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Frailty is a pre-clinical condition that worsens physical health and quality of life. One of

the most frequent symptoms of frailty is an increased risk of falling. In order to reduce

this risk, we propose an innovative virtual reality motor rehabilitation program based on

an immersive tool. All exercises will take place in the CAVE, a four-screen room with

a stationary bike. The protocol will include two types of exercises for the improvement

of balance: “Positive Bike” and “Avoid the Rocks.” We will choose evaluation scales

related to the functional aspects and subjective perception of balance. Our aim is to

prove that our innovative motor rehabilitation protocol is as effective as or more effective

than classical rehabilitation.
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INTRODUCTION

The constant increase of the elderly population compared to other age groups is now an evident
phenomenon (1) which has led to increased efforts to propose solutions to the problems arising
from the physiological condition of the elderly. Aging causes changes in both cognitive and motor
functioning, which, depending on the degree of decline, can impact on different aspects of life
with repercussions at various levels. In particular, it is possible to outline a condition of particular
vulnerability in a part of this population, in patients defined as “frail,” which represent 6.9% of adults
over 65 years old (2). In this pre-clinical condition, there is a pattern of decline in the functioning
of different aspects such as gait, mobility, balance, and cognitive functioning (3). These aspects
associated with increasing age place these patients in a particular condition of vulnerability that
is directly associated with a high risk of adverse health outcomes, mortality, disability, and more
commonly a higher risk of falls (2, 4–6). The diagnostic criteria for this condition are: unintentional
weight loss (10 lbs in the past year), self-reported exhaustion, weakness (grip strength), slow
walking speed and low physical activity. Three or more of these criteria are needed for diagnosis
according to the definition of Fried and colleagues (2).

Among the consequences of frailty mentioned above, the risk of falling is one of the most
frequent and critical health problems occurring in the elderly and in particular in the frail
population. It is estimated that one out of three elderly people falls at least once a year (7). This
event has important consequences both for the autonomy of the individual and for problems in
the psychosocial area, with further repercussions for cognitive functioning and quality of life (8, 9).
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The risk of falling in old age is a phenomenon that can be
explained on the basis of the interaction between cognitive
and motor factors. In fact, correct locomotion presupposes the
possibility of simultaneously managing gait performance and one
or more cognitive tasks (10). The presence of cognitive activity
during the execution ofmotor tasks often occurs in daily activities
(11, 12). The possibility of performing both tasks concurrently
could be compromised in the elderly, who often show a decrease
in attention skills and executive functions, thus leading to an
increased risk of falls.

This phenomenon is interpreted according to the cognitive-
motor interference (CMI) theory (13, 14), which states that
the simultaneous execution of a motor task and a cognitive
task represents a kind of dual-task (DT) interference that
requires great cognitive resources and in particular attentive
abilities and executive functioning (15). Depending on the
complexity of the cognitive task, its simultaneous execution with
motor performance may compromise the execution of motor
performance, of cognitive performance or both (1, 15). However,
on the basis of the information we have, DT tasks have been
tested and proved to be an excellent tool for the simultaneous
treatment of motor and cognitive abilities, and consequently for
the recovery of abilities (such as gait) and the reduction of the risk
of falls.

On the other side, work on balance separately is important
in order to provide more focused exercises. A recent review (16)
underlay the importance of balance in reducing the risk of falls in
the elderly. In particular, old subjects with deteriorated balance
fall more frequently than seniors with unimpaired postural
control, which emphasizes the need for balance and postural
training in this specific population (17). Almost all the studies
that have investigated the prevention or the treatment of the risk
of falling in the elderly conclude that different kinds of physical
activity are effective for balance control and fall prevention (18).
Osoba et al. (19) strongly recommend treatments to improve
balance and gait in the elderly, in particular with virtual reality.

Considering frailty as a dynamic and reversible process with
transition between states over time (20), many studies have
focused on the possibility of reducing frailty and the risk of
falls with specific interventions and activities that can prevent
this condition (21). The motor rehabilitation approach based
on physical exercise, both aerobic and to increase strength (22),
has proved useful in reducing the risk of falls (23–26) and for
the general improvement of cognitive functioning (27). Physical
exercise, such as balance, strength, flexibility, and coordination
training, is associated with a reduction in the risk of falls not
only in healthy elderly people but also in individuals with
cognitive impairment (28) and specifically in frail older people
(23, 24). A one-size-fits-all program is not suitable, as the
intensity of the exercise must be proportional to the patient’s
capabilities (29). But with regard to the kind of treatment,
a recent systematic review showed that exercises to increase
strength and postural balance are those most associated with the
prevention of falls (25). Moreover, specific treatments for the

training and recovery of balance mechanisms, such as treadmill-
based systems, therapist-applied perturbations and perturbation-
based balance training, would be more effective than general
exercises (30, 31).

Several studies suggest the effectiveness of the integration of
motor and cognitive training to decrease the risk of falls, and
the DT approach seems to be one of the more efficient for
the improvement of motor and cognitive abilities (29, 30). The
contribution of higher-order cognitive systems such as executive
functions makes this approach an effective training for the
treatment of fall risk (10).

Virtual reality (VR) has improved the development and
implementation of interactive cognitive-motor training
programs. Ecological and realistic environments can be
created by means of VR, which depict real/daily life situations
with beneficial effects on patients’ acceptance and adherence
(32). Balance and functional mobility are the main domains
tackled by VR with promising outcomes, suggesting this tool as
an appropriate rehabilitative approach (33).

According to positive technology theory (34), interaction
with technology leads to positive emotions and self-growth.
The quality of psychological intervention can benefit from
what is called “transformation of flow.” According to Riva and
colleagues, the user is able to exploit the optimal experience
with VR and increase his/her involvement to obtain better
performances (35, 36). Thanks to VR is possible to create
a task both involved and challenging in order to engage
patients, leading to promising results in cognitive and physical
rehabilitation (37, 38).

VR cycling training for motor rehabilitation has been used
in old adults and stroke patients (39–43); however, no one has
implemented DT protocol with physical and executive functions.
We will describe the rationale, design and usability of a fully-
immersive VR DT biking navigation called the “Positive Bike.”
To our knowledge, the majority of the research on balance
training involves standing posture; fewer studies have focused
on sitting posture rehabilitation (42). Stationary cycle exercises
have a positive effect on weight shifts and gait, as well as the
functioning of lower body limbs and a reduction of fall risk
(44–46). Cycling also contributes to maintenance of specific
balance coordination patterns and could help to preserve balance
control and speed of voluntary stepping in the elderly (47).
Walking is very close to cycling; indeed, they are both cyclical
and activate agonist-antagonist muscles (48–50). Additionally,
stationary cycling provides a controllable workload and safer
equipment compared to the treadmill, leading to lower risk of
injury in frail users (51).

Accordingly, in this paper an innovative VR-based protocol
is proposed. The aim of the training will be to increase balance
in frail people so as to reduce the risk of falls. This protocol will
be developed within a national financed project with the purpose
of creating both high- and low-end tools for motor (52, 53) and
cognitive rehabilitation (54, 55). In this paper we will focus on the
high-end motor part.

Frontiers in Neurology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 1078

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pedroli et al. Motor Protocol for Frailty Rehabilitation

MOTOR REHABILITATION TRAINING

Inclusion/Exclusion Criteria
The eligibility criteria will require the participants to be 65 years
of age and older, to match at least three of the five frailty criteria
of Fried and colleagues (2) and to have an MMSE (56) score
between 30 and 27. Fried’s criteria include unintentional weight
loss, self-reported exhaustion, weakness, slow walking speed
and low physical activity. Exclusion criteria include significant
vision impairments, presence of depression or anxiety without
medications and hemianopsia or hemiplegia. The presence or
absence of these criteria will be assessed during the initial clinical
assessment performed by a physician. If patients report some
depression or anxiety symptoms or the clinician suspect one of
this problems he will be given specific tests, like Beck Depression
Inventory [BDI-II (57)] or the State-Trait Anxiety Inventory
[STAI Y1-Y2 (58)]. The final sample will be composed of 64
patients; in order to achieve this goal, at least 80 subjects will be
assessed. To evaluate the size of the involved samples, we will use
a Sample Size Calculation (Power Analysis) using the software
GPower∗3. The recent randomized trial assessing reduction in
frailty (59) found that changes in frailty and mobility are similar
in magnitude and represent medium effect sizes. Using their
data, we estimated a minimum of 64 subjects to be included
in the physical rehabilitation experiment in order to achieve a
minimum power of 90%, considering a medium effect size of 0.4,
a 15% dropout/non-compliance rate and a significance level of
0.05. Possible side effects connected with VR systems, such as
nausea or dizziness, are referred to as cybersickness.

Outcome Measures and Data Analysis
We will choose evaluation scales related to the functional aspects
(points 1, 2, and 3) and the subjective perception of balance
(point 4). We will also take objective data using the Neurocom
Balance Master (point 5). A general muscle strength assessment
(point 6) will take using a hand grip dynamometer, used also
for testing the frailty of the patients. A trained physiotherapist
performed the assessment in order to avoid low reliability of the
data. All the information are included in the Table 1.

1. The Tinetti Balance Scale (60) is considered a gold standard
for the validation of balance tests. It is a simple clinical that

consists of 14 items with a score out of 24. The higher the score,
the better the performance.

2. The Equiscale (61) takes into account the three subdomains
of still standing, resistance to external perturbations
and resistance to self-induced perturbation. Real-life
performances, such as leaning forward and sitting up,
are represented.

3. The Timed Up and Go Test (TUG) (62) takes into
consideration the time that the subject takes to get up from
a standard chair, walk three meters, turn around and go back
to sitting down. The time was measured from the moment the
clinician says “go” to the moment the participant sits back in
the chair.

4. The Dizziness Handicap Inventory (DHI) assesses the self-
perceived handicapping effects of balance system disease (63).
The DHI consists of 25 items derived from three content
domains believed to encompass the functional, emotional
and physical impacts of balance system disease. The subject
can answer in three different ways (Yes, No, Sometimes) for
each question. The “yes” response is scored 4 points, the
“sometimes” response is scored 2 points, and the “no” response
is scored 0 points. High score relates to high impact of the
symptoms on the patient’s daily living.

5. The Neurocom Balance Master R© (64) uses a fixed force
plate to measure the vertical forces exerted through the
patient’s feet to measure center of gravity position and
postural control. With this instrument we can take objective
measures of: (1) the modified Clinical Test for the Sensory
Interaction on Balance (CTSIB), which estimates balance by
measuring the speed of oscillation of the Center of Pressure
(CP) with open then closed eyes and firm then mossy
ground; (2) limits of stability: the possibilities of moving
the CP toward a predetermined target without moving the
feet; and (3) rhythmic weight shifting in the frontal and
sagittal plane, without moving feet. These data have clinical
significance because they give us numerical data about the
ability of the subject to maintain balance in standing and static
position tests.

6. The strength outcome (65) was measured as the best
performance of three readings using a handheld dynamometer
(Jamar, Sammons Preston, Bolingbrook IL). We tested
both hands.

TABLE 1 | Outcome measurements.

Test Outcome informations Administration Primary outcome

Tinetti Balance Scale Balance Assessment scale compiled by the

physiotherapist

Equiscale Standing and resistance to external and

self-induced perturbation

Assessment scale compiled by the

physiotherapist

TUG Mobility Assessment recorded by the

physiotherapist

DHI Self-perceived balance Questionnaire compiled by subject

Neurocom Balance Master® Objective measures of balance Information recorded by a software *

Handheld dynamometer Strength Assessment recorded by the

physiotherapist

Frontiers in Neurology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 1078

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pedroli et al. Motor Protocol for Frailty Rehabilitation

Our hypothesis is that our VR rehabilitation program is more
effective than classic treatment in improving objective and
subjective outcomemeasures. In order to confirm our hypothesis,
we will performMixedModel ANOVA to compare the difference
between the groups (VR VS NN-VR) and also between the time
(T0, T1, T2) for each outcome measure collected. Also, the Bayes
Factor will be used to determine if our program is more effective
than classic treatment.

Protocol
During the first medical examination, the inclusion and exclusion
criteria were assessed by a physician. If the subject was considered
suitable for the clinical protocol, outcome measures will be
collected (T0) by a trained physiotherapist. Patients will be then
randomly assigned to a control or experimental group using a
randomization sequence obtained from the site randomizer.org.
The first group will undergo classical physiotherapy, while the
other one started a VR protocol. After 5 weeks without physical
treatments, patients will return to the hospital to undergo a
second evaluation (T1). Then, 10 biweekly rehabilitation sessions
will start, and at the end a new assessment will be done (T2).
The workflow is presented in Figure 1. Each session will last
approximately 45min and included both cycloergometer and
dynamic exercises. To consider the treatment valid, patients will
have to participate in at least 8 of 10 rehabilitation sessions and
all the assessments; patients who will execute fewer than eight
sessions will be considered drop-out (Figure 1). All participants
will sign the written informed consent, which was approved by
the Ethical Committee of IRCCS Istituto Auxologico Italiano.
The study was conducted in compliance with the Helsinki
Declaration of 1975, as revised in 2008.

VR SETTINGS

The training will take place in a Cave Automatic Virtual
Environment (CAVE). The CAVE system consists of a room-
sized cube in which a combination of four stereoscopic projectors
(Full HD 3D UXGA DLP) is used to obtain a 3D visualization
of the virtual environment (VE) scene onto three walls, plus the
floor. The projected right-eye and left-eye images are combined
together by active goggles, making the perception of depth
possible. In addition to the visualization devices, CAVE is
equipped with an optical tracking system (VICON). Such a
system allows the tracking of passive reflective markers and
enables the correction of the spatial distortion of the simulated
environment, which is eventually displayed in the CAVE with
a 1:1 scale ratio. In our study, both CAVE goggles and an
Xbox joystick are equipped with an asymmetrical set of markers
allowing for the retrieval of their position and heading in the
space. These pieces of data are used, respectively, to adjust the
user’s point of view and to enable the use of the Xbox joystick as
a pointer for the interaction with 2D interactable elements (i.e.,
buttons) in the CAVE.

All the CAVE functionalities are handled by a cluster system
composed of two HPZ620 Graphics Workstations, mounting
Nvidia Quadro K6000 GPU with dedicated Quadro Sync cards.

FIGURE 1 | Work flow.

Both VEs described in the following paragraphs were
developed using Unity 3D and MiddleVR Unity plug-in. Thanks
to this plug-in, the application deployed from Unity can
communicate with all the CAVE system modules: the scene can
be projected onto the CAVE walls, and the motion data retrieved
from the VICON system can be exploited as inputs. The parts of
the system are highlighted in Figure 2.

Stationary Bike
The Positive Bike application requires a stationary bike (Cosmed
EuroBike 320) placed inside the CAVE. Bike velocity and
workload can be, respectively, read and set–via a serial cable–
thanks to an ad-hoc developed protocol exploiting the bike
manufacturer’s Software Developing Kit (SDK). A pushing
button is anchored on the cycloergometer handlebars for the
detection of user interaction, and an Arduino2 board is used to
connect the button to the computer.

Besides the GUI (graphical user interface), which is dedicated
to the operator for the exercise parameters setting, the application
is composed of two parts. The first one represents a trail in a
park that flows according to the pedals’ velocity (measured by
the cycloergometer in revolutions per minute, RPM). The user
bikes along the predefined path, which is created thanks to the
placement of subsequent nodes on the route; the interpolation of
such nodes is performed in real time using quaternion spherical
linear interpolation (Slerp).

Since the user cannot deviate from the predefined route, the
park is designed to discourage any desire to turn: there are no
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FIGURE 2 | The VR system, CAVE.

road forks, and around the unpaved path there is just grass.
To avoid boredom, some elements of the landscape change
throughout the exercise, e.g., different species of plants and trees,
lakes, buildings, etc. appear in the background. The path has
some bends to increase the realism of the scene, but they are
all very slight to avoid the occurrence of cybersickness related to
the expectations of a lateral acceleration. Some tests made before
this study ensured that no cybersickness arose in healthy subjects
because of the bends.

During the exercise, participants are asked to keep their
cycling velocity between 55 and 65 RPM. The bike workload is
set by the therapist at the beginning of the exercise according
to the subject’s physical status. If the biking velocity is too
low or too high, audio feedback is provided to the user: an
acute sound is reproduced to signal to the user that he/she
has to slow down; a grave sound is used to ask to speed
up. The choice of signaling errors related to the physical
part of the DT training was made to avoid distracting the
elderly from the cognitive task by introducing an additional
visual feedback.

The cognitive task of the exercise foresees the recognition of
targets (Figure 3) appearing randomly on either the left or right
side of the biking path. Targets are animals whose names start
with a predefined letter that is communicated to the patients
prior to the exercise beginning; other animals are considered
distractors. The time elapsing between two subsequent targets
is decided by the therapist who sets the exercise parameters. All
the targets appear when the user is at a distance of 20 meters,
so that he/she can clearly discriminate the targets’ features.
Target selection occurs by pressing the button placed on the
cycloergometer handlebar while the target is still in the subject’s
visual field (i.e., it is displayed on the right or left wall of
the CAVE).

Each time the user presses the button, he/she receives visual
feedback regarding the correctness of the choice. No feedback is
given if the user does not press the button, either if the choice is

FIGURE 3 | A frame of the “Positive Bike” environment.

correct (the displayed object is a distractor) or if the target has
been missed. All data related to the cognitive exercise execution,
as well as all the parameters set by the therapist, are stored in a
user-dedicated folder in XML format.

The second part of the training occurs at the end of the biking:
the screen displays a written question asking the subject how
many targets he/she remembers having picked. The therapist
types the answer on the CAVE computer’s keyboard and saves
this piece of information together with the exercise data saved at
the end of the previously described scenario.

Avoid the Rocks
The aim of this VE is training balance in frail people by using a
virtual environment running in a CAVE. The VE simulates a walk
on a straight road. Along the road, the user encounters obstacles
(i.e., different-shaped rocks) and has to avoid them. Obstacles are
positioned on the road so that the user is stimulated to perform
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FIGURE 4 | A frame of the “Avoid the Rocks” environment.

lateral movement (left and right) or to bend down to avoid hitting
the rocks (Figure 4).

The user does not need to walk to proceed forward since
his/her walking is simulated by displacing the user’s point of view
in the forward direction. The speed of the displacement can be
increased or decreased by the operator pushing the “+” or “–”
buttons on the keyboard.

To allow for the detection of collisions between the user and
the rocks along the path, a virtual model of the player (i.e., a
capsule-shaped object) is used. Such a model follows the user’s
head displacement in the CAVE, which is measured in real time
thanks to the tracking of the 3D goggles. When the virtual model
of the player is detected as colliding with an obstacle, it triggers
the reproduction of a sound signaling the error. Similarly to the
previous scenario, data regarding users’ performance are stored
in an XML file in a user-dedicated folder.

CLASSICAL REHABILITATION

The training will take place in the rehabilitation gym of our
hospital under the supervision of a physical therapist. In order to
replicate the protocol proposed in the virtual rehabilitation, we
developed two groups of tasks, one with the stationary bike and
the other with classic balance tasks, as described below. Each part
require 15min, all the sessions are about 30–40min according to
the needed of the patients.

Stationary Bike
We will use a stationary bike (the same model used in the VR
protocol) placed in the gym. The therapist set the workload,
increasing it session by session according with the training level
gained by the subject. During the exercise, participants are asked
to keep their cycling velocity between 55 and 65 RPM. No dual
task was required.

Balance Training
We will use a training protocol specific to balance in every
subject. In literature, no specific tasks for increase balance in frail
elderly people are reproted. We will use some devices such as a

balance pad, proprioceptive footboard, rocking footboard, etc. for
exercise mono- and bi-podalic station. We will train the subjects
with and without visual deprivation. The workload is regulated
according to the physical status and performance ability of the
subject. Example the therapist ask to patients to mantein balace
standing on one foot with the arms cross on the chest.

DISCUSSION

The aim of this VR rehabilitation protocol will be to improve
balance and reduce the risk of falls in frail elderly people. In order
to assess these hypotheses, we will develop an innovative tool
using an immersive VR system, the CAVE. We will compare this
innovative protocol with a selection of classical physiotherapy
exercises with the same purposes.

Expected Results and Limitations
According to our hypotheses, we would like to prove that our
innovative motor rehabilitation protocol is as effective as or
more effective than classical rehabilitation. We will include both
subjective and objective measures in order to better understand
the degree of improvement subjects will obtain. Positive Bike
aims to improve the dual-task abilities of frail elderly people using
an innovative, engaging and challenging training. We hope that
both the subjective and objective measures will increase after
our training.

Future Steps
Several studies (66–68) have showed that continuing
rehabilitation activities at home contributes to the maintenance
of benefits obtained. Accordingly, we are developing a low-end
VR tool to promote physical rehabilitation at home. This new
system will be tablet-based and will exploit the potential of 360◦

videos (68–70). To our knowledge, there are no studies that have
tested this technology for motor rehabilitation. 360◦ videos are
usually enjoyed by using head-mounted displays. We decided to
use tablets instead of head-mounted displays to reduce the risk
of injuries. Performance of balance exercises excluding patients
from the “real environment” could be risky, and tablets are a
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safer tool for the use of 360◦ videos. We will try to replicate
the protocol used for rehabilitation in the high-end VR setting
by adapting it to low-end technology. We will also provide the
patients with a portable cycloergometer in order to perform the
dual-task exercise.
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