; Power et al., 2012). In

this study and consistent with previous work (Parkes et al., 2018), we

used the Jenkinson method (FDJenk; Jenkinson et al., 2002) to deter-

mine FD for spike regression and for the exclusion criteria, but the

Power method (Power et al., 2012) to determine FD for scrubbing.

2.5 | Participant exclusion regimes

Finally, it is debated how to determine the threshold at which a sub-

ject contains excessive motion and thus should be discarded from any

analysis. We compared the performance of all pipelines under three

different participant exclusion regimes: (i) censoring-based, (ii) lenient,

and (iii) stringent (Table 2 shows the criteria for subject exclusion in

each regime). The criterion for the censoring-based regime was data

less than 4 min. Using the mean FDJenk (Jenkinson et al., 2002) across

all volumes (hereafter, mFD), the exclusion criterion for the lenient

regime was mFD >0.55 mm. For the stringent regime, the exclusion

criteria were if any of the following criteria were applicable:

(i) mFD >0.25 mm; (ii) more than 20% of the FDs were above 0.2 mm;

and (iii) if any FDs were greater than 5 mm.

TABLE 1 Denoising strategies

Head

displacement

Head motion parameters (HMPs): Six parameters (three rotations and three translations about/along the x-, y-, and z-axes)

included as noise regressors (6HMP). Additional regressors derived from the six parameters (e.g., temporal and quadratic terms

of each parameter, as well as their difference) are often included to account for delayed and nonlinear motion-induced spin

history effects (24HMP; Friston et al., 1996).

Spike regression (Satterthwaite et al., 2013): For each volume containing excessive motion, a separate regressor is generated

containing a value of 1 at that volume, and 0 at all others. Volumes are considered contaminated if FDJenk >0.25 mm. FDJenk

represents the root mean squared of the six motion parameters (Jenkinson et al., 2002).

Scrubbing (Power et al., 2014): Each volume containing excessive motion is removed from the time series if FDPower >0.2 mm or

DVARS >2%. After removal, uncontaminated segments of BOLD data lasting fewer than five contiguous volumes are also

removed. FDPower represents the sum of the absolute values of the differentiated realignment estimates (by backward

differences) at every time point.

Physiology-

related

Physiological regressors (2phys): Regression of the average signal from WM and CSF, tissues not expected to exhibit BOLD

oscillations tied to neural activity.

Anatomical Component-Based Correction (aCompCor; Behzadi et al., 2007/aCompCor50; Muschelli et al., 2014): This approach

involves extracting orthogonal components of temporal variance from voxel-wise time series for the WM and CSF masks

separately. Then, either the five components with greater eigenvalue for each tissue are included in the denoising regression

(aCompCor), or as many components as needed to cumulatively explain at least 50% of the variance in each tissue

(aCompCor50).

Mixed

approaches

Global signal regression (GSR): Regression of the average signal across all the voxels of the brain.

ICA-based Automatic Removal Of Motion Artifacts (ICA-AROMA; Pruim, Mennes, van Rooij, et al., 2015): Automated data-driven

method to identify and remove via regression motion-related independent components.

Abbreviations: BOLD, blood oxygenation level-dependent; CSF, cerebrospinal fluid; DVARS, derivative of the root mean squares variance over voxels; FD,

framewise displacement; ICA, independent component analysis; WM, white matter.
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2.6 | Quantification and comparison of the
exclusion regimes

To compare mFD across different exclusion regimes, we implemented a

Kruskal-Wallis test with a Bonferroni correction for multiple comparisons.

To ensure that neither the diagnoses nor time since injury related to in-

scanner head motion, we implemented a Pearson's correlation (r) with

mFD and the total Glasgow Coma Scale score or time since injury,

respectively. In addition, we implemented a logistic regression to deter-

mine the effects of confound variables such as age, gender, time since

injury, and Glasgow Coma Scale on the likelihood that participants would

fall into the Stringent regime. All statistical analysis was performed using

SPSS Statistics for Windows, version 27.0 (SPSS Inc.).

2.7 | QC measures

After image preprocessing, we used a template containing 333 cortical

regions (ROIs; Gordon et al., 2016) to define the areas to extract gray

matter (GM)-weighed denoised time series for further analysis. We

then calculated FC as Pearson's correlation coefficient (r) between

each pair of ROI time series, then implemented a Fisher's r-to-z trans-

formation. The FC matrices obtained following each denoising pipe-

line were then used to evaluate the ability of each pipeline to remove

noise-induced correlations by the two QC measures described below.

2.7.1 | QC-FC correlation

Represents the correlation between FC and in-scanner head motion

(mFD) since nonneuronal fluctuations can increase the apparent FC

between regions by introducing spurious common variance across

time series. Here, we calculated Pearson's correlation coefficient (r)

using MATLAB's corr function (MATLAB 2020a, The MathWorks,

Inc.) between each pair of ROIs FC and the mFD across patients.

Then, we compared the proportion of edges where this QC-FC cor-

relation was statistically significant, as well as the median absolute

QC-FC correlation after applying each denoising pipeline. Higher

QC-FC (either the proportion of significant correlations or the

absolute r-value) represents the inability of a pipeline to mitigate

noise in FC.

2.7.2 | QC-FC distance-dependence

Indicates whether the correlation between FC and in-scanner head

motion (mFD) is spatially structured—a known feature of motion-

induced artifacts (Power et al., 2012, 2014; Satterthwaite et al., 2012;

Van Dijk et al., 2012).

It should be noted that spatial smoothing also plays a role in

distance-dependent FC measurements, inducing spurious correla-

tion due to the signal “smearing” to neighboring voxels, especially

with higher Gaussian smoothing kernels (Alakörkkö et al., 2017).

While the optimal filter size for analysis of fMRI depends on vari-

ous criteria and specific functional areas and experimental tasks,

we opted to use a 6 mm FWHM kernel size, which corresponds to

roughly two times the size of our voxel, as per recommendation

(Mikl et al., 2008; Pajula & Tohka, 2014), and previous reports

(Parkes et al., 2018). Our choice of a relatively small kernel might

help control for the undesirable and intrinsic smoothing-related

effects on distance-dependent FC measurements.

Here, we calculated the distance between ROIs as the Euclid-

ean distance (MATLAB's pdist2 function) between the stereotaxic

coordinates of the volumetric centers of ROI pairs. We quantified

the relationship between this distance and the QC-FC correlation

for each edge using Spearman's rank correlation coefficient (ρ)

due to the nonlinearity of some associations using MATLAB's corr

function. Higher QC-FC distance-dependence values represent

the inability of a pipeline to mitigate spatially structured

noise in FC.

2.7.3 | Loss of temporal degrees of freedom
(tDOF-loss)

The third QC benchmark measured the ability of each pipeline to

retain statistical power during the denoising process (tDOF), which

varies according to the original time series length and the number of

regressors used in the model. Given a fixed number of regressors, the

tDOF will be higher with longer time series, and vice-versa. In the pre-

sent work, all datasets contained 300 time points, allowing us to con-

trol as much as we could to keep tDOF constant across datasets.

The number of regressors used in a model, however, is not constant

across pipelines (see Table S3), because they represent the number of

TABLE 2 Participant exclusion regimes and their criteria for
exclusion

Regime Exclusion criteria

Censoring-based (Satterthwaite

et al., 2013; Van Dijk

et al., 2012)

Excluded subjects when less than

4 min of noncontaminated

volumes remained after volume

censoring (<4 min of data).

Lenient (Satterthwaite

et al., 2012)

Excluded subjects if:

(i) < 4 min of data; or

(ii) high levels of head gross

motion, defined as

mFD >0.55 mm.

Stringent (Satterthwaite

et al., 2013)

Excluded subjects if:

(i) < 4 min of data;

(ii) mFD >0.25 mm;

(iii) more than 20% of the volumes

presented FDJenk >0.2 mm; or

(iv) any volume presented

FDJenk >5 mm.

Abbreviations: FD, framewise displacement; mFD, mean framewise

displacement.
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time points and/or the number of regressors used to denoise the data.

Generally speaking, high-motion subjects present more regressors

because they either present more contaminated time points in case of

volume censoring, or more components classified as noise in case of

data-driven strategies. Thus, the performance of denoising strategies

must be balanced against lost temporal degrees of freedom (tDOF-loss).

3 | RESULTS

3.1 | Participant exclusion

As shown in Figure 1a, censoring-based, lenient, and stringent regimes

resulted in the exclusion of 8, 11, and 32 patients (9%, 12.5%, and

36%, respectively). As expected, participants under the stringent

regime presented significantly smaller mFD compared to censoring-

based and lenient regimes (Figure 1b; Kruskal–Wallis test, H

[2] = 9.791, p = .0075; mean rank mFD 116.45 for censoring-based,

113.18 for lenient, and 85.00 for stringent). Pairwise comparisons

Bonferroni-adjusted for multiplicity: stringent versus lenient,

p = .028; stringent versus censoring-based, p = .01; lenient versus

censoring-based, p = 1. In-scanner head movement did not correlate

with Glasgow Coma Scale (Pearson r[84] = 0.080, p = .462), age

(Pearson r[85] = 0.139, p = .201), nor time since injury (Pearson r

[79] = 0.128, p = .253). The logistic regression model, implemented

to exclude the effects of confounds on the likelihood that patients

would fall into the stringent regime, was not statistically significant, χ2

(4) = 6.051, p = .195. The model explained 10% (Nagelkerke R2) of

the variance in Stringent regime and correctly classified 63% of cases.

3.2 | QC measures

As shown in Figures 2 and 3, consistent with prior work (Parkes

et al., 2018), while no pipeline entirely eliminated noise-related effects

on FC patterns, some pipelines exhibited relatively high effectiveness

at mitigating it depending on the exclusion regime.

3.2.1 | QC-FC

Overall, no pipeline in any exclusion regime reduced the effect of

noise to zero (Figure 2). Nonetheless, our results show that some

pipelines, under a given regime, perform better than others.

First, the censoring-based and lenient regimes resulted in approxi-

mately 10%–29% and 13%–55% proportion of significant correlations

and absolute r-values between 0.09–0.14 and 0.10–0.24, respec-

tively. 6HMP pipeline was an outlier with �92% proportion of QC-FC

significant correlations and an absolute correlation between motion

and FC of 0.38 in the lenient regime. In comparison, the stringent cri-

terion resulted in lower QF-FC across all pipelines, reducing the corre-

lations significantly to less than 10% and median r-value between

motion and FC to 0.09–0.11 (with the sole exception of the 6HMP,

with �20% significant correlations).

Second, within each of the three exclusion regimes, different

strategies exhibit different effectiveness at mitigating noise. Over-

all, in the (i) censoring-based regime, the best performance was

obtained with different combinations of 24HMP, aCompCor, and

spike regression. Conversely, the three worst-performing pipelines

all featured data-driven methods, including aCompCor50 and ICA-

AROMA. The addition of GSR generally resulted in the worsening

of pipeline performance. Under the (ii) lenient regime, a very differ-

ent pattern of results was observed. Overall, the best performing

pipelines under this regime were the two featuring aCompCor,

spike regression, and GSR, with either 6 or 24 HMP. At the oppo-

site end of performance, pipelines without GSR underperformed

those with GSR, and the pipeline with 6HMP alone resulted in the

slightest mitigation of noise-induced effects on FC. The inclusion of

GSR improved pipeline performance for all pipelines, with the

greatest benefit observed for the aCompCor/aCompCor50 pipe-

lines. Overall, in the (iii) stringent regime, the pipelines performed

similarly one to another (with the sole exception of the 6HMP), and

all pipelines performed better under the stringent regime than

censoring-based and lenient regimes, reducing significantly QC-FC

correlations. The inclusion of GSR barely changed any pipeline per-

formance under this regime.

F IGURE 1 (a) Number of
participants excluded in each
regime; (b) box plots of the mFD
values for each regime. mFD,
mean framewise displacement.
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3.2.2 | QC-FC distance-dependence

As shown in Figure 3, the proportion of statistically significant correla-

tions between QC-FC and ROI distance for each denoising pipeline in

each regime is comparable to prior validations (Parkes et al., 2018).

Like QC-FC, the stringent regime reduced distance-dependence on

QC-FC the most (with an absolute average correlation of 0.06), fol-

lowed by the lenient and the censoring-based criteria (absolute aver-

age correlation of 0.16 and 0.25, respectively).

Specifically, in the (i) censoring-based regime, pairing aCompCor

with spike regression resulted in the lowest correlations (i.e., best per-

formance) between distance and QC-FC whether performed together

with 6HMP, 24HMP, or GSR. Similarly, 24HMP with 2phys and spike

regression also resulted in a low QF-FC distance-dependence. Like

QC-FC, the three worst pipelines all included data-driven methods

(ICA-AROMA with 2phys; ICA-AROMA with 2phys and GSR; and

24HMP with aCompCor50, and GSR). Likewise, scrubbing (with 24HMP,

2phys, with or without GSR) resulted in poor performance under this

exclusion regime. Overall, the inclusion of GSR worsened pipeline perfor-

mance across the board. Under the (ii) lenient regime, the combination

of aCompCor with spike regression, whether with 6 or 24HMP, resulted

in very low correlations (i.e., good performance), only surpassed by the

combination of ICA-AROMA with 2phys and 24HMP with 2phys and

spike regression. The addition of GSR also worsened performance across

all pipelines under this regime. aCompCor50 (with GSR) was the worst

performer, followed by scrubbing paired with 24HMP, 2phys, and GSR,

and 24HMP paired with 2phys and GSR. Finally, under the (iii) stringent

regime, the combination of aCompCor and spike regression, whether

with 6 or 24HMP, resulted in the lowest correlations (i.e., best perfor-

mance). The addition of GSR generally resulted in unchanged or worse

performance, with 24HMP with aCompCor50 and GSR resulting in the

most significant absolute correlation.

F IGURE 2 QC-FC correlations under the three regimes of participant exclusion. On the left of each panel, results are shown as the
proportion of significant FCs that correlated with the patient's head movement (mFD), p < .05. On the right of each panel, results are shown as
the full distribution of QC-FC, and the corresponding median value. Better denoising pipelines result in fewer correlations between FC and head
movement, giving values closer to 0. FC, functional connectivity; GSR, global signal regression; mFD, mean framewise displacement; QC, quality
control.

F IGURE 3 QC-FC distance-
dependence under the three
participant exclusion regimes.
Results are presented as
Spearman's ρ correlation
coefficient. Better denoising
pipelines result in fewer
correlations between FC and
head movement, giving values
closer to 0. FC, functional
connectivity; GSR, global signal
regression; QC, quality control.
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3.2.3 | tDOF-loss

As expected, the stringent regime resulted in the lowest average loss

of tDOF (since the high-movement subjects were excluded), albeit at

the detriment of group degrees of freedom—given the large loss of

sample size. Scrubbing resulted in the most significant tDOF-loss

across all regimes (Figure 4).

4 | DISCUSSION

In this study, we report the first large-scale evaluation of denoising

pipelines in a clinical population known to be highly susceptible to in-

scanner motion (Hannawi et al., 2016) and to present considerable

anatomical and functional abnormalities. Seventeen pipelines,

obtained by combining nine denoising strategies, were evaluated for

their ability to mitigate the effects of motion on rsfMRI connectivity

estimates. Specifically, the pipelines were evaluated using three popu-

lar measures (Parkes et al., 2018): the reduction of correlations

between functional connectivity and head motion (QC-FC correla-

tions), the reduction of the association between QC-FC and distance

between ROIs (QC-FC distance-dependence), and the loss of temporal

degrees of freedom (tDOF-loss). Overall, we report three main

findings.

First, one of the most critical aspects of successful denoising is

selecting which subjects to retain for further analysis (Satterthwaite

et al., 2012, 2013; Van Dijk et al., 2012). In this high-motion cohort, a

stringent selection obviously resulted in equal or better performance in

QC metrics across virtually all pipelines. In other words, once high-

motion participants are removed from the sample, the choice of denois-

ing pipeline becomes secondary (with the sole exception of the 6HMP

approach). Nonetheless, while the quality of the data used for analysis

benefits significantly from this approach, it is very costly in terms of data

loss (37% in our sample). Consequently, it decreases the degrees of free-

dom for statistical inference across groups (such as performing group

comparison between patients and controls or correlation analysis

between behavioral scores on a test of interest and FC metrics).

Second, different denoising approaches exhibit very distinct abili-

ties to mitigate the negative effects of noise on FC (Parkes

et al., 2018). Pipelines combining spike regression with 2phys and its

extension, aCompCor, tend to be the best performers across exclusion

regimes. Overall, pipelines using scrubbing were generally either com-

parable or worse than the other ones, in addition to the cost of two to

three times greater loss of tDOF—up to 50% of the available data per

subject—thus hampering the quality of the FC estimates. Pipelines

containing data-driven techniques (i.e., ICA-AROMA and aComp-

Cor50) were among the worst performers under most regimes. Such

strategies are used in many studies since they retain the data's tempo-

ral structure (allowing frequency-based analyses) and preserve the

tDOF to a better extent than censoring strategies. The results involv-

ing ICA-AROMA were somehow unexpected to us, as indeed ICA-

AROMA has been shown to perform very well in healthy volunteers

or in patients with no evident brain damage (Parkes et al., 2018;

Pruim, Mennes, Buitelaar, et al., 2015).

While it is hard to pinpoint the source of their poor performance

in our analysis, we find that the segmentation of tissue compartments

can be very problematic in the presence of significant brain shape

deformation (e.g., due to primary impact damage, ventricular enlarge-

ment, and among others), which pose too great an obstacle to be

addressed by denoising approaches that rely on proper brain segmen-

tation to identify noise components. This is the case of ICA-AROMA

which uses, among the criteria to classify a component as noise, spa-

tial features of each component, edge, and CSF fraction (Pruim,

Mennes, van Rooij, et al., 2015), all of which rely on accurate struc-

tural preprocessing outcomes. TBI patients constitute a very hetero-

geneous sample from which segmenting the brain into different

tissues might be challenging, probably affecting the performance of

denoising strategies that depend on this step. In addition, ICA-

AROMA also uses spectral information to classify noise. Since motion

(especially related to effects like spin-history induced fluctuations) will

show significant power at high frequencies, components will be classi-

fied as noise when they show the tendency toward increased power

in the higher frequencies of the spectrum. However, patients with

severe brain injury have altered spectral information. Indeed, ICA-

F IGURE 4 Temporal degrees
of freedom loss (tDOF-loss)
under the three regimes of
participant exclusion. Results are
presented as mean ± standard
deviation. Ideally, good denoising
pipelines should use fewer
regressors in the model, losing
fewer degrees of freedom and

resulting in values closer to
0. GSR, global signal regression.
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AROMA at times could not find any “signal” components in some

patients (i.e., all components were classified as noise; Figure S1), stres-

sing that these methods should be used with care when dealing with

datasets containing pathological brains (Heine et al., 2012).

Third, we find the addition of GSR, a controversial step in fMRI

data preprocessing, to give mixed results. GSR has been shown to

reduce nonneuronal sources of physiological variance in the BOLD

signal and to mitigate the effects of in-scanner movement on FC met-

rics (Power et al., 2017; Yan et al., 2013). Nonetheless, removing the

global signal inevitably eliminates the signal of interest (as the global

signal is a superposition of both signal and noise components; Chen

et al., 2012), and may introduce anticorrelations and alter the FC

structure (Murphy et al., 2009; Weissenbacher et al., 2009). In our

analysis, GSR improved the QC-FC metric under the lenient and strin-

gent regimes (albeit only very marginally in the latter), while it wors-

ened the distance-dependent QC metric for virtually all pipelines,

under all regimes—consistent with prior reports (Ciric et al., 2017).

There are several limitations to the current work that should be

acknowledged. First, our results are limited to the combination of

approaches we chose for each pipeline. While some pipelines outper-

formed others, we should bear in mind that different combinations could

yield divergent results (e.g., adding quadratic and derivative terms of

physiological or global signal). Likewise, our results reflect the perfor-

mance of pipelines for our particular image acquisition parameters. Test-

ing these pipelines in images with shorter or longer TRs and other

parameters should be addressed in future work. In addition, our analysis

was performed under a project that enrolls moderate-to-severe TBI

patients only and further studies should be conducted to evaluate

whether our results endure in mild TBI. Second, the participants

excluded from censoring pipelines (i.e., participants with <4 min of data

based on spike regression or scrubbing) were also excluded from the

other pipelines. While we thought it was crucial to compare pipelines

maintaining the number of subjects constant across them, it also pre-

cluded us from evaluating how noncensoring pipelines would perform

without this criterion. Future work should focus on assessing, for exam-

ple, how data-driven approaches perform when including these partici-

pants. Finally, our QC measures focused on a specific way of calculating

FC (i.e., a model-based method using Pearson's correlation between

ROIs time series). We recognize that other metrics of FC (see Li

et al., 2009) could result in different findings.

Many researchers have attempted to investigate denoising

methods in a rigorous, systematic manner (Burgess et al., 2016; Ciric

et al., 2018; Parkes et al., 2018; Pruim, Mennes, Buitelaar, et al., 2015;

Raval et al., 2020), but defining the optimal approach is still a complex

and open question. As rsfMRI has evolved to become an essential tool

for examining brain networks in the healthy and diseased, it is critical

to understand how best to model and account for artifact fluctuations.

Overcoming noise-related effects on rsfMRI can be even more chal-

lenging when researchers deal with high-motion populations that pre-

sent involuntary or abnormal movements, such as TBI patients

(Hannawi et al., 2016). Furthermore, recent work has shown that

rsfMRI can be used to supplement patient-specific diagnosis and pro-

vide prognostic information from these patients who have no

functional communication with their environment (Madhavan

et al., 2019; Silva et al., 2015; Vanhaudenhuyse et al., 2010), highlight-

ing the importance of rsfMRI not only in research but also in the clini-

cal setting.

Finally, we offer three recommendations. First, where possible, use

a stringent exclusion regime. That is, exclude any dataset for which mFD

is greater than 0.25 mm, more than 20% of volumes present an FD

greater than 0.2 mm, or any single volume presents FD greater than

5 mm (Satterthwaite et al., 2013). This approach essentially reduces the

analyzed sample to low-motion subjects, thus ensuring that systematic

spurious correlations do not affect FC estimates. While the data loss can

be sizeable (37% in our sample), this approach leads to the most signifi-

cant mitigation of the negative effects of noise on FC. In addition, this

strategy also gives the researcher freedom to choose among almost any

pipeline, according to which procedure is best given the study's goals.

However, this approach has the potential for biased data loss. For exam-

ple, patients might be more motion-prone, resulting in greater exclusion

rates in a given clinical group and thus hampering group analyses

(although there was no relationship between the level of consciousness

measured by the Glasgow Coma Scale or any other demographic vari-

able and motion in our sample). Second, when choosing between pipe-

lines, we find combinations of 2phys, spike regression, and aCompCor to

perform best in general. This combination outperforms, from our point

of view, all other pipelines for reasons discussed above. Third, given the

mixed results and the controversial nature of this step, our data argue

against the use of GSR.

Taken together, our findings stress the heterogeneous perfor-

mance of denoising pipelines, emphasizing that different strategies

may be appropriate in the context of specific goals, according to the

question, study design, and population investigated. Researchers

should be familiar with their samples regarding head movement pro-

file and clinical features and be aware of each approach's strengths

and weaknesses to find the pipeline that best matches their goals.

Findings such as these also highlight the crucial importance of large

cross-institution initiatives focused on best practices, rigor, and repro-

ducibility (e.g., ENIGMA; Olsen et al., 2021) for functional MRI to be

incorporated into routine clinical practice.
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