
X-linked retinoschisis (XLRS; OMIM 312700), an 
early-onset retinal degenerative disorder, is transmitted in 
an X-linked recessive pattern and almost exclusively affects 
males [1,2]. Patients with XLRS usually present with visual 
defects of various extents in their first decade of life and 
macular retinoschisis in a spoke-wheel pattern [1,2]. About 
50% of these patients also have peripheral or mid-peripheral 
retinoschisis, mostly located in the inferotemporal quadrant 
[3]. The disease usually exhibits slow, minimal progression; 
the exceptions are secondary complications, such as retinal 
detachment and vitreous hemorrhage, which can lead to 
severe visual impairments [3,4]. ERGs used to be key diag-
nostic examinations for patients with XLRS, as these patients 
would typically display reduced b-wave amplitude with rela-
tive preservation of a-wave amplitude (b/a wave ratio below 
1.0) when their dark-adapted retinas were stimulated with 
bright flashes of light [5].

XLRS is caused by mutations in the RS1 (Gene ID: 6247; 
OMIM: 300839) gene in Xp22.1; this gene encodes a 224 
amino acid protein, retinoschisin (RS) [6]. The RS protein 

consists of an N-terminal leader sequence, an Rs1 domain, 
a discoidin domain, and a C-terminal segment. RS is highly 
expressed in photoreceptor cells and within the inner portions 
of the retina [6,7]. The discoidin domain of RS is homologous 
to similar proteins involved in cell adhesion, suggesting that 
RS might play an important part in maintaining the structural 
integrity of the retina [7,8]. So far, over 200 mutations of the 
RS1 gene have been reported, and most are missense muta-
tions identified in exons 4–6, which encode the discoidin 
domain [5,6,9–20]. Other kinds of mutations, including 
nonsense, splicing effect, frameshift small insert or deletions, 
and large deletions, have also been identified [9–20].

Many previous studies have compared RS1 genotypes and 
XRLS phenotypes, but most found no relationship between 
RS1 mutations and clinical severity [10–15]. However, some 
studies have described severe visual impairments in patients 
with mutations in exons 1–3 or with large deletions of exon 
1 [16,17]. One study indicated that patients with null muta-
tions consistently showed electronegative bright-flash ERG 
results, delayed flicker responses, and abnormal-pattern ERG 
results, while patients with missense mutations presented a 
wider range of ERG abnormalities [14]. The purpose of this 
study was to describe the genetic and clinical features of 90 
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unrelated Chinese patients with XLRS and to report any 
genotype–phenotype correlations.

METHODS

This was a retrospective, observational cross-sectional study. 
The study procedures were performed in accordance with 
the institutional instructions of the Beijing Tongren Hospital 
Joint Committee on Clinical Investigation and adhered to 
the tenets of the Helsinki Declaration. Informed consent 
was obtained from all patients after a full explanation of 
the procedures. Most patients were initially diagnosed with 
XLRS based on their clinical evaluations and family histo-
ries. Their diseases were further confirmed by identifying 
disease-causing mutations of the RS1 gene in the Genetics 
Laboratory of the Beijing Institute of Ophthalmology, Beijing 
Tongren Ophthalmic Center from 2010–2018. We recruited 
a total of 90 unrelated male patients from Beijing Tongren 
Hospital; of these, 40 probands had family histories. The 
patients included 27 probands previously reported [18,19]. 
All patients underwent standard ophthalmological exami-
nation consisting of best-corrected visual acuity (BCVA), 
slip-lamp biomicroscopy, and fundus examination. Eighty-
three patients also had optical coherence tomography (OCT) 
examinations (Heidelberg OCT SPECTRALIS, Heidelberg, 
Germany or Ivue-100, Optovue Inc., Fremont, CA). Thirteen 
patients underwent fundus autofluorescence (FAF; Heidel-
berg OCT SPECTRALIS, Heidelberg, Germany), and 12 
probands had full-field ERG examinations.

Peripheral blood samples for genetic analysis were 
collected from all the probands and their available relatives. 
Genomic DNA was then extracted using a genomic DNA 
extraction and purification kit (Vigorous Whole Blood 
Genomic DNA Extraction Kit; Vigorous, Beijing, China) 
following the manufacturer’s protocol.

PCR-based sequencing of the RS1 gene: All exons and 
flanking splicing sites of the RS1 gene were amplified by 
PCR in 87 probands. The PCR amplifications were performed 
using standard reaction mixtures, and the purified amplified 
fragments were sequenced using an ABI Prism 373A DNA 
sequencer (Applied Biosystems, Foster City, CA), as previ-
ously described [18]. A published cDNA sequence for RS1 
(GenBank NM_000330) was compared with the sequencing 
results.

Targeted exome sequencing: We used a targeted exome 
sequencing (TES) panel developed previously to conduct TES 
on three patients initially diagnosed with retinitis pigmen-
tosa or inherited macular dystrophy [21]. The capture panel 
consisted of 188 known inherited retinal degeneration genes. 
The Illumina library preparation and capture experiments 

were performed as previously reported [21]. Briefly, genomic 
DNA (1–3 μg) was fragmented into approximately 300–450 
base pairs by endonuclease digestion and used to capture 
the targeted genomic sequences. The enrichment libraries 
were sequenced as 100-bp paired-end reads on an Illumina 
NextSeq 500 (Illumina, Inc., San Diego, CA) according to the 
manufacturer’s protocol. The raw sequencing data processing, 
calling, and analysis were performed as previously described 
[21]. First, the Illumina sequencing adapters and low-quality 
reads were removed using fastq_mcf software. Then, the 
duplicated reads were removed using Picard tools, and the 
high-quality reads were aligned with the reference human 
genome (hg19) using the Burrows-Wheeler Aligner. Finally, 
the single nucleotide polymorphisms (SNPs) and insertions 
or deletions (InDels) were called using the Genomic Analysis 
Toolkit Haplotype Caller.

Bioinformatics analysis: Two databases, the HGMD database 
and the LOVD database, were used to search for reported 
pathogenic mutations. The pathogenicity of variants was 
predicted by three in silico programs: PolyPhen2, Mutation 
Taster, and SIFT. Co-segregations were analyzed if DNA 
from family members was available.

Statistical analysis: All statistical analyses were performed 
using IBM SPSS statistical software (v25.0; SPSS Inc., 
Chicago, IL). BCVA was converted to the logarithm of the 
minimal angle of resolution (logMAR) for statistical analysis. 
Values of 0, 1.0, 2.0, and 3.0 in logMAR, respectively, corre-
sponded to 1.0, 0.1, counting fingers, and hand movement in 
Snellen visual acuity [22]. Light or no light perception was 
excluded [22]. The Pearson correlation coefficient and linear 
regression analysis were used to evaluate the association of 
BCVA and age in all patients, in group A patients who carried 
the missense mutation, and in group B patients who harbored 
null or run-on mutations. Run-on mutation indicated a base 
change, cause the normal stop codon becoming an amino 
acid codon, so translation is predicted to continue into the 
3'UTR. Differences between the two genotype groups were 
analyzed using the Mann–Whitney U Test for age at visit and 
BCVA. The chi-square test was used to analyze the differ-
ences in clinical features between groups A and B. When 
fourfold table data of sample size n<40 or at least one of the 
four quadrants had a frequency T<1, the Fisher probabilities 
were used in the 2 × 2 table method. A p value less than 0.05 
was considered statistically significant.

RESULTS

RS1 mutations: We identified 68 distinct hemizygous muta-
tions of the RS1 gene in the 90 probands (Appendix 1). 
Of these mutations, 15 were newly detected in the current 
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study. The mutations included 44 missense mutations, eight 
nonsense mutations, eight splicing effects, four frameshift 
small insertion/deletions (indel), two large deletions, and two 
run-on mutations (Figure 1A). The most frequently encoun-
tered mutations were p.E72K and p.R213W, each found in four 
probands (4.4%, 4/90), followed by the mutations p.R102Q, 
p.R141H, p.W163X, p.R200C, and p.R209H, each identified 
in three probands (3.3%, 3/90). The remaining mutations were 
detected either twice (seven mutations) or only once (54 muta-
tions). The 15 novel mutations included ten missense, two 
splicing effect, two frameshift indel, and one nonsense muta-
tion. None of these novel mutations were found in any public 
databases or in our 100 normal controls. The ten missense 
mutations were predicted to be disease-causing or probably 
damaging by at least two in silico analysis programs. We used 
long-range PCR to define breakpoints in the two large dele-
tions: The first was a 15.4 kb deletion that covered part of the 
5′UTR and exon 1 and most of intron 1, and the second was 
a 6.3 kb deletion that encompassed part of intron 3 and exons 
4–6 and part of the 3′UTR (Figure 1B).

Clinical profiles: The 90 unrelated patients in the current 
study all experienced different extents of defects in visual 
acuity; six also complained of night blindness, and three 
had hearing-loss symptoms. These patients had an average 
age at diagnosis of 17.29±12.94 years (3–52 years), and their 
mean BCVA was 0.81±0.48 (logMAR from 3–0). Most 
patients showed fundus appearances typical of RS (Figure 
2); however, some presented atypical fundus changes (Figure 
3). Of the 90 patients, eight experienced vitreous hemorrhage 
(VH), six had retinal detachment (RD), and one suffered both 
VH and RD according to their medical records and fundus 
photos or ocular ultrasound scans. The average age of onset 

for the nine patients diagnosed with VH was 5.13±2.75 years 
(1.5–35 years), and the mean age of onset for the seven patients 
presenting RD was 5.43±2.99 years (1.5–9.5 years). Overall, 
76 patients showed almost symmetric lesions in both eyes, 
nine presented asymmetric retinoschisis or macular atrophy 
in their eyes, and five had only one eye analyzed (the other 
eyes excluded because of the presence of dense cataracts, 
keratoleukoma, or VH). Appendix 2 summarizes the detailed 
clinical features of each patient. Fundus examinations 
revealed that 140 (80%) of 175 eyes had macular retinoschisis, 
84 (48%) had peripheral retinoschisis, 28 (16%) had macular 
atrophy, and five (3%) presented normal macular structures. 
In total, 130 of the 140 eyes with macular retinoschisis and 
25 of the 28 eyes with macular atrophy were evaluated using 
a combination of both clinical and OCT examinations. Of the 
175 eyes, 32 (18%) showed RPE pigment migration, 20 (11%) 
showed vitreous veils, 18 (10%) presented vascular sheathing, 
and 12 (7%) had white dots. Of the total 180 eyes, eight (4.4%) 
had RD and nine (5.0%) experienced VH.

Genotype–phenotype correlations: Genetic analysis revealed 
62 patients (group A) harboring missense mutations and 28 
(group B) carrying null or run-on mutations. In this current 
cohort, the BCVA of all patients was statistically correlated 
with patient age (R = 0.107, p = 0.047); however, the visual 
impairments tended to be more severe in group B than in 
group A (Figure 4A). RPE pigment migration was more 
frequently observed in the group B patients (C = 0.16, p = 
0.031; Figure 4B). No significant difference was observed 
in the percentages of patients showing asymmetric fundus 
appearances; these ratios were 14.5% (9/62) for group A and 
17.9% (5/28) for group B.

Figure 1. The distribution of 68 distinct mutations of RS1 detected in our study and the breakpoints in two large deletions. A: The distribution 
of 68 mutations on exons of RS1. B: Lengths and positions of the two gross deletions of RS1 (in box with blue border). E indicates exon. Red 
squares indicate exons in coding regions. Black squares indicate exons in non-coding regions, and thick black lines indicate introns and 
upstream or downstream non-coding regions. The blue numbers indicate lengths of deletions in each corresponding region.
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DISCUSSION

The current study describes the genetic and clinical charac-
teristics of 90 unrelated patients with molecularly confirmed 
XLRS. It represents one of the largest Chinese cohorts to 
date to undergo clinical and genetic analysis. Our results 
provide an outline of the prevalence of macular retinoschisis 
or atrophy and peripheral retinoschisis in a large cohort of 
patients with RS.

In this cohort of patients, we identified almost all types 
of mutations of the RS1 gene. Most mutations were missense 
(65%, 44/68), a finding consistent with previous observa-
tions [9–20]. Except the mutation p.C59Y, the remaining 43 
missense mutations were exclusively located in exons 4–6, 
which encode the discoidin domain of the RS1 protein. We 
revealed two large genomic deletions in this study. The exon 

1 deletion has been reported several times before and is 
frequently found in Danish patients [9,16,17]; however, only 
few of these previous studies defined the breakpoints at the 
genomic region [17]. The c.(−35)-1451_c.52+13931del15475 
deletion identified in patient 113030 removed a core proximal 
promoter and a second CRX-bound region in intron 1 of RS1 
with multiple CRX sites; therefore, it likely modulates basal 
promoter activity [23–25]. It might cause a null allele with no 
XLRS protein produced. The c.167–532_c.580+2094del6307 
detected in patient 113330 removed a genomic region span-
ning exons 4–6, which might cause abnormal splicing.

The patients in our cohort showed profound phenotypic 
variability, and we did not find any clear genotype or pheno-
type correlation. However, we did observe that the BCVA 
of all patients decreased with aging, which seemed more 

Figure 2. Colored fundus (CF) photographs, optical coherence tomography (OCT) scans, and fundus autofluorescence (FAF) of five patients 
with RS displaying typical macular and peripheral retinoschisis or macular atrophy. A: CF photographs, OCT scans, and FAF of patient 
113690 showing macular retinoschisis and a spoke-wheel pattern of hyperfluorescence. B: CF photograph and OCT scan of patient 113190 
displaying macular retinoschisis. C: CF photograph, OCT scan, and FAF of patient 113370 displaying macular atrophy and hypofluorescence 
in the macular region. D: CF photograph and OCT scan of patient 113660 presenting both macular and peripheral retinoschisis. E–H: CF 
photograph and OCT scan of patient 113310 showing normal macular structure (E and F) and peripheral retinoschisis (E and G). H: FAF 
of patient 113310 presenting almost-normal fluorescent pattern in the macular region and a hypofluorescent region corresponding to the 
peripheral retinoschisis.
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evident in group B. One early study that included 86 patients 
with XLRS from the U.K. also found a decrease in visual 
acuity with increasing age; however, no correlation was noted 
between the severity of the disease and the mutation type 
[10]. Another genotype–phenotype correlation study revealed 
worse visual acuity in patients with null mutations than in 
those with missense mutations [14]. A recent prospective 
study that included 56 patients found almost-stable BCVA in 
patients during the 18-month follow-up period [26], further 
indicating that XLRS progression is slow.

We observed macular schisis, macular atrophy, and 
normal macular appearance in 81%, 16%, and 3% of the 
eyes in our cohort, respectively. The prevalence of macular 
schisis and atrophy was similar to that observed in Taiwanese 
patients [27]. We did not observe any significant difference 
between groups A and B in terms of the prevalence of macular 
schisis, which is consistent with the results of Vincent et al. 
[15]. As expected, patients with macular atrophy were usually 
older than the patients with macular schisis. This finding 
agrees with the natural history of XLRS, as macular schisis 
is usually followed by macular atrophy and schisis resolution 

[4]. Previous studies have observed that patients with normal 
macular structures usually carry missense mutations [14,15]; 
however, one of three patients with normal macular struc-
tures in our cohort had a splicing mutation. Four patients in 
the current cohort carried mutation p.E72K, one of the most 
common RS1 mutations [9]. All four patients only presented 
with macular retinoschisis, which differed from the obser-
vations of three patients in an English cohort who all had 
vitreous veils [15]. In contrast to previous observations, 
patient 113,030, who had a large deletion that included exon 
1, did not present a severe phenotype [16,17].

The prevalence of peripheral retinoschisis in this cohort 
was 48%, which was higher than the prevalence reported 
previously in Chinese patients (38% or 43%) [27,28] and 
English patients (33%) [15]. We did not observe any signifi-
cant difference in the prevalence of peripheral retinoschisis 
between groups A and B; however, the incidence of peripheral 
pigmentary disturbances was significantly higher in group B. 
The rates of other peripheral findings, such as RPE pigment 
migration, vitreous veils, white dots, and vascular sheathing, 
were similar to those reported in English patients [15]. The 

Figure 3. Colored fundus (CF) photographs and optical coherence tomography (OCT) scans of four patients with X-linked retinoschisis 
displaying atypical fundus appearances. A: CF photographs of patient 113270 showing bilateral peripheral retinoschisis involving the macula 
and severe retinal pigment degeneration with pigmentation, sheathed retinal vessels, and white dots at the temporal retina. B: CF photographs 
of patient 019143 presenting bilateral macular atrophy and retinal pigment degeneration with bone spicules and arteriole narrowing in the 
peripheral retina. C: CF photographs of patient 113580 showing macular atrophy with pigmentation, white spiculations in the peripheral 
retina of the right eye, and pigmentation in the peripheral retina of the both eyes and OCT scans presenting bilateral macular atrophy and 
peripheral retinoschisis in the right eye. D: CF photographs and OCT scans of patient 1131090 displaying symmetric macular atrophy with 
pigmentation.
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rates of RD and VH were lower than the rates reported in 

an earlier study [3,4] but were similar to those found in an 

English cohort [15].

One limitation of this study was that only 12 patients 

underwent ERG examination. Therefore, we could not 

compare disease severity with the type of ERG abnormality. 

Other limitations were the retrospective design and the lack 

of longitudinal observation.

In conclusion, patients with RS1 mutations present 

profound phenotypic variability and show no clear genotype–

phenotype correlations, and patients with null mutations tend 

to have more severe XLRS-related visual defects.

APPENDIX 1. PRESUMED PATHOGENIC RS1 
VARIANTS IDENTIFIED IN THIS STUDY AND 
ANALYSIS OF THE VARIANTS BY PREDICTIVE 
PROGRAMS.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. THE CLINICAL FEATURES AND 
THE MUTATION SCREENING RESULTS OF THE 
PATIENTS IN THIS STUDY.

To access the data, click or select the words “Appendix 2.”
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Figure 4. Comparison of the age, visual acuity, and clinical characteristics of groups A and B. A: Scatter plot and regression line of visual 
acuity with age in group A (red filled circles) and group B (solid green pentagrams). B: Bar chart of the clinical characteristics of the patients 
in groups A and B. Asterisks mark statistically significant differences (p<0.05). The numbers on the top of each bar indicate numbers of 
eyes with different clinical features.
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