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Retinal degenerative diseases are a leading cause of vision loss and blindness throughout
the world, characterized by chronic and progressive loss of neurons and/or myelin. One of
the common features of retinal degenerative diseases and central neurodegenerative
diseases is chronic neuroinflammation. Interleukin-17A (IL-17A) is the cytokine most
closely related to disease in its family. Accumulating evidence suggests that IL-17A plays a
key role in human retinal degenerative diseases, including age-related macular
degeneration, diabetic retinopathy and glaucoma. This review aims to provide an
overview of the role of IL-17A participating in the pathogenesis of retinal degenerative
diseases, which may open new avenues for potential therapeutic interventions.

Keywords: retinal degenerative diseases, interleukin-17A, age-related macular degeneration, diabetic
retinopathy, glaucoma
INTRODUCTION

Degenerative retinal diseases affect millions of people worldwide and can eventually lead to
irreversible vision loss. Currently, the prevalence of degenerative retinal diseases such as AMD,
DR or glaucoma is increasing year by year (1). It is estimated that around 288 million people
worldwide will be affected by AMD by 2040 (2). The raw prevalence of blindness due to DR
increased substantially between 1990 and 2015 due to the rising prevalence of type 2 diabetes (3).
Additionally, more than 76 million people are estimated to have glaucoma globally (4). There is no
effective treatment that can reverse these degenerative processes. Retinal neurons continue to
withstand long-term light, stress and aging or other factors leading to degenerative changes. Even
though healthy retinas can resist stress for decades, the risk of retinal dysfunction affected by the
Abbreviations: IL-17A, nterleukin-17A; AMD, Age-related macular degeneration; DR, Diabetic retinopathy; PDR,
Proliferative diabetic retinopathy; Ab, Amyloid-beta peptides; Th, T helper; THP-1, Human myeloid leukemia
mononuclear cells; TNF-a, Tumor Necrosis Factor-a; IL-1b, Interleukin-1b; SEFEX, SEFIR-Extension”; CBAD, C/EBP b
activation domain; ERK, Extracellular regulated protein kinases; NF-kB, Nuclear factor kB; Bcl-2, B cell lymphoma/lewkmia-2;
Sox2, Sex determining region Y-box 2; Oct4, Octamer-binding transcription factor 4; TRAF, TNF-receptor–associated factor;
MAPK, Mitogen-activated protein kinase; AP-1, Activating protein-1; MEKK3, Mitogen-activated protein kinase kinase
kinase 3; MEK5, Mitogen-activated protein kinase 5; MMP, Matrix metalloproteinases;’ CFH, Complement factor H; C1INH,
C1-inhibitor; CFB, Corrugated fiber board boxes; C4bp, C4-binding protein; RPE, Retinal pigment epithelial cells; DEGs,
Differentially expressed genes; DMCs, Differentially methylated CpGs; CECs, Choroidal endothelial cells; BRB, Blood-retinal
barrier; JAK1, Janus kinase-1; HG, High glucose; RNV, Retinal neovascularization; STZ, Streptozotocin; FADD, Fas-associated
protein with death domain; VEGF, Vascular endothelial-derived growth factor; RGCs, Retinal ganglion cells; PD, Parkinson’s
disease; ALS, Amyotrophic lateral sclerosis; MS, Multiple sclerosis.
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disease gradually increases (5). A large body of convincing
evidence demonstrates that inflammatory factors have been
qualified as an important role in retinal degeneration (6–9).

IL-17A is the first member of the IL-17 family to be identified
because it is most closely related to human health and disease (10).
IL-17A was screened out from subtracted cDNA library in 1993,
and its binding receptor was first discovered in 1995 (11, 12). At
present, IL-17A has been observed under different tissues and
immunopathological conditions, such as autoimmune diseases,
tumors or obesity (13). The expression level of IL-17A cytokines is
closely related to the severity and progression of the disease in
human neurodegenerative diseases (9, 14, 15). Clinically, it was
found that the levels of IL-17A in the plasma and cerebrospinal
fluid of Alzheimer’s disease patients were elevated (16, 17). In
addition, dopaminergic neurodegenerative diseases, dyskinesias,
and blood-brain barrier destruction in Il-17a-/- mice were all
alleviated (18). Interestingly, Yang et al. (19) reported that IL-
17A did not cause neuroinflammation aggression. Overexpression
of IL-17A could also reduce the level of soluble Ab in the mid-
cerebrospinal fluid and hippocampus as well as improving glucose
metabolism, which provided a more comprehensive basis for the
pathogenesis of multiple sclerosis and experimental autoimmune
encephalomyelitis (19).

On the other hand, there are more and more researches on IL-
17A in eye diseases. The activation of IL-17 pathway has become
an important target of autoimmune uveitis, pathological
neovascularization and other diseases (20–22). In fact, the
mechanism of IL-17A is more complicated than simply
causing inflammation. Its contribution to the specific
conditions of health and disease has only just begun to be
recognized. The role of IL-17A in retinal degenerative diseases
is still unclear. Therefore, this article mainly reviews IL-17A and
its role in retinal degenerative diseases.
IL-17 FAMILY

In 1993, Interleukin (IL) -17A (formerly CTLA8) was described
and named by Rouvier et al. for the first time (11, 23).
Subsequently, IL-17 family has grown gradually, with six
cytokine members from IL-17A to IL-17F. (24) In addition,
there are five receptor subunits in the family, including IL-17RA
to IL-17RE (25). Little is known about IL-17B to IL-17F, while
IL-17A has been widely studied because it has the closest
relationship with human health and disease. IL-17A is the
primary cytokine in the IL-17 series, originally discovered to
be produced by activated CD4 + memory T lymphocytes.
Subsequently, it was later discovered that it can also be the
product of CD8 + memory T lymphocytes (23, 26–28). Although
most of IL-17A is produced by activated T lymphocytes, other
inflammatory cells such as neutrophils, macrophages and even
microglia may also be producers of IL-17A under certain
circumstances (29–31). IL-17A is a key cytokine responsible
for the recruitment, activation and migration of neutrophils,
which can be combined with IL-17RC/IL-17RA on fibroblasts,
endothelial cells and epithelial cells in the form of dimers to
induce pro-inflammatory secretion of the medium (32, 33).
Frontiers in Immunology | www.frontiersin.org 2
IL-17A is often considered as a bad character. Alzheimer’s
disease (AD) is a neurodegenerative disease dominated by
amyloid deposition in the brain. Recent studies have reported
that IL-17A was involved in the early pathological process of AD,
causing cognitive impairments and synaptic dysfunction (34)
Neutralization of IL-17A restored the function of Ab-induced
neuroinflammation and memory impairment (35). Animal
experiments have also confirmed that IL-17A functioned in the
occurrence and development of Parkinson’s disease (PD).
Dopaminergic neurodegeneration, dyskinesia, and BBB
disruption were ameliorated in Il-17a-deficient mice (18). In
addition, increased levels of IL-17A were detected in samples
from both MS and ALS patients (15, 36). Likewise, IL-17A is
playing an increasingly important role in inflammatory
autoimmune and cardiovascular disease (37–39). Interestingly,
on the other hand, Reed et al. demonstrated that IL-17A could
improve social deficits in a mouse model of neurodevelopmental
disorders (40). IL-17A even promoted wound healing, which not
only providing antibacterial protection and pathogens
elimination, but also encouraging the proliferation of corneal
forming cells after injury (13, 41, 42). Therefore, the above
findings suggest that IL-17A is not just an inflammatory factor.
IL-17A may protect the body under certain circumstances, but in
those with chronic or degenerative conditions, IL-17A tends to
start causing disease.

IL-17A is mediated by IL-17F, which normally co-produces
IL-17A with T helper 17 (Th17) cells. The percentage homology
between IL-17A and IL-17F is 50%, and they are co-expressed on
linked genes (10, 43). Nevertheless, IL-17A and IL-17F have
similar biological activities but different functions. IL-17A is
involved in autoimmunity, inflammation and tumorigenesis
while IL-17F is mainly involved in the mucosal defense
mechanism. What’s more, IL-17A has a stronger affinity for
IL-17RA/RC complex so it can promote the induction of pro-
inflammatory genes more than IL-17F. Studies showed IL-17F
mRNA instead of IL-17A mRNA could be expressed on colonic
epithelial cells (44). IL-17F has been found to be an effective
target for the treatment of colitis because Il-17f–/–mice may resist
the development of colitis (45). Studies have shown that IL-17F is
more highly expressed in psoriasis and spondyloarthritis than IL-
17A (46). It was demonstrated that IL-17F had similar
pathogenic effects as IL-17A in b-cell lines and pancreatic islets
in type I diabetic mouse models (47). In addition, IL-17F may
also be involved in systemic sclerosis fibrosis and vascular disease
(48). Dual inhibition of IL-17A and IL-17F may be more effective
than IL-17A alone in reducing disease pathological changes
(49, 50).

Screening for IL-17A to identify homologous genes led to the
discovery of IL-17B whose mRNA is strongly expressed in the
adult digestive system (51). Zhou et al. (52). found that the
concentration of IL-17B in adults and children with community-
acquired pneumonia was significantly increased. In addition, the
level of IL-17B in patients with lupus erythematosus was
significantly higher than that in the control group, involving in
the pathogenesis of the disease. At the same time, more and more
evidences have proved that IL-17B/IL-17RB get trapped in the
occurrence and poor prognosis of patients with malignant
March 2022 | Volume 13 | Article 847937
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tumors such as pancreatic cancer, gastric cancer, lung cancer and
breast cancer (53).

The uniqueness of IL-17C lies in its cell source: epithelial cells
rather than CD4+ cells are the producer of IL-17C, whose
receptor IL-17RE is expressed in Th17 cells and the epithelial
cells themselves. New research showed that IL-17C maintained
the autocrine cycle in the epithelium, thus inhibiting innate
immune infection or binding to receptors to activate the adaptive
immune response (54). The usage of anti-IL-17C antibodies
could control skin inflammation in mouse models of psoriasis
and atopic dermatitis (55, 56). In addition, inhibiting IL-17C or
blocking IL -17 RE might be a new treatment for acute kidney
injury (57). Other studies have shown that IL-17C mediated
antibacterial effects on pseudomonas aeruginosa by interfering
with iron absorption in the nasal epithelium (58).

IL-17D possessed the similarity of inducing increased
expression of chemokines and cytokines with other members
in family (59). Curiously, IL-17D has not been found in the
synovial fluid or peripheral blood of patients with rheumatoid
arthritis but detected in its nodules. In addition, IL-17D mRNA
expression in the skin of psoriatic patients was surprisingly
reduced. IL-17D induces anti-tumor effects by recruiting NK
cells (60–62).

More and more evidences showed that IL-17E (IL-25)was a
“barrier cytokine” whose expression depends on external
environmental factors. It may cause inflammatory diseases,
such as atopic dermatitis, inflammatory bowel illness or
asthma when upregulating. IL-17E has been proved to
stimulate the proliferation and metabolic activity of
keratinocytes. Excessive secretion of IL-17E caused by irritant
atopic dermatitis (63, 64).

In a word, members of the IL-17 family play a key role in
inflammatory diseases, autoimmune diseases and cancer. It
regards IL-17 family members and their receptors as potential
targets for future drug treatments (Figure 1).
IL-17 FAMILY-RELATED
SIGNALING PATHWAY

The IL-17R family contains five receptor subunits:IL-17RA to IL-
17RE. All receptor subunits are type I transmembrane proteins.
IL-17RA is a founding member of the IL-17R family as well as
the co-receptor used by several other IL-17 family ligands. They
shared the common cytoplasmic motif called the similar
express ion of fibroblast growth factor and IL-17R
(SEFIR) domain.

Besides, there existed nonconserved region called SEFIR-
Extension” (SEFEX) (65). Unlike other IL-17 family receptors,
IL-17RA contained another C/EBP b activation domain (CBAD),
whose function was related to negative signal regulation (66).
Therefore, IL-17RA had at least two structurally and functionally
discontinuous signal regions in the cytoplasm to control
downstream signal events.

The IL-17B signaling pathway is mainly reflected in cancer
diseases. IL-17B in breast cancer cells activated ERK and NF-kB
Frontiers in Immunology | www.frontiersin.org 3
pathways and enhanced the expression of anti-apoptotic Bcl-2
family members (67, 68). AKT/GSK-3b/b-catenin signaling
pathway was promoted by IL-17B/IL-17RB signaling pathway
to up-regulate Sox2, Oct4 and Nanog proteins, inducing stem cell
transformation and epithelial to mesenchymal transformation of
gastric cancer and lung cancer cells (69, 70). There are still
unknown about receptor of IL-17D and the ligand of IL-17RD.
Currently, the signaling pathways regarding downstream of IL-
17C are rarely reported (53).

Among the IL-17 family cytokines, the signaling pathways
concerning about IL-17A and IL-17E are the most fully
characterized. IL-17A transmits signals through the IL-17RA
and IL-17RC receptor subunits. IL-17F and IL-17A/F
heterodimers also bind to this receptor complex.

The initial binding of IL-17A to its receptor complex recruited
the adaptor protein ACT1, which interacts through the shared
SEFIR domain. The next step was ACT1 to identify and
ubiquitinate different TNF-receptor–associated factor (TRAF)
adaptors (71). The activation of TEAF6 drived the triggering of
the classical TAK1/NF-kB pathway, c/EBPbor c/EBPd
transcription factors and MAPK/AP-1 pathway (23, 72–75). The
IL-17R-ACT1 complex binded to MEKK3 and MEK5 via TRAF 4
to activate ERK5. IL-17 signaling promoted the regulation of post-
transcriptional IL-17 target gene mRNA stability or controlled a
variety of RNA binding proteins through ACT1- TRAF2- TRAF5
complex (including HuR and Arid5a) (13).

IL-17RB, the binding receptor of IL-17E, needs to combine
with IL-17RA to form a complex to mediate the downstream
signal cascade in target cells (76). The supplementation of
TRAF6 was essential for IL-17E-mediated activation of the NF-
kB pathway (72). The activation of MAPKs may depend on
TRAF4 (77). In addition, IL-17E has been also shown to activate
the Act1-JAK1/2-STAT3 pathway, leading to the proliferation of
keratinocytes and the production of inflammatory cytokines and
chemokines in mouse skin (63).

Many regulators amplify or inhibit inflammation mediated by
IL-17, respectively. Understanding its mechanism of action may
provide strategies for designing new interventions to treat IL-17-
mediated signals and inflammation (Figure 1).
INFLAMMATION AND RETINAL
DEGENERATIVE DISEASES

The retina is a tissue with immune properties, whose blood-
retinal barrier and immunosuppressive microenvironment can
maintain its homeostasis. In addition to physical barrier
defenses, the retina is also protected and monitored by
autoimmunity, namely microglia and the complement system
(78). Ageing increases the risk of various retinal degenerative
diseases, such as age-related macular degeneration, diabetic
retinopathy, and glaucoma. All age-related retinal diseases have
two common features:destruction of retinal homeostasis and
low-grade chronic inflammation (79–81).

Resident microglia can be regarded as the immune guards of
the retina. Inflammatory factors recruited by microglia
March 2022 | Volume 13 | Article 847937
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accumulated in the damaged layer play a crucial role in the
pathological changes (79, 80, 82). Drusen, the pathological
marker of AMD, attracted macrophages and microglia (83, 84).
The patients with geographic atrophy also showed microglia that
positively swallowed photoreceptor fragments (85). It displayed
that activation of microglia and macrophage were early and long-
term chronic features in the pathogenesis of AMD (86). In
human glaucoma, the activated microglia morphology was
found in the optic nerve head and the choroidal retinal area
adjacent to the optic nerve head (87). In addition, microglia
expressed TNF-a and several metalloproteinases including
MMP-1, MMP-2, MMP-3 and MMP-14, which were
significantly increased during optic neuropathy (88). Therefore,
Frontiers in Immunology | www.frontiersin.org 4
activation of microglia may disrupt tissue stability during the
early changes in the glaucoma disease process. Zeng et al. (89)
deeply studied the different stages of 21 diabetic retinopathy
patients’ eyes, and found that the neovascularization was very
severely surrounded by microglia. Reactive microglia
participated in all stages of diabetic retinopathy, even
promoting its evolution to a proliferative state (89).

The retina has a complement regulation system. Actually,
microglia, retinal pigment epithelial cells (RPE) and neurons in
the retina express various complement and complement
regulators (78, 90, 91). Under physiological conditions, retinal
cells always expressed relatively high levels of complement
regulators (CFH, C1INH, and CD59) and low levels of
FIGURE 1 | IL-17 family and signaling pathway. The IL-17 family includes six factors and five receptors. IL-17RA and IL-17RC subunits bind to IL-17A, IL-17F and
IL-17AF ligands. IL-17RA and IL-17RB subunits bind to IL-17B and IL-17E ligands. The receptors of IL-17C are IL-17RA and IL-17RE. IL-17D and IL-17RD are
currently unknown. They shared the common cytoplasmic motif SEFIR domain can recruit act1 and nonconserved region called SEFEX.ACT-1 can bind to TRAF
family proteins. For IL-17A, TRAF6 can activate NF-kB pathway, MAPK/ap1 pathway. Act1 can also promote post-transcriptional mRNA stabilization through the
transcriptional induction of TRAF2/5. In addition, The Il-17R-act1 complex binded to MEKK3 and MEK5 via TRAF4 to activate ERK5. In addition to the classic
pathway, IL-17E also mediates Act1-JAK1/2-STAT3 pathway.
March 2022 | Volume 13 | Article 847937
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complement proteins (such as C1q, c3, and CFB) (92–95).
Oxidative stress and inflammation attenuated the expression of
complement inhibitors but increased the expression of
complement components during aging (79, 92, 94–96). It means
that the complement system may function in the immune defense
of the retina. Age-related oxidative damage could directly regulate
the expression of retinal cell complement. For example, oxidized
photoreceptor outer segments not only reduced the expression of
complement inhibitor CFH, but also strengthened the expression
of CFB in RPE cells (97, 98). On the other hand, the change of the
immunosuppressive microenvironment was able to interfere with
the production of various complement regulators (C4bp, C1INH,
DAF, and CD59) by RPE and microglia. In addition, the
inflammatory factors released by subretinal macrophages may
up-regulate the expression of complement protein in RPE cells
(92, 99) (Figure 2).
IL-17A AND RETINAL
DEGENERATIVE DISEASES

Age-Related Macular Degeneration (AMD)
Age-related macular degeneration (AMD) is the main cause of
irreversible blindness in the elderly, affecting 8.7% of people
Frontiers in Immunology | www.frontiersin.org 5
worldwide. AMD refers to the age-related progressive
degeneration of photoreceptors and underlying RPE in the
macular area of the retina (2, 100). Oxidative stress,
inflammation and heredity are all considered to be the critical
pathogenic factors leading to the occurrence of AMD (101–103).
Among them, more evidences prove the important role of
immune inflammation in the progression and treatment
of AMD.

The IL-17 signaling pathway may be involved in one of
the important pathogenesis of AMD (104). The study found
that the IL-17A level of AMD patients’ serum, especially
neovascularization and geographic atrophy AMD patients, was
significantly higher than that of the normal group (105, 106). It
has been reported that there were 456 differentially expressed
genes (DEGs) and 4827 differentially methylated CpGs (DMCs)
in the RPE samples of 26 AMD patients and 105 normal people
in the GEO and Array Express databases. Enrichment analysis
showed that up-regulated genes got involved in IL-17 signaling
pathway in AMD (107). In terms of experiments, RPE was
induced by fungi to induce different natural immune
responses. After infection of ARPE-19 cells with Aspergillus
flavus, IL-17A was increased by 5.6 times (108). Liu et al. (109)
have proved that complement C5a in the serum of AMD patients
promoted the production of Th17 family cytokines. However,
A B

FIGURE 2 | The relationship between inflammation and degenerative retina. Degenerative retinal diseases are characterized by the destruction of retinal homeostasis
and mild chronic inflammation. Inflammatory factors released by microglia recruited in the injured layer play a crucial role in pathological changes, expressing TNF-a
and several metalloproteinases, including MMP-1, MMP-2, MMP-3 and MMP- 14. Microglia, retinal pigment epithelial cells and neurons in the retina express various
complements and complement regulators. The degenerative retina reduces the expression of complement inhibitor CFH, while enhancing the expression of CFB in
RPE cells. In addition, changes in the immunosuppressive microenvironment can interfere with RPE and microglia to produce various complement regulators (C4bp,
C1INH, DAF and CD59). (A) The healthy retinal layered morphology. (B) The damaged retina under degenerative disease.
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there is no evidence that the growth of Th17 cytokine levels in
AMD patients’ serum is directly caused by the increased
expression of C5a. Other unknown factors that may also cause
the activation of T cell in AMD patients (109). The activation of
inflammasomes is one of the key causes of AMD. The
mechanism by which IL-17A activated NLRP3 and secreted
IL-1b is related to the production of reactive oxygen species.
IL-17A induces Akt, ERK1/2, p38 MAPK and NF-kB p65
phosphorylation signaling pathways in RPE cells. Blocking NF-
kB had an effect on IL-17A-induced IL-1b mRNA expression. It
has been confirmed that NLRP3 was the reactive inflammasomes
responding to IL-17A and IL-17A promotes the expression of
caspase-1 and NLRP3 mRNA from the post-transcriptional level
(110). Other studies also showed that the IL-17 signaling
pathway got involved in the oxidative stress of human RPE
cells through the targeted pathway of 4-octylitaconate (111). IL-
17A has been proved to induce RPE cells death by activating the
pro-apoptotic caspase-3 and caspase-9 pathways due to the
accumulation of cytoplasmic lipids and autophagosomes in
vitro experiments (105). The blood-retinal barrier is composed
of RPE cells, which is one of the blocking factors that prevent
abnormal components from choroid from entering the retina.
ARPE-19 cells were stimulated by IL-17A to destroy the barrier
function between RPE cells through activating the JAK1
signaling pathway so that the distribution of tight junction
zone occlusion protein-1 and occludin disordered (112, 113).
The protein expressed by RPE may take participate in the
angiogenesis of choroidal endothelial cells (CECs). IL-17A
exerted its ability to mediate the expression of CCL2 and
CXCL8 by stimulating RPE in vitro so as to promote the
proliferation and migration of CECs and the formation of
capillary-like structures (114).

Interestingly, IL-17A with diametrically opposite performance
depending on the cells stimulated. The responding IL-17A of
retinal astrocytes cells generated more pro-inflammatory
cytokines and chemokines, leading to increased migration of
granulocytes. Whereas, IL-17A at the same concentration would
express more suppressor of cytokine signaling proteins, thereby
attenuating the production of pro-inflammatory cytokines and
chemokines (115). The duality of IL-17A remains to be verified,
but it could provide clues for new therapeutic targets and
better prognosis.

On the other hand, ARPE-19 cells themselves constitutively
express IL-17RC instead of IL-17RA (112). However, it was also
found that IL-17RA, the main receptor of IL-17 signaling, was
one of the most up-regulated inflammatory genes in human RPE
cells after exposure to oxidative stress. In words, human primary
RPE cells expressed both IL-17RC and IL-17RA. A significant
increase in Il17ra was also detected in the retina of AMD-like
mouse models so that knockout of IL-17RA in RPE cells can
inhibit cell apoptosis and reduce inflammation. Transcription
factor KLF4 promoted the production of other inflammatory
factors by directly activating IL17RA expression in RPE cells
(110, 116).

In addition, IL-17RC methylation could act as a marker for
the degeneration of RPE cells and choroidal neovascularization
(CNV) in vitro. There is a significant correlation between
Frontiers in Immunology | www.frontiersin.org 6
promoter methylation status and expression of IL-17RC. The
mRNA overexpression of IL-17RC in RPE cells was 6.3 times
higher than that under normoxia conditions due to the
demethylation of the IL-17RC promoter in chemical hypoxia.
At the same time, the epigenetic control of IL-17RC by hypoxia-
inducible factor-a and hypoxia could synergistically enhance the
activation of angiogenic factors (117). Using siRNA to knock out
Il-17rc may inhibit the apoptosis of RPE activated by IL-17A.
Gene therapy with adeno-associated virus vectors encoding
soluble IL-17A receptors prevented IL-17-dependent retinal
degeneration and had certain therapeutic potential for
AMD (105).

There is a strong link between inflammation and the
development of AMD. Both IL-17 and its receptor are
considered biomarkers of the disease in AMD patients. IL-
17A-targeted therapy is being explored as the most likely
therapeutic strategy in the clinic.

Diabetic Retinopathy (DR)
Diabetic retinopathy (DR) is a complication of diabetes in the eye
disease, and also one of the main causes leading to blindness in
the world. The study of DR is of great importance because of the
prevalence of diabetes. IL-17A and Th17 cells have been
confirmed to participate in various types of diabetes and
accumulate multiple organ complications (39, 118–121).

Nadeem et al. (122) found that the concentration of IL-17A in
the serum of DR patients was increased compared with that of
healthy people. In addition, another study clarified that the level
of IL-17A in the vitreous fluid of DR patients was significantly
higher than that of normal one so that disturbances in Th17 cells
and IL-17A levels may be related to DR (123). The same results
were found when comparing serum and vitreous samples from
patients with proliferative diabetic retinopathy (PDR) (124).
Clinically, proprietary Chinese medicines are usually used to
treat PDR. Both compound xueshuantong capsule and
hexuemingmu tablet contain ingredients that served as the
treatment of PDR, and mainly affected the following pathways:
response to oxidative stress, vascular regulation and blood
coagulation. Network pharmacology analyzed that IL-17
signaling pathway ranked in the top five pathways with the
most significant enrichment and the highest gene ratio (125).

IL-17A induced endothelial cells to secrete inflammatory
factors, followed by down-regulation of tight junction proteins
to promote retinal inflammation and blood-retinal barrier (BRB)
destruction (112). BRB dysfunction underlies diabetic macular
oedema under sight-threatening conditions. Inflammation plays
an important role in BRB dysfunction. IL-17A damaged BRB by
activating the JAK1 signaling pathway. Targeting this pathway
may be a new method to treat inflammation-induced diabetic
macular oedema (113). The more widely used DR-like pathology
model is induced by high glucose (HG), ARPE-19 cells were
induced by HG to simulate the breakdown of BRB, leading to the
higher levels of IL-17A. The addition of insulin-like growth
factor-2 inhibitors could improve the inflammatory invasion of
IL-17A into cells to achieve a protective effect (126). In addition,
HG induces the expression and secretion of IL-17A and IL-17RA
in primary Müller cells. IL-17A further enhanced the activation
March 2022 | Volume 13 | Article 847937
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of Act1/TRAF6/IKK/NF-kB signaling pathway in HG-treated
Müller cells and Ins2Akita diabetic mouse. It has been
established that Müller cells enhance inflammation and
neuronal apoptosis in the retina through an autocrine signaling
cascade (127, 128).

IL-17 acts as a powerful proinflammatory cytokine and serves
for mobilizing neutrophils, then inducing the secretion of
inflammatory factors (129, 130). In addition, the interaction of
these mediators attenuates the tight junction protein cake leading
to the disruption of BRB (112). Diabetes-induced retinal vascular
leakage may be mediated by IL-17A regulation of neutrophil
elastase and its activity because Il-17a gene deletion greatly
attenuated the increase in neutrophil elastase levels of diabetic-
retina (131). IL-23 could promote IL-17A secretion by Th17 cells
so that the current study of the IL-23/IL-17 axis is increasingly
being studied in DR (132–134). Streptozotocin (STZ) -induced
rat model demonstrated that IL-17A levels in both retina and
serum were greatly increased. After intravitreal intervention
using IL-23Rp19 antibody, the BRB of RPE cells was restored
and IL-17A was down-regulated (133). Namely, the significance
was that blocking the IL-23/IL-17 axis could delay the process
(135). On the basis of Th17 cells causing retinal inflammation,
vascular leakage and capillary degeneration in the retina of
diabetic mice, Zapadka et al. further demonstrated that
aromatic hydrocarbon receptor agonists (VAF347) can alleviate
the pathophysiological process by inhibiting Th17 cell
differentiation and the production of IL- 17A. (120, 136, 137)

IL-17A has been shown to play a role in promoting
angiogenesis in ischemic retinopathy. The interaction between
IL-17A and endoplasmic reticulum stress promoted RNV by
regulating the TXNIP/NLRP3 signaling pathway in macrophages
under hypoxic conditions. In vitro, macrophages isolated from
the retina of a mouse model of oxygen-induced retinopathy have
also been verified to activate the NLRP3 inflammasome through
the IL-23/IL-17 axis to promote the formation of RNV (138).

IL-17A-expressing T cells and neutrophils were adhered to
the retinal vasculature. IL-17A could bind to its receptors (IL-
17RA) expressed on photoreceptors, Muller glia, and retinal
endothelial cells, then initiating a downstream IL-17A-
dependent injury mechanism (120, 127, 128, 136). Various
pathological features mediated by diabetes were significantly
reduced in Il-17a −/− mice (136). Cells with RORgt expression
may be qualified as the main makers of IL-17A in the retina. IL-
17A production prevented by the RORgt inhibitor SR1001 in
mice, thus successfully blocking STZ-induced retinal
inflammation and retinal endothelial cell death (120, 139, 140).
In addition, Lindstrom et al. (120) studied IL-17A-dependent
apoptotic signaling cascades in the RPE. After initiating receptor
signaling, IL-17A induce constitutive expression of Act1 on the
RPE and recruit FADD to interact with it, further directing the
activation of apoptotic proteins caspase 8 and caspase 3. IL-17A
got involved in capillary degeneration through the apoptotic
signaling pathway in endothelial cells (120).

IL-17A is a hallmark cytokine produced by Th17 cells and may
achieve neovascularization through a regulatory network of
cytoskeletal remodeling, vascular endothelial growth factor
(VEGF), VEGF-related cytokines, and complement components
Frontiers in Immunology | www.frontiersin.org 7
(141). It has been found that IL-17A may induce Müller cells to
produce elevated levels of VEGF during early DR (120). DR-
mediated IL-17A production was dependent on RORgt. The
RORgt small molecule inhibitor (SR1001) served as a candidate
for DR therapeutics for SR1001 had properties that could cross the
BRB (139). In addition, IL-17A has been implicated in resistance
to anti-VEGF agents. Anti-VEGF agents were currently exerted to
treat different types of cancer, wet AMD, macular edema, and DR
(142–146). The usage of IL-17A neutralizing antibodies
significantly improved the antitumor activity of anti-VEGF
therapies in cancer research. (147). Similarly, diabetes-mediated
IL-17A enhanced VEGF production so that preventing IL-17A
production may be a potential treatment to delay the progression
of DR. Collectively, elevated IL-17A levels can lead to local
inflammation and immune responses in the retina, which may
promote the development of DR.

Glaucoma
Glaucoma is a neurodegenerative disease closely related to age. It
is characterized by increased intraocular pressure due to
obstruction of the outflow of aqueous humor, which causes
progressive damage to the optic nerve (148). Glaucoma is
usually defined as a disease of the optic nerve, which is formed
by the axons of retinal ganglion cells (RGCs). The death and loss
of RGCs is the greatest threat to this disease, and finally leading
to irreversible blindness (149, 150). The treatment is usually
through the use of topical drugs or surgical intervention to
reduce intraocular pressure. Drug therapy includes two aspects.
One is to increase the drainage of ocular fluid, such as the use of
prostaglandin analogs, Rho kinase inhibitors, nitric oxides or
miotics. The other is to reduce the amount of ocular fluid
produced, such as the commonly used clinical drugs include
a-adrenergic agonists, beta blockers, and carbonic anhydrase
inhibitors, etc. (151, 152). However, the control of intraocular
pressure cannot completely avoid the death of RGC (153).
Therefore, other mechanisms such as neuroinflammation may
also be related to the progression of glaucoma damage (154, 155).
The role of immune-inflammatory response in glaucomatous
optic nerve damage has received increasing attention and has
become a research hotspot (156–159). Reports have showed that
the inflammatory cytokines in aqueous humor were significantly
increased (160–163).

Elevated autoantibody expression is a marker of immune
dysregulation in glaucoma, and the cause of autoantibody up-
regulation remains unknown. It has been demonstrated that
Th17 cells were upregulated and expressed IL-21 in glaucoma
patients. These Th17 cells are able to promote Ig secretion by
naive B cells in a manner dependent on IL-17A (164).

Microglia, the immunocompetent cells that are activated and
respond to neurons after external stimuli (165). Interestingly,
microglia changed their morphology after activation and
gradually evolve into amoeboid cells that act as macrophages.
They migrated to damaged sites, proliferates, engulfs
microorganisms, and subsequently damaged tissues (166–169).
Excessive activation of microglia released a range of inflammatory
cytokines, ultimately leading to damage to neural tissue (90, 170). At
the same time, toxic substances from injury triggered the activation
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of microglia in turn so that inflammatory factors caused apoptosis
of RGCs by intrinsic and extrinsic pathways again, which formed a
vicious cycle and exacerbated neurodegenerative processes (171,
172). In addition, activated microglia were able to transmit antigens
to activated T cells in the retina and optic nerve, thus participating
in the process of T cell-mediated neuroprotective immunity and
immunopathological damage (173, 174). A significant increase in
IL-17A expressed bymicroglia was found in unilateral laser-induced
ocular hypertension mice (31).Using a mouse model of retinal
ischemia-reperfusion induced by acute intraocular pressure
elevation, the migration and activation of microglia caused up-
regulated expression of IL-17A and IL-1b (175). In addition,
pressurization of neural cells PC12 mimicked elevated intraocular
pressure in vivo and IL-17A was found to be promoted in cells after
induction (176).

Glaucoma is a blinding disease whose pathogenesis is not yet
fully understood, so further studies are needed to understand the
role of IL-17A in glaucoma.
CONCLUSION

Currently, IL-17A is the factor most closely related to human health
and disease in the IL-17 family. There is a synergistic effect between
the development and progression of various retinal degenerative
diseases and the imbalance of IL-17A. IL-17A not only participates
in inflammatory pathogenicity, but also induces innate immune
Frontiers in Immunology | www.frontiersin.org 8
defense. The functions of IL-17A are more diverse than originally
discovered. We still lack understanding of the role of IL-17A in
tissue damage. With age, the immune privilege mediated by the
retina may gradually weaken and disappear. The reduction in
passive protection makes the retina more vulnerable to damage
such as oxidative stress in AMD, hyperglycemia in diabetes and
ocular hypertension in glaucoma (Figure 3). It is necessary to
further study how IL-17A interacts with different cells and
cytokines in the retina to find better targets and pathways. In the
future, intravitreal injection or non-invasive eye drop nanomaterials
can be used to encapsulate IL-17 neutralizing antibodies as new
treatment methods. Treatment strategies aimed at reducing the
production of inflammatory factors may have a beneficial impact
on the management of retinal degenerative diseases.
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FIGURE 3 | Schematic diagram of the involvement of IL-17A in AMD, DR, and glaucoma. In AMD, IL-17A activates NLRP3, secretes IL-1b, and induces various
signaling pathways in RPE. IL-17A promotes the expression of caspase-1, caspase-3 and caspase-9 pathways from the post-transcriptional level. IL-17A disrupts
the distribution of tight junctions and destroys the blood-retinal barrier. IL-17A mainly targets blood vessels in DR, inducing inflammation, vascular leakage and
capillary degeneration. The cells expressing RORgt may be the main producers of IL-17A in the retina. In glaucoma, IL-17A was found to be closely related to
activated microglia.
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