Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays

Yee Leng Yap^{1,2,*}, Maria P. Wong³, Xue Wu Zhang¹, David Hernandez⁴, Robin Gras⁴, David K. Smith⁵ and Antoine Danchin²

¹HKU-Pasteur Research Centre, Dexter H.C. Man Building, 8 Sassoon Road Pokfulam, Hong Kong, China, ²Institute Pasteur, Unité de Génétique des Génomes Bactériens, CNRS URA 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France, ³Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China, ⁴Swiss Institute of Bioinformatics Proteome Informatics Group, CMU, 1 Rue Michel-Servet CH 1211, Geneva 4, Switzerland and ⁵Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China

Received August 14, 2004; Revised November 2, 2004; Accepted December 12, 2004

ABSTRACT

Gene transcription in a set of 49 human primary lung adenocarcinomas and 9 normal lung tissue samples was examined using Affymetrix GeneChip technology. A total of 3442 genes, called the set M_{AD} , were found to be either up- or down-regulated by at least 2-fold between the two phenotypes. Genes assigned to a particular gene ontology term were found, in many cases, to be significantly unevenly distributed between the genes in and outside M_{AD} . Terms that were overrepresented in M_{AD} included functions directly implicated in the cancer cell metabolism. Based on their functional roles and expression profiles, genes in M_{AD} were grouped into likely co-regulated gene sets. Highly conserved sequences in the 5 kb region upstream of the genes in these sets were identified with the motif discovery tool, MoDEL. Potential oncogenic transcription factors and their corresponding binding sites were identified in these conserved regions using the TRANSFAC 8.3 database. Several of the transcription factors identified in this study have been shown elsewhere to be involved in oncogenic processes. This study searched beyond phenotypic gene expression profiles in cancer cells, in order to identify the more important regulatory transcription factors that caused these aberrations in gene expression.

INTRODUCTION

The transformation of normal lung tissue into lung adenocarcinomas involves, among other characteristic features, a hallmark process by which the cell loses control of its replication process (an accelerated cell cycle) (1). Adenocarcinomas have a high incidence of fatality in patients in US, and a similar trend is developing in other countries (2). At present, lung cancer studies generally incorporate two main objectives: providing an early and sensitive diagnosis, and trying to understand the molecular basis underlying the disease formation. Recently, the availability of the human genome sequence (3) and gene expression profiling techniques (4) have provided new insights, narrowing the gap to achieve these objectives. The challenges that lie ahead include systematically identifying the functions of all cancer associated genes, and continuing the efforts to decipher their regulatory networks. This information will provide a much deeper understanding of the mechanism of cancer cell formation and development, and assist in the identification of potent therapeutic targets for disease control and eradication.

Computational methods that are employed to identify cancer associated genes from megabytes of noisy microarray data still require further development. Data normalization procedures may have an important effect on the succeeding downstream data analysis (5–8). Using human housekeeping genes as the least variable set of gene expression profiles is one accepted method (9). Many computational methods have been introduced to determine marker genes for cancer from gene expression datasets (10,11). These methodologies aim to stratify samples into tissue classes or phenotypes based on the

*To whom correspondence should be addressed at HKU-Pasteur Research Centre, 8, Sassoon Road, Pokfulam, HongKong, China. Tel: +852 2816 8438; Fax: +852 2872 5782; Email: daniely@hkusua.hku.hk

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use permissions, please contact journals.permissions@oupjournals.org.

ability of sets of differentially regulated genes to discriminate among the samples. Methods such as recursive partitioning (12), expression ratio analysis (13), principal component analysis (14), partial least squares (15), and independent component analysis (16) have been used to identify the minimum set of genes that can achieve this classification. However, the usually small number (tens) of (tissue) samples per class and the large number (tens of thousands) of features (genes) in these datasets cast doubt on the statistical significance of genes identified as discriminating between normal or cancer tissues or cancer subtypes. The effects on the detection of cancer marker genes due to these constraints, which can lead to genes being classified as markers by chance, have been investigated (17).

Recently, the use of computational methods to identify regulatory elements has become increasingly important (18). This is partly because the alternative of experimental determination of cis-regulatory elements can be inaccurate, and is often slow and laborious (19). A common way to analyze regulatory relationships among genes using microarray data is to cluster the genes, based on their expression profiles, into sets of putatively co-regulated genes. This assumes that co-regulated genes are likely to have cis-regulatory elements in common (20). However, searching for common sequence signals in genomic regions near these genes can lead to the detection of spurious cis-regulatory elements, as many genes may show similar expression profiles for reasons other than co-regulation (20). Many studies have shown that biologically relevant cisregulatory elements often occur in groups (21,22). Following this rationale, conserved regulatory motifs correlated to gene expression were discovered by fitting a linear regression model to the expression arrays from Saccharomyces cerevisiae (23) and an extension of this technique was used to identify binding motifs of the transcription factors ROX1p and YAP1p (24). In this work, we performed a microarray based study of a set of normal lung tissues and a set of primary lung adenocarcinomas. Our aims were, first, to distinguish the broadest set of genes (M_{AD}) that showed differential expression levels across the two tissue types and investigate the correlation of their gene expression profiles with the tissue type. Second, we wished to examine the division of genes with the same functional annotation between the $M_{\rm AD}$ set and the remaining genes on the microarray to find functional groups disproportionately represented in M_{AD} . Finally, we attempted to identify the transcription factors, as well as their corresponding binding sites, which regulate the observed expression differences of the genes in the $M_{\rm AD}$ set.

The rationale for the first two aims was that, we could make use of the knowledge accumulated by scientists on genes in the M_{AD} set, by using functional annotations assigned through Gene Ontology terms, to investigate the nature of the biological processes that were actually perturbed in cancer cells. It was expected that some functional classes would preferentially be found in the M_{AD} gene set. Instead of clustering genes based solely on their expression profiles, genes were first selected by sharing a gene ontology term and then clustered by an expression profile. The reasoning behind this was that genes with the same function and similar expression profiles were more likely to be under the same regulatory control than genes with differing functions but similar expression profiles. 'In biblio' analysis of genes' neighborhoods has been long advocated as an efficient means to permit inductive reasoning by using the knowledge accumulated by the worldwide community of researchers (25). A motif finding algorithm developed by us, MoDEL (26), was used to discover highly conserved DNA regions associated with the genes in a cluster, before these sequences were scanned against the TRANSFAC 8.3 database to detect plausible oncogenic transcription factor binding sites.

MATERIALS AND METHODS

Primary lung adenocarcinoma dataset

Tissue samples for the complete cohort of this study were collected, with informed consent, by the Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong. A total of 58 patients gave samples with normal lung tissue (n = 9) and primary lung adenocarcinomas (n = 49). Identifier code numbers were assigned to each tissue sample and its correlated clinical data. The link between the code numbers and all patient identifiers was destroyed, rendering the samples and clinical data completely anonymous. Clinical data from hospital records included the age and sex of the patient, smoking history, type of resection, postoperative pathological staging, post-operative histopathological diagnosis, patient survival information, time of last follow-up interval or time of death (when known), and site of disease recurrence (when known). Information for the entire dataset is provided as Supplementary Material at http:// bioinfo.hku.hk/~daniely/lung_microarray/. It is noted that the numbers do not always add to 58, as complete information could not be found for all samples.

The gender composition of the cohort was 25 males and 33 females. The reported smoking history of the patients was 24 non-smokers, 10 smoking at least 40 packs per year, seven ex-smokers and nine passive smokers. Post-operative pathological staging of these samples revealed 26 stage I, 8 stage II, 14 stage III and 1 stage IV tumors.

Tissue samples were snap-frozen in liquid nitrogen within 30 min after dissection and kept at -70° C until use. Tumor samples were examined before use to ensure at least 70% of tumor by area. RNA was extracted following standard protocols and hybridized to Affymetrix HG-U133A GeneChips. Expression values from a total of 22 283 transcript probe sets were collected using Affymetrix scanners and analysis software (Microarray Suite 5.0.1). The raw dataset is publicly available at ArrayExpress (public repository for microarray data www.ebi.ac.uk/arrayexpress; accession number: E-MEXP-231) (27,28); or can be downloaded at http://bioinfo.hku.hk/~daniely/lung_microarray/.

Data re-scaling and feature selection

The raw expression data from each sample was rescaled (normalized) to account for systematic differences in signal intensities among the microarrays, using standard procedures in Affymetrix Microarray Suite 5.0.1. Expression values from each microarray were multiplied by a scaling factor to make the average intensity of a set of house keeping genes on each microarray equal to an arbitrarily defined target intensity of 500.

To identify genes that are tissue phenotype related, the mean expression level of all genes in normal tissues and in adenocarcinoma tissues were calculated. If the ratio of the average expression levels of a gene between the two tissue classes exceeded 2-fold, the genes were included in the set M_{AD} .

Gene to tissue correlation

The tissue type distinction is represented by an idealized expression pattern (a vector with size 1×58), in which the expression is labeled uniformly high (value = 1) in adenocarcinoma tissue type and labeled uniformly low (value = 0) in normal tissue class. Correlation coefficients were calculated for the comparison of this vector with the expression profiles of each gene in $M_{\rm AD}$. The distribution of correlation coefficients was counted in bins of 0.2. The result was compared to the corresponding distribution obtained for ten random permutations of the idealized tissue labels to give the average random correlation coefficients for each gene (Figure 1).

Determination of overrepresentation of gene ontology terms in the set M_{AD}

GeneOntology (http://www.geneontology.org/) terms, which classify a gene according to its molecular function, biological process, cellular component and chromosomal localization, were collected for each gene on the Affymetrix HG-U133A microarray from the Affymetrix library files. By using the hypergeometric distribution (Equation 1), genes with each of these functional annotations could be assessed to see if they are overrepresented in the set M_{AD} . Given G annotated genes on a microarray, of which A have a certain function (gene ontology term), and a set of k genes selected

independently of the functional annotations (M_{AD}), the probability that *n* or more of the set of k genes have this function can be calculated by Equation 1 (23). If the *P*-value of observing the number of genes with a particular gene ontology term in the set M_{AD} was <0.001, the term was considered to be significantly overrepresented in the set M_{AD} . DNA-Chip Analyzer (dChip) (29) was used to perform this task.

$$p = \sum_{i=n}^{\min[k,A]} \frac{\binom{A}{i}\binom{G-A}{k-i}}{\binom{G}{k}}$$
1

Constructing gene relationship trees for overrepresented gene ontology terms

For all possible combinations of gene pairs that belong to each gene ontology term overrepresented in M_{AD} the correlation coefficient, *r*, of their expression profiles was calculated. A pairwise gene distance matrix $M_{distance}$, using the distance 1-*r* was formed for the genes. The neighbor-joining algorithm (NJ) (30) was used to construct a gene relationship tree from pairwise gene distance matrix. This was performed to identify gene neighbors whose expression values followed a common trend. The NJ algorithm is a special case of the star decomposition method. Starting from a star tree, the final relationship tree is constructed systematically by linking the least distant pair of nodes (genes in this case). The main advantage of the algorithm is that it permits lineages with largely different branch lengths. The programming script

Figure 1. Histogram of the cancer associated genes (M_{AD}) correlation to the tissue labels (normal or lung adenocarcinomas). The average histograms generated from 10 separate random permutations of the cancer labels in the original lung adenocarcinoma dataset is also displayed.

for computing r was implemented in the MatLab technical programming language and the tree was calculated using MEGA2 (31).

Extraction of the upstream regions for putatively co-regulated gene sets

Putatively co-regulated genes from each gene ontology term that was overrepresented in M_{AD} were selected in accordance with two criteria: (i) a distance metric cutoff value ($d_{i,i} < 0.20$) for all pairwise gene distances within the selected N members of the gene set; and (ii) the minimum mean aggregated pairwise distances $[\min((1/NC_2)\sum_{i=\text{select_gene_in_GAT_j}} d_{i,j})]$ for the selected N members of the gene set. The rationale for choosing these criteria was to find a single most correlated gene cluster that minimizes the total branch length $d_{i,j}$. For instance, if there are two gene clusters (each constituted of four and five gene members, respectively) in the tree topology found to be satisfying criterion one, i.e. get sets in which all pairwise gene distances (${}^{4}C_{2} = 6$ and ${}^{5}C_{2} = 10$ distances, respectively) satisfy the distance metric cutoff value <0.2, the final gene set selected should be the one with the minimum mean aggregated pairwise distances (criterion two). As a result, a different numbers of genes will be selected from each gene ontology term based on these criteria. For each of the selected genes, the corresponding 5 kb region located directly upstream of the transcription start site was extracted as described previously (32). Several sequence features including sequence gaps, continuity, consistency between the two distinct drafts of human genomes (3,33,34) were taken into consideration. Detailed information can be found in (32).

Identification of conserved regions and detection of associated transcription factors

All 5 kb unaligned DNA sequences associated with each gene ontology term group overrepresented in M_{AD} , were searched using MoDEL (26), to reveal possible highly conserved DNA regions. MoDEL employs an evolutionary algorithm and hill-climbing optimization for global and local exploration of two targeted search spaces, respectively (all possible words and all possible ungapped local multiple alignments). This heuristic algorithm has been shown to have more efficient optimization capabilities than other motif discovery tools (26). The word size was set to be 50 bp in the present study because we found that the conserved regions identified by MoDEL remained rather consistent with different sizes of word or segment length. A 50 bp segment length (the longest implemented in MoDEL) also allows a larger window, whereby the most conserved motifs can be captured together with their less similar surrounding residues. The information content for all conserved regions identified was calculated based on the Kullback-Leibler divergence (relative entropy).

All conserved regions identified by MoDEL were scanned against all vertebrate transcription factor position weight matrix profiles contained in the TRANSFAC database version 8.3 (35) to identify all previously known transcription binding sites. To incorporate stronger matches of transcription factor binding sites, stringent settings for the Match program (36) were employed. Both the core matrix and overall matrix similarity were required to be least 0.9 to be considered a match.

RESULTS

Selection of the cancer associated gene set M_{AD}

A total of 3442 genes were found to be either up- or downregulated by more than 2-fold between the normal and adenocarcinoma tissue sets (Table 1). These genes formed the cancer associated gene set M_{AD} . Of these genes, 1294 showed down-regulation and 2148 showed up-regulation of gene expression levels in adenocarcinomas. At the extreme ends of the fold change range, the receptor for advanced glycation end product (RAGE) was found to be repressed by >32-fold in adenocarcinomas while the D G antigen (GAGED2) was found to be up-regulated by >128-fold. Real-time quantitative RT-PCR analysis (Supplementary Materials) to verify the mRNA transcript levels for carbonic anhydrase IV (CA4) and RAGE were performed in 14 independent tissue samples (seven samples from each tissue phenotype). The abundance of mRNA transcripts for both genes was extremely low in the adenocarcinoma samples. If a gene is not expressed or expressed at very low levels in a sample, then fold change values may become large due to the low denominator. Fold change values must be considered in conjunction with expression levels.

Functional annotation groups significantly overrepresented in M_{AD}

Down- and up-regulated genes in $M_{\rm AD}$ were treated separately to detect functional annotation groups that may be overrepresented in adenocarcinoma associated genes. Tables 2 and 3, respectively, give the gene ontology terms significantly overrepresented (P < 0.001) in down- and up-regulated genes of $M_{\rm AD}$. The tables give the number of genes with that gene ontology term on the HG-U133A microarray, the number found, and the *P*-value of finding at least that number of genes (by random chance) in $M_{\rm AD}$.

For genes down-regulated in adenocarcinomas, several gene ontology terms related to immune responses were overrepresented, indicating that there appeared to be a depression in defense mechanisms in general, for the adenocarcinoma tissue samples (Table 2). In addition, genes associated with 'signal transducer activity' (e.g. TEK tyrosine kinase, G protein-coupled receptor kinase) were also identified to be significantly overrepresented in down-regulated genes in $M_{\rm AD}$, suggesting the blockage of signal transduction genes in adenocarcinoma cells. Many gene ontology terms that were overrepresented in the up-regulated genes of $M_{\rm AD}$ were associated with the cell cycle and cell replication machinery (Table 3) as might be expected from accelerated cancer cell proliferation.

Construction of relationship trees and determination of putatively co-regulated genes

After obtaining the constituent member genes for each gene ontology term overrepresented in M_{AD} , we investigated their pairwise gene expression relationships. Supplementary Material figure 2 shows an example of such a study for the

Table 1. Genes that were identified to be down- or up-regulated in adenocarcinomas

Gene description (Gene down-regulated in lung AD)	Probe set	Fold log(AD/N)	Mean expression for normal lung	Mean expression for AD lung
Consensus sequence for Homo sapiens mRNA for receptor	217046_s_at	-5.523	942.82	20.51
for Advanced Glycation End Product (RAGE)		1 = 10	22/5/2	100.10
Homo sapiens fatty acid binding protein 4, adipocyte (FABP4)	203980_at	-4.768	3365.42	123.48
Human alpha-globin gene with flanks	217414_x_at	-4.419	9787.41	457.42
Homo sapiens mRNA; cDNA DKFZp564N0582 (from clone DKFZp564N0582)	209074_s_at	-4.294	678.28	34.58
Homo sapiens carbonic anhydrase IV (CA4)	206208_at	-4.276	275.78	14.24
Homo sapiens RAGE mRNA for advanced glycation endproducts receptor, whole CDS	210081_at	-4.261	1593.08	83.06
Homo sapiens ficolin (collagen fibrinogen domain-containing) 3 (Hakata antigen) (FCN3)	205866_at	-4.166	1790.33	99.70
Human sickle cell beta-globin mRNA	209116 x at	-4.155	14733.26	827.29
Consensus includes ob BF939489	209469_at	-4.028	330.68	20.27
Homo saniens hemoglobin gamma A (HBG1)	204848 x at	-3.922	264 79	17.47
Homo sapiens adinose specific 2 (APM2)	203571 s at	-3.898	3042.43	204.08
Homo sapiens hypothetical protein EL 110070 (EL 110070)	210230_at	_3.890	1521.30	103.06
Consensus includes ch:T50200/UC=Hs 251577 homoslobin_slphs_1	219230_{at}	-3.884	12447.99	017.28
Long sonions colony stimulating factor 2 (growlesyte) (CSE2)	214414_x_at	-3.674	13447.00	917.30
Homo sapiens rotoriy stimulating factor 5 (granulocyte) (CSF5) Homo sapiens mutant beta-globin (HBB) gene	207442_at 217232_x_at	-3.864	143.31 15087.91	1036.22
Gene description (Gene up-regulated in lung AD)	Probe Set	Fold log(AD/N)		
Homo sapiens XAGE-1 protein (XAGE-1)	220057 at	7.311	4.79	760.58
Human alpha-1 type XI collagen (COL11A1)	37892 at	6.208	6.10	451.07
Consensus includes ob AI697108//UG=Hs 102482 mucin 5	213432 at	6 192	4.84	354.11
subtype B, tracheobronchial		0.172		00 111
Homo sapiens dipeptidyl peptidase IV (DPP4)	203716_s_at	5.932	6.81	415.78
Consensus includes gb:AU159942;/UG=Hs.156346	201291_s_at	5.620	3.24	159.61
topoisomerase (DNA) II aipna (170 kDa)	20(220	5 074	51 74	2002.20
Homo sapiens serine protease inhibitor, Kazal type 1	206239_s_at	5.274	51.74	2002.30
(SPINK1);/UG=Hs.181286 serine protease inhibitor, Kazal type 1		1001	21 00	(00.04
Consensus includes gb:X98568;/UG=Hs.179729 collagen, type X, alpha 1 (Schmid metaphyseal chondrodysplasia)	217428_s_at	4.991	21.98	698.84
Consensus includes gb:AW192795:/UG=Hs.103707 apomucin	214303 x at	4.969	5.26	164.65
Human nephropontin mRNA;/UG=Hs.313 secreted phosphoprotein 1 (osteopontin, hone sialoprotein L early T-lymphocyte activation 1)	209875_s_at	4.851	121.29	3499.34
Homo sapiens matrix metalloproteinase 1 (interstitial collagenase) (MMP1)	204475 at	4 806	25.07	701.00
Homo sapiens neuromedin II (NMII)	204475_at	4.800	5.80	159.99
Homo sapiens autoline meanter like factor 1 (CDI E1)	200025_at	4.770	14.22	130.00
Homo sapiens cytokine receptor-like factor 1 (CKLF1)	200515_at	4.737	14.22	519.10
(ovalbumin), member 3	209720_s_at	4.597	2.13	51.63
Homo sapiens multidrug resistance-associated protein homolog MRP3 (MRP3);/UG=Hs.90786 ATP-binding cassette, sub-family C (CETRMRP) member 3	209641_s_at	4.570	14.73	350.01
Consensus includes gb:BE791251;/UG=Hs.25640 claudin 3	203953_s_at	4.462	6.82	150.39

The description of each gene, its probe set in HG-U133A GeneChip and log fold change are given in the table. The complete table can be downloaded at http://bioinfo.hku.hk/~daniely/lung_microarray.

gene ontology term 'DNA replication and chromosomal cycle' with the GenBank accession numbers for each tree branch corresponding to the genes in M_{AD} that are assigned this ontology term. The branch distances displayed were used to derive the putatively co-regulated gene set (marked by an asterisk) according to the two criteria stated in the Materials and Methods section. In this example, the putatively co-regulated genes were: (i) MCM2–mini-chromosome maintenance deficient 2; (ii) replication factor C (activator 1) 4; and (iii) CDC45–cell division cycle 45-like.

Identification of conserved DNA motifs and transcription factors associated with a GO term

Conserved regions, within 5 kb of the transcription start site, of the putatively co-regulated genes associated with each gene ontology term overrepresented in M_{AD} were identified using MoDEL (30). Example results from four gene

ontology terms: (i) DNA replication and chromosomal cycle; (ii) nuclear division; (iii) cellular defense response and (iv) signal transduction, are shown in Table 4. The first two terms are associated with genes that were up-regulated in adenocarcinoma tissues, whereas the latter two terms are associated with down-regulated genes. Conserved regions are presented using IUPAC uncertainty codes, with highly conserved residues shown in bold, along with their start position relative to the transcription start site. The occurrence of each of these 50mers in regions 5 kb upstream of all human genes (32) is shown along with the proportion of those genes that have the same GO term and regulation pattern of the gene in the table. The final column reports the transcription factors (from TRANSFAC 8.3) that may bind to the conserved region based on matches to their binding site motifs. The complete data for Table 4 can be found at http://bioinfo.hku.hk/ ~daniely/lung_microarray/.

Table 2. The gene ontology terms overrepresented in the set of genes down-regulated by at least 2-fold in adenocarcinomas	
---	--

Annotation term	Total	Found	Expected	<i>P</i> -value
GeneOntology terms				
Globin	17	12	0.0E+00	0.0E+00
Rhodopsin-like receptor activity	384	49	3.8E-04	1.0E-06
G-protein chemoattractant receptor activity	34	8	2.8E - 02	8.4E-04
Peptide receptor activity	139	23	1.7E - 03	1.2E-05
G-protein-coupled receptor binding	52	21	0.0E+00	0.0E+00
Defense/immunity protein activity	230	39	0.0E+00	0.0E+00
Antimicrobial peptide activity	32	8	1.7E - 02	5.4E-04
Complement activity	32	8	1.7E - 02	5.4E-04
Signal transducer activity	2558	253	0.0E+00	0.0E+00
Receptor activity	1542	162	0.0E+00	0.0E+00
Transmembrane receptor activity	1083	121	0.0E+00	0.0E+00
G-protein coupled receptor activity	467	61	0.0E+00	0.0E+00
Chemokine receptor activity	34	8	2.8E-02	8.4E-04
Receptor binding	592	72	0.0E+00	0.0E+00
Cytokine activity	253	39	0.0E+00	0.0E+00
Heavy metal binding	23	8	9.4E-04	4.1E-05
Sugar binding	132	28	0.0E+00	0.0E+00
Extracellular	1085	138	0.0E+00	0.0E+00
Extracellular space	457	72	0.0E+00	0.0E+00
Hemoglobin complex	18	12	0.0E+00	0.0E+00
Plasma membrane	2207	219	0.0E+00	0.0E+00
Integral to plasma membrane	1702	176	0.0E+00	0.0E+00
Owner and reactive owners species metabolism	65	170	0.0E+00	7.0E-06
Calaium ian hamaastasia	05	15	4.0E-04	7.0E-00
	20	0	2.9E-03	1.1E-04
	414	50	1.2E-03	3.0E-00
Chemotaxis	133	39	0.0E+00	0.0E+00
Muscle contraction	202	25	1.3E-01	6.2E-04
Response to stress	1025	143	0.0E+00	0.0E+00
Defense response	1031	169	0.0E+00	0.0E+00
Inflammatory response	218	50	0.0E+00	0.0E+00
Immune response	950	153	0.0E+00	0.0E+00
Humoral immune response	235	38	0.0E+00	0.0E+00
Antimicrobial humoral response (sensu Invertebrata)	145	24	1.2E-03	8.0E-06
Cellular defense response	139	45	0.0E+00	0.0E+00
Cell communication	3667	326	0.0E+00	0.0E+00
Cell adhesion	658	84	0.0E+00	0.0E+00
Heterophilic cell adhesion	97	20	9.7E-05	1.0E-06
Signal transduction	2947	254	0.0E+00	0.0E+00
Cell surface receptor linked signal transduction	1124	117	0.0E+00	0.0E+00
G-protein coupled receptor protein signaling pathway	657	77	0.0E+00	0.0E+00
Cytosolic calcium ion concentration elevation	49	10	3.2E - 02	6.5E-04
Cell-cell signaling	689	64	3.7E-01	5.4E-04
Development	1920	150	1.5E+00	8.1E-04
Histogenesis and organogenesis	125	18	7.5E-02	6.0E-04
Muscle development	167	27	5.0E - 04	3.0E-06
Respiratory gaseous exchange	36	11	2.2E - 04	6.0E-06
Chemokine activity	50	21	$0.0E \pm 00$	0.0E-00
Circulation	142	21	7.2E 03	5 1E 05
Deptide recentor activity/C protein coupled	142	22	1.2E-03	1.1E-05
Peptide receptor activity/O-protein coupled	159	23	1.7E-03	1.2E=03
Response to external stimulus	1391	210	0.0E+00	0.0E+00
Response to blouc sumulus	1120	179	0.0E+00	0.0E+00
Response to wounding	330	91	0.0E+00	0.0E+00
Response to pest/pathogen/parasite	596	123	0.0E+00	0.0E+00
Response to bacteria	19	6	1.3E-02	7.1E-04
Response to abiotic stimulus	577	71	0.0E+00	0.0E+00
Morphogenesis	1119	101	4.9E-02	4.4E-05
Organogenesis	1029	91	2.2E-01	2.2E - 04
Cellular process	7140	534	0.0E+00	0.0E+00
Membrane	4225	356	0.0E+00	0.0E+00
Integral to membrane	3220	281	0.0E+00	0.0E+00
Cell growth	97	17	7.3E-03	7.5E-05
Humoral defense mechanism (sensu Invertebrata)	145	24	1.2E - 03	8.0E-06
Cell-cell adhesion	220	30	6.8E-03	3.1E-05
Antimicrobial humoral response	145	24	1.2E - 03	8.0E-06
Cytolysis	20	8	2.4E - 04	1.2E-05
Cytokine binding	80	14	2.6E-02	3.2E-04
Chemokine binding	34	8	2.8E-02	8.4E-04
Carbohydrate binding	133	28	0.0E+00	0.0E+00
,	100	=0		0.02.00

Table 2. Continued

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Annotation term	Total	Found	Expected	P-value
Response to chemical substance206480.0E+000.0EPeptide binding21326 $1.3E-01$ 6. IETaxis133390.0E+000.0DInnate immune response220500.0E+000.0DInnate immune response220500.0E+000.0DProtein domain27 $1.4E-02$ $2.5T$ Verebrate metallobionein127 $2.4E-05$ 2.0DAspartic acid and asparagine hydroxylation site14321 $3.5E-02$ $2.5T$ Rhodopsin-like GPCR superfamily289420.0E+000.0DEndothelin receptor64 $1.3E-03$ $2.1E$ Small chemokine, C-C Subfamily26110.0E+000.0DSmall chemokine, C-S-C Subfamily26110.0E+000.0DSmall chemokine, C-X-C Subfamily186 $1.1E-02$ 6.0DC-type lectin9519 $5.7E-04$ 6.0DAperitoring protein (PLP)760.0E+000.0DZn-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interlexkin-8 like48200.0E+000.0DZn-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interlexkin-8 like48200.0E+000.0DZn-binding protein, LIM9518 $3.6E-05$ 6.0DPi Purinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $2.2E$ <tr< td=""><td>Chemoattractant activity</td><td>52</td><td>21</td><td>0.0E+00</td><td>0.0E+00</td></tr<>	Chemoattractant activity	52	21	0.0E+00	0.0E+00
Peptide binding 213 26 1.3E-01 6.E Taxis 133 39 0.0E+00 0.0E Chemokine receptor binding 52 21 0.0E+00 0.0E Innate immune response 20 50 0.0E+00 0.0E Eicosanoid biosynthesis 25 7 1.4E-02 2.7E Protein domain 12 7 2.4E-05 2.0E Aspartic acid and aspangine hydroxylation site 143 21 3.5E-02 2.5E Rhodopsin-like GPCR superfamily 28 42 0.0E+00 0.0E Endothelin receptor 6 4 1.3E-03 2.1E Small Chemokine, C-C subfamily 26 11 0.0E+00 0.0E For transforming protein 13 6 9.5E-04 7.3E Globin 16 12 0.0E+00 0.0E C-type lectin 95 19 5.7E-04 6.0E Alpha crystallin 8 4 7.2E-03 9.0E My	Response to chemical substance	206	48	0.0E+00	0.0E+00
Taxis 133 39 $0.0E+00$ $0.0E$ Chemokine receptor binding 52 21 $0.0E+00$ $0.0D$ Innate immune response 220 50 $0.0E+00$ $0.0D$ Protein domain 2 7 $1.4E-02$ $5.7E$ Protein domain 12 7 $2.4E-05$ $2.0E$ Apartic acid and asparagine hydroxylation site 143 21 $3.5E-02$ $2.5E$ Rhodopsin-like GPCR superfamily 26 11 $0.0E+00$ $0.0E$ Foot ransforming protein 13 6 $9.5E-04$ $7.3E$ Thrombospondin, type 1 52 13 $7.8E-04$ $1.5E$ Globin 16 12 $0.0E+00$ $0.0D$ Aphta crystallin 95 19 $5.7E-04$ $6.0E$ Alpha crystallin 95 18 $2.2E-03$ $2.3E$ Small chemokine, C-X-C subfamily 18 4 $7.2E-03$ $9.0E$ Alpha crystallin 95 18 $2.2E-03$ <td>Peptide binding</td> <td>213</td> <td>26</td> <td>1.3E-01</td> <td>6.1E-04</td>	Peptide binding	213	26	1.3E-01	6.1E-04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Taxis	133	39	0.0E+00	0.0E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chemokine receptor binding	52	21	0.0E+00	0.0E+00
Eicosanoid biosymbesis 25 7 1.4E=02 5.7E Protein domain 12 7 2.4E=05 2.0E Aspartic acid and asparagine hydroxylation site 143 21 3.5E=02 2.5E Rhodopsin-like GPCR superfamily 289 42 0.0E+00 0.0E Endothelin receptor 6 4 1.3E=03 2.1E Small Chemokine, C-C subfamily 26 11 0.0E+00 0.0E For transforming protein 13 6 9.5E=04 7.3E Globin 16 12 0.0E+00 0.0E Small Chemokine, C-X-C subfamily 18 6 1.1E=02 6.0E C-type lectin 95 19 5.7E=04 6.0E Aplat arystallin 8 4 7.2E=03 9.0E Small Chemokine, interleukin=8 like 48 20 0.0E+00 0.0E Zon-binding protein, LIM 95 18 2.2E=03 3.3E Small Chemokine, interleukin=8 like 48 7 0.6E+00	Innate immune response	220	50	0.0E+00	0.0E+00
Protein domain Vertebrate metallothionein 12 7 $2.4E-05$ $2.0E$ Aspartic acid and asparagine hydroxylation site 143 21 $3.5E-02$ $2.5E$ Rhodopsin-like GPCR superfamily 289 42 $0.0E+00$ $0.0E$ Endothelin receptor 6 4 $1.3E-03$ $2.1E$ Small chemokine, C-C subfamily 26 11 $0.0E+00$ $0.0E$ Fos transforming protein 13 6 $9.5E-04$ $7.3E$ Globin 16 12 $0.0E+00$ $0.0E$ Small chemokine, C-X-C subfamily 18 6 $1.1E-02$ $6.0E$ Alpha crystallin 95 19 $5.7E-04$ $6.0E$ Alpha crystallin 95 18 $2.2E-03$ $9.0E$ Myelin proteolipid protein (PLP) 7 6 $0.0E+00$ $0.0E$ EGF-like calcium-binding 147 21 $5.3E-02$ $3.6E$ Fibrinogen, beta/gamma chain, C-terminal globular 38 10 $3.4E-03$ $9.0E$	Eicosanoid biosynthesis	25	7	1.4E-02	5.7E-04
Vertebrate metallohionein127 $2.4E-05$ 2.0EAspartia cali and asparagine hydroxylation site14321 $3.5E-02$ $2.5E$ Rhodopsin-like GPCR superfamily28942 $0.0E+00$ $0.0E$ Endothelin receptor64 $1.3E-03$ $2.1E$ Small chemokine, C-C subfamily2611 $0.0E+00$ $0.0E$ Fos transforming protein136 $9.5E-04$ $7.3E$ Thrombospondin, type I5213 $7.8E-04$ $0.5E$ Small chemokine, C-X-C subfamily186 $1.1E-02$ $6.0E$ Chype lectin9519 $5.7E-04$ $6.0E$ Alpha crystallin9519 $5.7E-04$ $6.0E$ Myelin proteolipid protein (PLP)76 $0.0E+00$ $0.0E$ Za-binding protein, LM9518 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like4820 $0.0E+00$ $0.0E$ Za-binding protein, LM9518 $2.2E-03$ $3.9E$ Small chemokine, interleukin-8 like4820 $0.0E+00$ $0.0E$ EGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein HS2084 $7.2E-03$ $9.0E$ Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $2.9E$ P2 purinoceptor217 $4.3E-03$ $2.9E$ Myoglobin65 $3.6E-05$ $6.0E$ Name Superfamily127 $2.4E-05$ <	Protein domain				
Aspartic acid and asparagine hydroxylation site $ 43 $ 21 $3.5E-02$ $2.5E$ Rhodopsin-like GPCR superfamily 289 42 $0.0E+00$ $0.0E$ Endothelin receptor 6 4 $1.3E-03$ $2.1E$ Small chemokine, C-C subfamily 26 11 $0.0E+00$ $0.0E$ Fos transforming protein 13 6 $9.5E-04$ $7.3E$ Thrombospondin, type I 52 13 $7.8E-04$ $1.5E$ Globin 16 12 $0.0E+00$ $0.0E$ Small chemokine, C-X-C subfamily 18 6 $1.1E-02$ $6.0E$ C-type lectin 95 19 $5.7E-04$ $6.0E$ Alpha crystallin 8 4 $7.2E-03$ $9.0E$ Myclin proteolipid protein (PLP) 7 6 $0.0E+00$ $0.0E$ Ca-binding protein, LM 95 18 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like 48 20 $0.0E+00$ $0.0E$ EGF-like calcium-binding 47 21 $5.3E-02$ $3.6E$ Heat shock protein Hsp20 8 4 $7.2E-03$ $9.0E$ P1 purincoceptor 9 6 $3.6E-05$ $4.0E$ P2 purincoceptor 9 6 $3.6E-05$ $4.0E$ P3 haemoglobin 6 5 $3.6E-05$ $6.0E$ P4 haemoglobin 6 5 $3.6E-05$ $6.0E$ P4 haemoglobin 6 5 $3.6E-05$ $6.0E$ P4 haemoglobin 6 5 $3.6E-05$	Vertebrate metallothionein	12	7	2.4E-05	2.0E-06
Rhodopsin-like GPCR superfamily 289 42 0.0E+00 0.0E Endothelin receptor 6 4 1.3E-03 2.1E Small chemokine, C-C subfamily 26 11 0.0E+00 0.0E Fos transforming protein 13 6 9.5E-04 7.3E Thrombospondin, type I 52 13 7.8E-04 1.3E Globin 16 12 0.0E+00 0.0E Small chemokine, C-X-C subfamily 18 6 1.1E-02 6.0F C-type lectin 95 19 5.7E-04 6.0E Myclin proteoin jdProtein (PLP) 7 6 0.0E+00 0.0E Small chemokine, interleukin-8 like 48 20 0.0E+00 0.0E EGP-like calcium-binding 147 21 5.3E-02 3.6E Fibrinogen, beta/gamma chain, C-terminal globular 38 10 3.4E-03 9.0E P1 purinoceptor 21 7 4.3E-03 2.1E Myoglobin 9 6 3.6E-05	Aspartic acid and asparagine hydroxylation site	143	21	3.5E-02	2.5E-04
Endothelin receptor64 $1.3E-03$ $2.1E$ Small chemokine, C-C subfamily2611 $0.0E+00$ $0.0E$ Fos transforming protein136 $9.5E-04$ $7.3E$ Thrombospondin, type I5213 $7.8E-04$ $1.5E$ Globin1612 $0.0E+00$ $0.0E$ Small chemokine, C-X-C subfamily186 $1.1E-02$ $6.0E$ Alpha crystalin9519 $5.7E-04$ $6.0E$ Alpha crystalin84 $7.2E-03$ $9.0E$ Myelin proteolid protein (PLP)76 $0.0E+00$ $0.0E$ Zn-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like4820 $0.0E+00$ $0.0E$ EGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein Hsp2084 $7.2E-03$ $9.0E$ Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $2.1E$ Myoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin65 $3.6E-05$ $6.0E$ P1 haemoglobin65 $3.6E-05$ $6.0E$ <td>Rhodopsin-like GPCR superfamily</td> <td>289</td> <td>42</td> <td>0.0E+00</td> <td>0.0E+00</td>	Rhodopsin-like GPCR superfamily	289	42	0.0E+00	0.0E+00
Small chemokine, C-C subfamily 26 11 0.0E+00 0.0E Fos transforming protein 13 6 9.5E-04 7.3E Thrombospondin, typ 1 52 13 7.8E-04 1.5E Globin 16 12 0.0E+00 0.0E Small chemokine, C-X-C subfamily 18 6 1.1E-02 6.0E Cype lectin 95 19 5.7E-04 6.0E Alpha crystallin 8 4 7.2E-03 9.0E Myelin proteolipid protein (PLP) 7 6 0.0E+00 0.0E Zn-binding protein, LIM 95 18 2.2E-03 2.3E Small chemokine, interleukin-8 like 48 20 0.0E+00 0.0E EGF-like calcium-binding 147 21 5.3E-02 3.6E Heat shock protein Hsp20 8 4 7.2E-03 9.0E P1 purinoceptor 21 7 4.3E-03 2.1E Myoglobin 6 5 3.6E-05 6.0E	Endothelin receptor	6	4	1.3E-03	2.1E-04
Fos transforming protein136 $9.5E-04$ 7.3EThrombospondin, type I5213 $7.8E-04$ $1.5E$ Globin1612 $0.0E+00$ $0.0E$ Small chemokine, C-X-C subfamily186 $1.1E-02$ $6.0E$ Alpha crystallin9519 $5.7E-04$ $6.0E$ Alpha crystallin84 $7.2E-03$ $9.0E$ Myelin proteolipid protein (PLP)76 $0.0E+00$ $0.0E$ Zn-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like4820 $0.0E+00$ $0.0E$ EGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein Hsp2084 $7.2E-03$ $9.0E$ Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $8.9E$ P2 purinoceptor217 $4.3E-03$ $2.1E$ Myoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin65 $3.6E-05$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $4.7.2E-03$ $9.0E$ Immunoglobulin -2 type 2368 $3.8E-03$ $6.0E$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin -2 type 2368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$	Small chemokine, C-C subfamily	26	11	0.0E+00	0.0E+00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fos transforming protein	13	6	9.5E-04	7.3E-05
Globin16120.0E+000.0ESmall chemokine, C-X-C subfamily186 $1.1E-02$ 6.0EC-type lectin9519 $5.7E-04$ 6.0EAlpha crystallin84 $7.2E-03$ 9.0EMyelin proteolipid protein (PLP)760.0E+000.0ECar-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like48200.0E+000.0EEGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein Hsp2084 $7.2E-03$ $9.0E$ Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $8.9E$ P2 purinoceptor217 $4.3E-03$ $2.1E$ Myeglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin subtype36848 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ L1 transposable element84 $7.2E-03$ $9.0E$ L1 transposable element84 $7.2E-03$ $9.0E$ L1 transposable element64 $1.3E-03$ $2.1E$ <t< td=""><td>Thrombospondin, type I</td><td>52</td><td>13</td><td>7.8E-04</td><td>1.5E-05</td></t<>	Thrombospondin, type I	52	13	7.8E-04	1.5E-05
Small chemokine, C-X-C subfamily186 $1.1E-02$ 6.0EC-type lectin9519 $5.7E-04$ 6.0EAlpha crystallin84 $7.2E-03$ 9.0EMyelin proteolipid protein (PLP)760.0E+000.0EZn-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like48200.0E+000.0EEGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein Hsp2084 $7.2E-03$ 9.0EFibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $8.9E$ P2 purinoceptor217 $4.3E-03$ $2.1E$ Myoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin65 $3.6E-05$ $6.0E$ Alpha haemoglobin65 $3.6E-05$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Immunoglobulin subyre36848 $3.7E-04$ $1.0E$ Immunoglobulin subyre36848 $3.7E-04$ $1.0E$ Immunoglobulin subyre36848 $3.7E-04$ $1.0E$ Immunoglobulin subyre64 $1.3E-03$ $2.1E$ Type I EGF16923 $6.7E-02$ $4.0E$ AlG1 family64 $1.3E-03$ $2.1E$ BRICHOS domain138 $0.0E+00$ $0.0E$ Immunoglobulin-Lek 6^78 75 $6.8E-04$	Globin	16	12	0.0E+00	0.0E+00
C-type lectin9519 $5.7E-04$ $6.0E$ Alpha crystallin84 $7.2E-03$ $9.0E$ Myelin proteolipid protein (PLP)76 $0.0E+00$ $0.0E$ Zn-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like4820 $0.0E+00$ $0.0E$ EGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein Hsp2084 $7.2E-03$ $9.0E$ Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $8.9E$ P2 purinoceptor217 $4.3E-03$ $2.1E$ Myoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Metallothionein superfamily127 $2.4E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $9.0E$ L 1 transposable element84 $7.2E-03$ $9.0E$ AIG1 family6	Small chemokine, C-X-C subfamily	18	6	1.1E-02	6.0E-04
Alpha crystallin847.2E -03 9.0EMyelin proteolipid protein (PLP)760.0E+000.0EZn-binding protein, LIM95182.2E -03 2.3ESmall chemokine, interleukin-8 like48200.0E+000.0EEGF-like calcium-binding147215.3E -02 3.6EHeat shock protein Hsp20847.2E -03 9.0EFibrinogen, beta/gamma chain, C-terminal globular38103.4E -03 8.9EP2 purinoceptor2174.3E -03 2.1EMyoglobin963.6E -05 4.0EBeta haemoglobin653.6E -05 6.0EBeta haemoglobin653.6E -05 6.0ESmall chemokine, C-X-C/Interleukin 81881.1E -04 6.0ESmall chemokine, C-X-C/Interleukin 81881.1E -04 6.0EImmunoglobulin subtype223316.2E -03 2.8EImmunoglobulin subtype368483.7E -04 1.0EImmunoglobulin subtype368447.2E -03 9.0EL1 transposable element847.2E -03 9.0EL2 Type I GF169236.7E -02 4.0EAlG1 family641.3E -03 2.1EBRICHOS domain1380.0E+000.0EL1 transposable element678756.8E -04 0.0EL51-1660.0E+000.0EAlG1 f	C-type lectin	95	19	5.7E-04	6.0E-06
Myelin proteolipid protein (PLP)760.0E+000.0EZn-binding protein, LIM95182.2E-032.3ESmall chemokine, interleukin-8 like48200.0E+000.0EEGF-like calcium-binding147215.3E-023.6EHeat shock protein Hsp20847.2E-039.0EFibrinogen, beta/gamma chain, C-terminal globular38103.4E-038.9EP2 purinoceptor2174.3E-032.1EMyoglobin963.6E-054.0EBeta haemoglobin870.0E+000.0EAlpha haemoglobin653.6E-056.0EPi haemoglobin653.6E-056.0EPi haemoglobin653.6E-056.0EOrphan nuclear receptor959.1E-041.0EImmunoglobulin C-2 type223316.2E-032.8EImmunoglobulin C-2 type233.6E4.0E4.0EPMP-22/EMP/MP20 family847.2E-039.0EL1 transposable element847.2E-039.0ELGF-like domain431461.4E-013.3EType I EGF169236.7E-024.0EAlGI family641.3E-032.1EBRICHOS domain1380.0E+000.0ELGF-like domain1380.0E+000.0ELGF-like domain1380.0E+000.0E <td< td=""><td>Alpha crystallin</td><td>8</td><td>4</td><td>7.2E-03</td><td>9.0E-04</td></td<>	Alpha crystallin	8	4	7.2E-03	9.0E-04
Zn-binding protein, LIM9518 $2.2E-03$ $2.3E$ Small chemokine, interleukin-8 like4820 $0.0E+00$ $0.0E$ EGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein Hsp2084 $7.2E-03$ $9.0E$ Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $8.9E$ P2 purinoceptor217 $4.3E-03$ $2.1E$ Myoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin87 $0.0E+00$ $0.0E$ Alpha haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Metallothionein superfamily127 $2.4E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin Subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ L1 transposable element84 $7.2E-03$ $9.0E$ L1 transposable element84 $7.2E-03$ $9.0E$ L1 GF16923 $6.7E-02$ $4.0E$ AlGI family64 $1.3E-03$ $2.1E$ Type I EGF16923 $6.7E-02$ $4.0E$ LGF-like domain138 $0.0E+00$ $0.0E$ <tr< td=""><td>Myelin proteolipid protein (PLP)</td><td>7</td><td>6</td><td>0.0E+00</td><td>0.0E+00</td></tr<>	Myelin proteolipid protein (PLP)	7	6	0.0E+00	0.0E+00
Small chemokine, interleukin-8 like 147 21 $5.3E-02$ $3.6E$ EGF-like calcium-binding 147 21 $5.3E-02$ $3.6E$ Heat shock protein Hsp20 8 4 $7.2E-03$ $9.0E$ P2 purinoceptor 21 7 $4.3E-03$ $2.1E$ Myoglobin 9 6 $3.6E-05$ $4.0E$ Beta haemoglobin 8 7 $0.0E+00$ $0.0E$ Alpha haemoglobin 6 5 $3.6E-05$ $6.0E$ Alpha haemoglobin 6 5 $3.6E-05$ $6.0E$ Nmall chemokine, C-X-C/Interleukin 8 18 8 $1.1E-04$ $6.0E$ Metallothionein superfamily 12 7 $2.4E-05$ $2.0E$ Orphan nuclear receptor 9 5 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type 223 31 $6.2E-03$ $2.8E$ Immunoglobulin C-2 type 223 31 $6.2E-03$ $9.0E$ PMP-22/EMP/MP20 family 8 4 $7.2E-03$ $9.0E$ Li transposable element 13 8 $0.0E+00$ $0.0E$ AlGI family 6 4 $1.3E-03$ $2.1E$ Algi family 6 4 $1.3E-03$ $2.1E$ Jype I EGF 169 23 $6.7E-02$ $4.0E$	Zn-binding protein LIM	95	18	2.2E-03	2.3E-05
EGF-like calcium-binding14721 $5.3E-02$ $3.6E$ Heat shock protein Hsp2084 $7.2E-03$ $9.0E$ Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $8.9E$ P2 purinoceptor217 $4.3E-03$ $2.1E$ Myoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin87 $0.0E+00$ $0.0E$ Alpha haemoglobin65 $3.6E-05$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ EGF-like domain43146 $1.4E-01$ $3.3E$ Type I EGF16923 $6.7E-02$ $4.0E$ AlGI family64 $1.3E-03$ $2.1E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ Immunoglobulin-like 678	Small chemokine, interleukin-8 like	48	20	0.0E+00	0.0E+00
Heat shock protein Hsp20 N D <thd< th=""> D D <thd< th=""></thd<></thd<>	EGE-like calcium-binding	147	21	5.3E - 02	3.6E-04
Fibrinogen, beta/gamma chain, C-terminal globular3810 $3.4E-03$ $8.9E$ P2 purinoceptor217 $4.3E-03$ $2.1E$ Myoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin87 $0.0E+00$ $0.0E$ Alpha haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin127 $2.4E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ EGF-like domain43146 $1.4E-01$ $3.3E$ Type I EGF169 23 $6.7E-02$ $4.0E$ AlG1 family64 $1.3E-03$ $2.1E$ AlG1 family13 8 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LT transpospole element138 $0.0E+00$ $0.0E$ Type I EGF66 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-166 $0.0E+00$ $0.0E$ Thrombospondin, subtype 1 27 8	Heat shock protein Hsp20	8	4	7.2E-03	9.0E-04
1011102011 20 10 5.0 5.12 1.11 1.11 1.11	Fibringgen beta/gamma chain C-terminal globular	38	10	3.4E-03	8.9E-05
In pullicipiteInInInInMyoglobin96 $3.6E-05$ $4.0E$ Beta haemoglobin87 $0.0E+00$ $0.0E$ Alpha haemoglobin65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Brand being65 $3.6E-05$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Metallothionein superfamily127 $2.4E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ L 1 transposable element84 $7.2E-03$ $9.0E$ L 1 transposable element43146 $1.4E-01$ $3.3E$ Type I EGF16923 $6.7E-02$ $4.0E$ AIG1 family64 $1.3E-03$ $2.1E$ BRICHOS domain138 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-166 $0.0E+00$ $0.0E$ Saposin-like type B, 275 $1.3E-04$ $1.9E$	P2 purinocentor	21	7	43E-03	2.1E-04
Beta haemoglobin 5 0 5.02 - 0.02 4.042 Beta haemoglobin 6 5 3.6E-0.5 6.0E Alpha haemoglobin 6 5 3.6E-0.5 6.0E Pi haemoglobin 6 5 3.6E-0.5 6.0E Small chemokine, C-X-C/Interleukin 8 18 8 1.1E-0.4 6.0E Metallothionein superfamily 12 7 2.4E-0.5 2.0E Orphan nuclear receptor 9 5 9.1E-0.4 1.0E Immunoglobulin C-2 type 223 31 6.2E-0.3 2.8E Immunoglobulin subtype 368 48 3.7E-0.4 1.0E PMP-22/EMP/MP20 family 8 4 7.2E-0.3 9.0E L 1 transposable element 8 4 7.2E-0.3 9.0E L 1 transposable element 431 46 1.4E-01 3.3E Type I EGF 169 23 6.7E-02 4.0E AIG1 family 6 4 1.3E-03 2.1E BRICHOS domain 13 8 0.0E+00 0.0E Immuno	Myoglobin	0	6	3.6E_05	2.1E 04 4.0E_06
Alpha haemoglobin 6 7 6.000 6.000 Alpha haemoglobin 6 5 3.6E-05 6.000 Pi haemoglobin 6 5 3.6E-05 6.000 Small chemokine, C-X-C/Interleukin 8 18 8 1.1E-04 6.000 Metallothionein superfamily 12 7 2.4E-05 2.000 Orphan nuclear receptor 9 5 9.1E-04 1.000 Immunoglobulin C-2 type 223 31 6.2E-03 2.800 Immunoglobulin Subtype 368 48 3.7E-04 1.000 PMP-22/EMP/MP20 family 8 4 7.2E-03 9.000 L1 transposable element 8 4 7.2E-03 9.000 EGF-like domain 431 46 1.4E-01 3.300 Type I EGF 169 23 6.7E-02 4.000 AIGI family 6 4 1.3E-03 2.1E BRICHOS domain 13 8 0.0000 0.0000 Immunoglobulin-like 678 75 6.8E-04 1.0000 LST-1	Beta haemoglohin	8	0 7	0.0E+00	0.0E+00
Apple factoring for65 $3.6E-05$ $6.0E$ Pi haemoglobin65 $3.6E-05$ $6.0E$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Metallothionein superfamily127 $2.4E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ L1 transposable element84 $7.2E-03$ $9.0E$ EGF-like domain43146 $1.4E-01$ $3.3E$ Type I EGF16923 $6.7E-02$ $4.0E$ AIG1 family64 $1.3E-03$ $2.1E$ BRICHOS domain138 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-166 $0.0E+00$ $0.0E$ Saposin-like type B, 275 $1.3E-04$ $1.9E$	Alpha haemoglobin	6	5	3 6E-05	6.0E-06
Interligion03 $3.0L-03$ $0.0L-03$ Small chemokine, C-X-C/Interleukin 8188 $1.1E-04$ $6.0E$ Metallothionein superfamily127 $2.4E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ L1 transposable element84 $7.2E-03$ $9.0E$ EGF-like domain43146 $1.4E-01$ $3.3E$ Type I EGF16923 $6.7E-02$ $4.0E$ AIG1 family64 $1.3E-03$ $2.1E$ BRICHOS domain138 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-166 $0.0E+00$ $0.0E$ Thrombospondin, subtype 1 27 8 $5.0E-03$ $1.8E$ Saposin-like type B, 2 7 5 $1.3E-04$ $1.9E$	Pi haemoglobin	6	5	3.6E - 05	6.0E-06
Inite Technolitie, C-AC/Interform101001100Metallothionein superfamily127 $2.4E-05$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin subtype36848 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family84 $7.2E-03$ $9.0E$ L1 transposable element84 $7.2E-03$ $9.0E$ EGF-like domain43146 $1.4E-01$ $3.3E$ Type I EGF16923 $6.7E-02$ $4.0E$ AIG1 family64 $1.3E-03$ $2.1E$ BRICHOS domain138 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-166 $0.0E+00$ $0.0E$ Thrombospondin, subtype 1278 $5.0E-03$ $1.8E$ Saposin-like type B, 275 $1.3E-04$ $1.9E$	Small chemokine, C-X-C/Interleukin 8	18	8	1.1E - 0.04	6.0E-06
Interaction 12 7 $2.4E-03$ $2.0E$ Orphan nuclear receptor95 $9.1E-04$ $1.0E$ Immunoglobulin C-2 type223 31 $6.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family8 4 $7.2E-03$ $9.0E$ L1 transposable element8 4 $7.2E-03$ $9.0E$ EGF-like domain431 46 $1.4E-01$ $3.3E$ Type I EGF16923 $6.7E-02$ $4.0E$ AIG1 family6 4 $1.3E-03$ $2.1E$ BRICHOS domain13 8 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-166 $0.0E+00$ $0.0E$ Thrombospondin, subtype 1 27 8 $5.0E-03$ $1.8E$ Saposin-like type B, 2 7 5 $1.3E-04$ $1.9E$	Matallothionain superfamily	10	7	$2.4E_{-05}$	2.0E_06
Immunoglobulin C-2 type22331 $6.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family 8 4 $7.2E-03$ $9.0E$ L1 transposable element 8 4 $7.2E-03$ $9.0E$ EGF-like domain 431 46 $1.4E-01$ $3.3E$ Type I EGF 169 23 $6.7E-02$ $4.0E$ AIG1 family 6 4 $1.3E-03$ $2.1E$ BRICHOS domain 13 8 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-1 6 6 $0.0E+00$ $0.0E$ Thrombospondin, subtype 1 27 8 $5.0E-03$ $1.8E$ Saposin-like type B, 2 7 5 $1.3E-04$ $1.9E$	Ornhan nuclear recentor	0	5	0.1E - 0.00	2.0E-00 1.0E 04
Immunoglobulin C-2 type 223 31 $0.2E-03$ $2.8E$ Immunoglobulin subtype 368 48 $3.7E-04$ $1.0E$ PMP-22/EMP/MP20 family 8 4 $7.2E-03$ $9.0E$ L1 transposable element 8 4 $7.2E-03$ $9.0E$ EGF-like domain 431 46 $1.4E-01$ $3.3E$ Type I EGF 169 23 $6.7E-02$ $4.0E$ AIG1 family 6 4 $1.3E-03$ $2.1E$ BRICHOS domain 13 8 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-1 6 6 $0.0E+00$ $0.0E$ Thrombospondin, subtype 1 27 8 $5.0E-03$ $1.8E$ Saposin-like type B, 2 7 5 $1.3E-04$ $1.9E$	Immunoglobulin C 2 tuno	222	21	6 2E 02	1.0E-04
Inimitaling 366 48 $5.7E-04$ $1.0E$ PMP-22/EMP/MP20 family 8 4 $7.2E-03$ $9.0E$ L1 transposable element 8 4 $7.2E-03$ $9.0E$ EGF-like domain 431 46 $1.4E-01$ $3.3E$ Type I EGF 169 23 $6.7E-02$ $4.0E$ AIG1 family 6 4 $1.3E-03$ $2.1E$ BRICHOS domain 13 8 $0.0E+00$ $0.0E$ Immunoglobulin-like 678 75 $6.8E-04$ $1.0E$ LST-1 6 6 $0.0E+00$ $0.0E$ Thrombospondin, subtype 1 27 8 $5.0E-03$ $1.8E$ Saposin-like type B, 2 7 5 $1.3E-04$ $1.9E$	Immunoglobulin C-2 type	223	31	0.2E-03 2.7E 04	2.6E-03
FMP-22/EMP/MP20 failing 8 4 7.2E-03 9.0E L1 transposable element 8 4 7.2E-03 9.0E EGF-like domain 431 46 1.4E-01 3.3E Type I EGF 169 23 6.7E-02 4.0E AIG1 family 6 4 1.3E-03 2.1E BRICHOS domain 13 8 0.0E+00 0.0E Immunoglobulin-like 678 75 6.8E-04 1.0E LST-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	DMD 22/EMD/MD20 formily	508	48	5./E-04 7.2E_02	1.0E-00
EI transposable element 8 4 7.2E-05 9.0E EGF-like domain 431 46 1.4E-01 3.3E Type I EGF 169 23 6.7E-02 4.0E AIG1 family 6 4 1.3E-03 2.1E BRICHOS domain 13 8 0.0E+00 0.0E Immunoglobulin-like 678 75 6.8E-04 1.0E LST-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	PMP-22/EMP/MP20 family	0	4	7.2E-03	9.0E-04
EGF-like domain 451 46 1.4E-01 5.5E Type I EGF 169 23 6.7E-02 4.0E AIG1 family 6 4 1.3E-03 2.1E BRICHOS domain 13 8 0.0E+00 0.0E Immunoglobulin-like 678 75 6.8E-04 1.0E LST-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	E CE libe demein	8	4	7.2E-03	9.0E-04
Type I EGF 169 25 6.7E-02 4.0E AIG1 family 6 4 1.3E-03 2.1E BRICHOS domain 13 8 0.0E+00 0.0E Immunoglobulin-like 678 75 6.8E-04 1.0E LST-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	EGF-like domain	431	40	1.4E-01	3.3E-04
AlGI Tamily 6 4 1.3E-03 2.1E BRICHOS domain 13 8 0.0E+00 0.0E Immunoglobulin-like 678 75 6.8E-04 1.0E LST-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	lype I EGF	109	23	6./E=02	4.0E-04
BRICHOS domain 15 8 0.0E+00 0.0E Immunoglobulin-like 678 75 6.8E-04 1.0E LST-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	AIGI Iamily	0	4	1.3E-03	2.1E-04
Immunoglobulin-like 6/8 /5 6.8E-04 1.0E LST-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	BRICHOS domain	13	8	0.0E+00	0.0E+00
LS1-1 6 6 0.0E+00 0.0E Thrombospondin, subtype 1 27 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	Immunoglobulin-like	6/8	15	6.8E-04	1.0E-06
Thrombospondin, subtype I 2/ 8 5.0E-03 1.8E Saposin-like type B, 2 7 5 1.3E-04 1.9E	LST-1	6	6	0.0E+00	0.0E+00
Saposin-like type B, 2 7 5 $1.3E-04$ 1.9E	Thrombospondin, subtype 1	27	8	5.0E-03	1.8E-04
	Saposin-like type B, 2	7	5	1.3E - 04	1.9E-05
Saposin B 12 5 6.5E-03 5.4E	Saposin B	12	5	6.5E - 03	5.4E-04
Pathway	Pathway				
GPCRs_Class_A_Rhodopsin-like 212 34 0.0E+00 0.0E	GPCRs_Class_A_Rhodopsin-like	212	34	0.0E+00	0.0E+00
Peptide_GPCRs 88 20 0.0E+00 0.0E	Peptide_GPCRs	88	20	0.0E+00	0.0E+00
MAP00590//Prostaglandin and leukotriene metabolism 41 9 3.2E-02 7.7E	MAP00590//Prostaglandin and leukotriene metabolism	41	9	3.2E-02	7.7E-04
GPCRs_Class_B_Secretin-like 34 10 9.2E-04 2.7E	GPCRs_Class_B_Secretin-like	34	10	9.2E-04	2.7E-05
Chromosomal location	Chromosomal location				
12p 301 32 2.4E-01 8.1E	12p	301	32	2.4E-01	8.1E-04
8p21 117 18 1.8E-02 1.5E	8p21	117	18	1.8E-02	1.5E-04
17q23 68 14 2.2E-03 3.2E	17q23	68	14	2.2E-03	3.2E-05
16q13 37 12 3.7E-05 1.0E	16q13	37	12	3.7E-05	1.0E-06

For each gene ontology term, the total number of genes with this term in the HG-U133A GeneChip, the total number of genes carrying that term in M_{AD} , the *P*-value of this and the expected number of genes are tabulated. The member genes for each gene ontology term can be downloaded at http://bioinfo.hku.hk/~daniely/lung_microarray.

DISCUSSION

This study first identified a large set of genes (M_{AD}) showing a 2-fold differential behavior in adenocarcinoma cells when compared with normal lung tissue. Of these genes, 2528 genes (73.45%) were also identified passing the *t*-test criteria (P < 0.005, complete *t*-test gene list available at http:// bioinfo.hku.hk/~daniely/lung_microarray/). Transcription factors with binding site motifs that matched conserved DNA regions upstream of genes in M_{AD} were then identified, as these may be the factors that regulate the oncogenic process. This was achieved by incorporating both experimentally determined gene expression data and bioinformatic tools. Below, we will discuss the functional annotation groups (gene ontology terms) that were overrepresented in the cancer

Gase Consider 54 0.001-00 0.001-00 Dell cycle checkpoint 50 17 5.87-04 1.1F-02 Dell cycle checkpoint 183 38 1.1F-02 6.1F-05 M phase of mitotic cell cycle 149 46 0.007+00 0.007+00 Mulcicate instruction cell cycle 149 46 0.007+00 0.007+00 Mulcicate instruction cell cycle 131 97 0.007+00 0.007+00 Mulcitate instruction cell cycle 131 97 0.007+00 0.007+00 Chonsins 117 29 1.87-03 1.57-02 Nucleosome 60 16 3.0E-02 5.0E-04 Catalytic activity 188 8 5.3E-01 3.1E-04 Catalytic activity 188 8 5.3E-01 3.1E-04 Catalytic activity 188 8 5.3E-04 0.0E+00 Catalytic activity 188 6 5.2E-03 6.0E-06 Catalytic activity 188 6 5.2E-03 6.0E-	Annotation term	Total	Found	Expected	P-value
DNA replication and chromosome cycle 233 54 0.074-00 0.074-00 S phasis of mitotic cell cycle 183 38 1.18-02 6.18-05 Mass of mitotic cell cycle 183 38 1.18-02 6.18-05 Mitotic cell cycle 183 38 1.18-02 6.18-05 Mitotic cell cycle 121 25 0.06+00 0.06+00 Nucle cardivision 195 50 0.06+00 0.06+00 Nucle cardivision 195 50 0.06+00 0.06+00 Chromatin 117 29 1.88-03 3.18-04 2.00 1.60 0.06+00 0	Gene Ontology term				
Cell cycle checkpoint 50 17 5.56-44 1.11E-05 M pase of mitotic cell cycle 133 38 1.11E-01 0.11E-00 M pase of mitotic cell cycle 133 38 0.01E-00 0.01E-00 M pase of mitotic cell cycle 133 38 0.01E-00 0.01E-00 M phase 201 52 0.06F-00 0.06F-00 Conscient 107 29 1.8E-05 0.06F-00 Conscient 00 16 3.0E-12 5.0E-05 Nucleosome 00 16 3.0E-12 5.0E-05 Collady:factivity 483 53 0.02E-00 0.02E-00 Cytokinesis 35 24 0.08E-00 0.02E-00 Collagen 54 23 0.00E-00 0.00E-00 Collagen 54 23 0.06E-06 0.01E-00 Collagen 54 23 0.06E-06 0.01E-00 0.01E-00 Spinade 164 21 1.3E-04 2.0E-02 3.8E Collagen 53 14 0.07E-00 0.0E-00	DNA replication and chromosome cycle	233	54	0.0E+00	0.0E+00
S phase of mitotic cell cycle 183 38 1.1E-22 6.1E-95 Musice of initic cell cycle 143 46 0.0E+00 0.0E+00 Nucleacide binding 1737 235 2.1E-01 1.7E-04 Minchic cell cycle 43 97 0.0E+00 0.0E+00 Nucleacide binding 195 50 0.0E+00 0.0E+00 Nucleacide vision 60 16 3.0E+03 1.5E+05 Nucleacome 60 16 3.0E+03 3.0E+04 Cytokinsis 85 2.4 6.8E+04 8.0E+06 Cathoxyperphilse k activity 18 8 5.3E+03 3.1E+04 Extracellular matrix structural constincert 84 21 4.0E+01 4.3E+04 Extracellular matrix structural constincert 345 65 2.1E+03 6.0E+06 Collagen 59 2.4 0.0E+00 0.0E+00 Collagen 73 2.1 3.1E+02 8.8E+03 Spindle 64 21 3.1E+02 <	Cell cycle checkpoint	50	17	5.5E-04	1.1E-05
M phase of mitotic cell cycle 149 46 0.06-00 0.06-00 Mulcetic binding 177 23 2.11E-01 1.2E-04 Mitotic cell cycle 421 97 0.061+00 0.061+00 Mitotic cell cycle 421 97 0.061+00 0.061+00 Chromation 197 29 0.061+00 0.061+00 Constraints 197 29 0.061+00 0.061+00 Calaylic activity 4887 638 0.061+00 0.061+00 Carboxyperptidase A activity 18 8 5.5E-03 3.1E-04 Calaylic activity 18 8 5.5E-03 3.1E-04 Calaylic activity 18 8 5.5E-03 3.1E-04 Calayen matrix structural constituent 89 21 4.06E+00 0.061+00 Collagen 23 14 0.061+00 0.061+00 Collagen 23 14 2.6E-03 3.8E-04 Collagen 23 14 2.6E-03 3.8E-04	S phase of mitotic cell cycle	183	38	1.1E-02	6.1E-05
Nucleards binding 1737 235 2.18-01 1.28-04 Mindia cell cycle 421 97 0.08+00 0.06+00 Mindia cell cycle 421 97 0.08+00 0.06+00 Mindia cell cycle 421 97 0.08+00 0.06+00 Nuclessome 101 52 0.08+00 0.06+00 Chroning 85 24 6.88-04 8.06-04 8.06-04 Carboxypoticks A activity 48 8 5.58-03 3.18-04 0.08-00 0.06+00 Carboxypoticks A activity 18 8 5.58-03 3.18-04 0.08-00 0.08-00 Carboxypoticks A activity 18 8 5.58-03 0.06-00 0.08-00 </td <td>M phase of mitotic cell cycle</td> <td>149</td> <td>46</td> <td>0.0E+00</td> <td>0.0E+00</td>	M phase of mitotic cell cycle	149	46	0.0E+00	0.0E+00
Minic cell cycle 421 97 0.0F+00 0.0F+00 Nuclear division 195 50 0.0F+00 0.0F+00 Nuclear division 195 50 0.0F+00 0.0F+00 Constantin 160 26 1.0F+00 0.0F+00 Cytokinesis 85 24 6.8F+04 8.0F+04 Cytokinesis 85 24 6.8F+04 8.0F+04 Callogica citvity 4857 6.38 0.0F+00 0.0F+00 Callogica citvity 4857 6.38 0.0F+00 0.0F+00 Callagen 23 0.0F+00 0.0F+00 0.0F+00 Callagen 23 14 0.0F+00 0.0F+00 Chronosone 147 32 1.3E+04 8.0F+02 3.8E+0 Spindle 64 21 1.3E+04 8.0F+02 3.8E+0 NA chepodee 66 97 3.1E+02 3.8E+0 3.8E+0 NA chepodee 78 36 2.9F+02 1.4E+0 0.0F+00	Nucleotide binding	1737	235	2.1E-01	1.2E-04
M phase 201 52 0.064400 0.064400 Chromatin 117 29 1.84-03 1.134-03 Nuclear division 65 14 3.05-04 5.05-04 Catalytic artivity 4887 6.38 0.004400 0.004400 Catalytic artivity 4887 6.38 0.004400 0.004400 Catalytic artivity 4887 6.38 0.004400 0.004400 Catalytic artivity 4887 2.3 0.064400 0.004400 Attractiluar matrix structural constituent 89 2.1 4.006-02 4.81-03 Attractiluar matrix 345 6.55 2.18-03 6.06-06 Callagen 2.3 1.4 0.064400 0.004400 Otherhout Callagen 2.3 1.3 0.38-04 0.88-05 Chromome 14 33 1.35-02 1.48-04 DNA replication 178 36 2.98-02 1.48-04 DNA replication 2.51 1.48-04 0.064-00 0.064-00 <td>Mitotic cell cycle</td> <td>421</td> <td>97</td> <td>0.0E+00</td> <td>0.0E+00</td>	Mitotic cell cycle	421	97	0.0E+00	0.0E+00
Nuclear division 195 50 0.06+00 0.01-02 Nuclessome 60 16 3.02+02 3.02+02 Nuclessome 60 16 3.02+02 3.02+04 Construction 88 2.63 0.02+02 4.82+04 Collapen 54 2.3 0.05+00 0.02+00 Collapen 54 2.3 0.05+00 0.02+00 Collapen 59 2.4 0.05+00 0.02+00 Chromosome 147 2.2 1.38+04 0.02+00 0.02+00 Spindla 64 21 1.38+04 0.02+00 0.02+00 DNA dependent DNA replication 16 3.12+04 0.02+00 0.02+00 DNA dependent DNA replicatio	M phase	201	52	0.0E+00	0.0E+00
$\begin{array}{c} \mathrm{Chromatin} & 117 & 29 & 1.81-03 & 1.57-03 & 1.57-03 & 0.12-04 \\ \mathrm{Cytokinesis} & 87 & 26 & 0.81-04 & 0.012-04 & $	Nuclear division	195	50	0.0E+00	0.0E+00
Nuclessme 60 10 3.0002 3.0002 Candyne artivig 485 24 6.82-04 8.02-06 Candyne artivig 18 5.12-02 1.45-04 Collagen 1.41-04 2.3 0.005+00 0.015-00 Collagen 5.3 0.015+00 0.015-00 0.015-00 Collagen 5.9 2.4 0.015+00 0.005+00 Collagen 5.9 2.4 0.015+00 0.005+00 Chromosome 1.47 3.2 1.31-04 2.005-00 Spindle 6.4 21 1.31-04 2.005-00 DNA replication 7.6 19 2.9E-02 3.8E-04 DNA replication initiation 2.5 11 6.32-04 2.05-02 DNA replication initiation 2.5 11 0.32-04 2.05-02 Oncogenesis 5.21 8.4 6.66-00 0.05-00 Oncogenesis 5.21 8.4 0.66+00 0.05-00 Amino acid metabolism 197 <td>Chromatin</td> <td>117</td> <td>29</td> <td>1.8E-03</td> <td>1.5E-05</td>	Chromatin	117	29	1.8E-03	1.5E-05
Cyckness 35 24 8.81 0.44 0.01-00 Carboysperidize A activity 18 8 0.01-00 0.01-00 Carboysperidize A activity 18 8 0.01-00 0.01-00 Carboysperidize A activity 18 8 0.01-00 0.01-00 ATP Finding 1280 177 4.06-00 0.01-00 ATP Finding 2180 177 4.06-00 0.01-00 Collagen 59 2.4 0.06+00 0.01-00 Collagen 147 3.2 1.3E-02 8.8E-04 0.8E-04 Chromosome 147 3.2 1.3E-02 8.8E-04 0.0E-00 DNA replication 78 36 2.9E-02 3.8E-04 0.2E-02 1.8E-04 0.0E-00 0.0E+00	Nucleosome	60	16	3.0E-02	5.0E-04
Catalytic activity 4887 6.58 0.014-00 0.014-00 Carboxyperiduse A activity 18 8 5.5E - 0.3 3.1E - 04 Extracellular matrix structural constituent 89 21 4.0E - 0.2 4.5E - 0.4 A IP binding 1280 17.7 4.0E - 0.3 3.1E - 0.4 Collagen 23 1.4E 0.0E + 0.0 0.0E + 0.0 Fibrillar collagen 23 1.4E 0.0E + 0.0 0.0E + 0.0 Choromscome 1.47 3.2 1.8E - 0.2 8.8E - 0.5 Spindle 64 2.1 3.8E - 0.2 8.1E - 0.5 DNA replication 1.78 3.6 2.9E - 0.2 8.1E - 0.2 DNA replication 24 3.3 1.2E - 0.2 8.1E - 0.4 DNA replication 25 1.1 6.3E - 0.2 1.1E - 0.4 DNA replication initiation 25 1.1 6.3E - 0.2 3.1E - 0.2 8.3E - 0.4 Cheromscome 23 1.2E - 0.3 6.0E - 0.2 3.3E - 0.4 2.5E - 0.5 3.1E - 0	Cytokinesis	85	24	6.8E-04	8.0E-06
	Catalytic activity	4887	638	0.0E+00	0.0E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carboxypeptidase A activity	18	8	5.5E-03	3.1E-04
Congen 34 25 0.08+40 0.08+40 ATP binding 1280 177 4.08-01 3.18-44 Extracellular matrix 345 65 2.18-03 6.08-66 Collagen 23 14 0.08400 0.08400 Chromosome 147 32 1.38-04 8.88-05 Spindle 64 23 1.38-04 8.88-05 DNA neptoholm 66 0 2.98-02 3.18-04 DNA repication 94 23 1.38-02 3.18-04 DNA repication 94 23 1.38-02 1.48-04 DNA dependent DNA repication 240 54 0.08+00 0.08-00 Oncogenesis 521 84 6.66-02 1.38-04 Cell cycle Cell cycle 871 1.45 0.08+00 0.08-00 Chromosome segregation 35 11 2.98-02 8.88-04 Cell cycle 3.18-04 8.85 Cell cycle 3.18-04 Massin at abolis is as	Extracellular matrix structural constituent	89	21	4.0E-02	4.5E-04
A IP mining 1280 177 $4.06-01$ $3.16-04$ Collagen 59 24 0.002+00 0.002+00 Collagen 23 14 0.002+00 0.002+00 Chronssome 147 32 1.36-02 8.88-05 Synndle 64 21 1.38-04 2.08-02 DNA metabolism 606 67 3.18-02 5.18-05 DNA replication 178 36 2.92-02 1.68-04 DNA replication intifation 23 1.38-02 1.48-04 2.55-05 Anno acid and derivative metabolism 240 0.45 0.002+00 0.002+00 Anno acid metabolism 240 34 0.002+00 0.002+00 Caropaces 371 44 6.06-02 0.025+00 0.022+00 Caropaces 371 45 6.06-02 0.022+00 0.022+00 Caropaces 371 45 6.06-02 0.022+00 0.022+00 Caropaces 371 45 6.02+00 0.022+00 0.022+00 Caropace 371 45	Collagen	54	23	0.0E+00	0.0E+00
	ATP binding	1280	1//	4.0E-01	3.1E-04
Collagen 59 24 0.08+40 0.08+40 Fibrillar collagen 23 14 0.08+400 0.08±400 Chromosome 147 32 1.38-02 8.88-05 Spindle 64 21 1.38-04 2.08-02 DNA metadolism 606 67 3.18-02 5.18-02 DNA replication 94 23 1.38-02 1.48-04 DNA replication initiation 25 11 6.38-04 2.55-05 Amino acid and derivative metabolism 249 54 0.08+00 0.08+00 Call cycle 871 145 0.08+00 0.06+00 Call cycle 871 145 0.84-00 0.06+00 Careloxpcic 66 <td>Extracellular matrix</td> <td>345</td> <td>65</td> <td>2.1E-03</td> <td>6.0E-06</td>	Extracellular matrix	345	65	2.1E-03	6.0E-06
Printing collagen 23 14 0.00±+00 0.00±+100 Chromosome 147 32 1.8±-02 8.8±-05 Spindle 64 21 1.8±-02 3.8E-04 DNA metabolism 606 97 3.1E-02 5.1E-05 DNA replication 94 23 1.8±-02 1.4E-02 DNA replication initiation 25 11 6.8±-04 2.5E-05 Amino acid metabolism 240 54 0.0E+00 0.0E+00 Onnizo acid metabolism 197 43 1.2E-03 6.0E-06 Oncogenesis 521 84 6.6E-02 1.3E-04 0.0E+00 Charlon scoli metabolism 197 43 0.0E+00 0.0E+00 0.0E+00 Charlon scoli metabolism 35 11 2.9E-02 8.4E-04 0.0E+00	Collagen	59	24	0.0E+00	0.0E+00
	Fibrillar collagen	23	14	0.0E+00	0.0E+00
Spindle 64 21 1.84–04 2.025–02 3.88–04 DNA metabolism 606 97 3.1E–02 5.1E–05 DNA replication 178 36 2.9E–02 1.6E–04 DNA replication 94 23 1.3E–02 1.4E–04 DNA replication initiation 25 11 6.3E–04 2.5E–05 Amino acid metabolism 197 43 1.2E–03 6.0E–06 Oncogenesis 521 84 6.6E–02 1.3E–04 0.0E+00	Chromosome	147	32	1.3E-02	8.8E-05
Internetiate Hament 76 19 29E-02 38E-04 DNA netplication 178 36 29F-02 1.6E-04 DNA replication 178 36 29F-02 1.6E-04 DNA replication initiation 25 11 6.3E-04 2.5E-03 Annio acid and derivative metabolism 240 54 0.0E+00 0.0F+00 Annio acid and derivative metabolism 197 43 1.2E-03 6.0E-06 Oncogenesis 521 84 6.6E-02 1.38-04 Cell cycle 0.0F+00 0.0F+00 0.0F+00 0.0F+00 0.0E+00	Spindle	64	21	1.3E-04	2.0E-06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Intermediate filament	76	19	2.9E-02	3.8E-04
DNA replication 178 56 29E-02 1.6E-04 DNA replication initiation 25 11 6.3E-04 2.5E-03 Annino acid and derivative metabolism 240 54 0.0E+00 0.0E+00 Annino acid and derivative metabolism 197 43 1.2E-03 6.0E-06 Oncogenesis 521 84 6.6E-02 1.3B-04 Cell cycle 871 145 0.0E+00 0.0E+00 Compositions 55 12 6.9E-03 2.0E-04 Mitotic 16 7 1.3E-02 8.3E-04 Regulation of mitosis 35 12 6.9E-03 2.0E-03 Reddern development 98 2.6 1.1E-03 1.1E-05 Epidernal differentiation 80 2.2 2.2E-03 2.8E-03 Call aronific ratinion 283 60 0.0E+00 0.0E+00 Histogenesis 131 28 4.3E-02 3.3E-04 Call aronific ratinion 2.5 9 2.1E-02 3.8E-	DNA metabolism	606	97	3.1E-02	5.1E-05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DNA replication	178	36	2.9E-02	1.6E-04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DNA dependent DNA replication	94	23	1.3E-02	1.4E-04
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	DNA replication initiation	25	11	6.3E-04	2.5E-05
Amino acid metabolism 197 43 1.2E=03 0.0DE+00 Oncogenesis 521 84 6.6E=02 1.3E=04 Cell cycle 871 145 0.0E+00 0.0E+00 Chromosome segregation 35 11 2.9E=02 8.4E=04 Mitotic checkpoint 16 7 1.3E=02 8.3E=04 Ectoderm development 98 2.6 1.1E=03 1.1E=05 Epidernal differentiation 135 2.9E=03 2.8E=03 0.8E=04 Glutamine family amino acid metabolism 4.6 15 2.9E=03 0.3E=05 Amine metabolism 2.83 6.0 0.0E+00 0.0E+00 Histogenesis 131 2.8 4.3E=02 3.3E=04 Transferase activity 18 8 5.5E=03 3.1E=04 Transferase activity transferring glycosyl groups 2.24 7.0E=02 3.3E=04 Transferase activity transferring glycosyl groups 2.48 34 2.5E=03 1.1E=02 Transferase activity transferring glycosyl groups 2.42 7.0E=02 3.8E=04 Transferase activity transferr	Amino acid and derivative metabolism	240	54	0.0E+00	0.0E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Amino acid metabolism	197	43	1.2E-03	6.0E-06
Cell cycle 871 143 $0.0E+00$ $0.0E+00$ Chromosome segregation 35 11 $2.9F-02$ $8.4E-04$ Mitoxis 145 45 $0.0E+00$ $0.0E+00$ Regulation of mitoxis 35 12 $6.9F-03$ $2.0E-04$ Mitotic checkpoint 16 7 $1.3E-02$ $8.3E-04$ Eciderm development 98 26 $1.1E-03$ $1.1E-05$ Cell proliferation 3156 190 $1.2E-01$ $8.9E-05$ Glutamine family amino acid metabolism 46 15 $2.9E-03$ $6.3E-05$ Anine metabolism 283 60 $0.0E+00$ $0.0E+00$ Histogenesis 131 28 $4.3E-02$ $3.3E-04$ Transferase activity transferring glycosyl groups 225 42 $7.0E-02$ $3.3E-04$ Transferase activity transferring glycosyl groups 225 9 $2.1E-02$ $8.3E-04$ Purine nucleotide binding 1723 233 $2.3E-01$ <t< td=""><td>Oncogenesis</td><td>521</td><td>84</td><td>6.6E-02</td><td>1.3E-04</td></t<>	Oncogenesis	521	84	6.6E-02	1.3E-04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cell cycle	871	145	0.0E+00	0.0E+00
Mitosis 145 45 0.0E+40 0.0E+40 Regulation of mitosis 35 12 6.9E-03 2.0E-04 Mitotic checkpoint 16 7 1.3E-02 8.38-04 Ectoderm development 98 26 1.1E-03 1.1E-05 Epidermal differentiation 1356 190 1.2E-01 8.8E-05 Glutamine family amino acid metabolism 46 15 2.9E-03 6.3E-05 Amine metabolism 283 60 0.0E+00 0.0E+00 Histogenesis 131 28 4.3E-02 3.3E-04 Glucurnoosyltransferase activity 18 8 5.E-03 3.1E-04 Transferase activity transferring glycosyl groups 225 42 7.0E-02 3.1E-04 Transferase activity transferring glycosyl groups 148 34 2.5E-03 1.7E-05 Other carbon-nitrogen ligase activity 25 9 2.1E-02 8.3E-04 Purine nucleotide binding 1723 233 2.3E-01 1.4E-04 Adenyl nucleotide binding 1723 235 1.4E-01 2.6E-04	Chromosome segregation	35	11	2.9E-02	8.4E-04
Regulation of mitosis 35 12 $6.9E-03$ $2.0E-04$ Mitotic checkpoint 16 7 $1.3E-02$ $8.3E-04$ Ectoderm development 98 26 $1.1E-03$ $1.1E-05$ Cell proliferation 1356 190 $1.2E-01$ $8.9E-05$ Epidermal differentiation 80 22 $2.2E-03$ $2.8E-05$ Glutamine family amino acid metabolism 46 15 $2.9E-03$ $6.3E-05$ Anine metabolism 283 60 $0.0E+00$ $0.0E+00$ Glucuronosyltransferase activity 18 8 $5.5E-03$ $3.1E-04$ Transferase activity transferring glycosyl groups 148 34 $2.5E-03$ $1.7E-05$ Other carbon-nitrogen ligase activity 25 9 $2.1E-02$ $8.3E-04$ Purine nucleotide binding 1723 23 $2.3E-01$ $1.4E-04$ Adenyl nucleotide binding 1292 179 $3.4E-01$ $2.6E-04$ Adenyl nucleotide binding 1292 179 $3.4E-01$ $2.6E-04$ Adenyl nucleotide binding 1292 6 8.6	Mitosis	145	45	0.0E+00	0.0E+00
Mitotic checkpoint 16 / 1.3E-02 8.3E-04 Ectoderm development 98 26 1.1E-03 1.1E-05 Epidermal differentiation 1356 190 1.2E-01 8.9E-05 Gilutamine family amino acid metabolism 46 15 2.9E-03 6.3E-05 Amine metabolism 283 60 0.0E+00 0.0E+00 Histogenesis 131 28 4.3E-02 3.3E-04 Glucuronosyltransferase activity 1634 2.24 1.3E-01 8.1E-05 Transferase activity transferring glycosyl groups 2.25 42 7.0E-02 3.1E-04 Transferase activity transferring glycosyl groups 125 9 2.1E-02 8.3E-04 Purine nucleotide binding 1723 2.33 2.3E-01 1.4E-04 Alternot dusain 76 19 2.9E-02 3.8E-04 Protein domain 76 19 2.0E-02 2.6E-04 Endoplasmic reticulum targeting sequence 76 19 2.0E-02 2.6E-04 Protein domain 11 8 2.2E-05 2.0E-04	Regulation of mitosis	35	12	6.9E-03	2.0E-04
Ectodern development98261.1E-0.51.1E-0.5Cell proliferation13561901.2E-018.9E-05Glutamine family amino acid metabolism46152.9E-03 $6.3E-05$ Glutamine family amino acid metabolism283600.0E+000.0E+00Histogenesis13128 $4.3E-02$ $3.3E-04$ Glucuronosyltransferase activity1634224 $1.3E-01$ $8.1E-05$ Transferase activity transferring glycosyl groups22542 $7.0E-02$ $3.1E-04$ Transferase activity transferring glycosyl groups1259 $2.1E-02$ $8.3E-04$ Purine nucleotide binding1723233 $2.3E-01$ $1.4E-05$ Other carbon-nitrogen ligase activity259 $2.1E-02$ $8.3E-04$ Protein domain7619 $2.9E-02$ $3.8E-04$ Protein domain7619 $2.9E-02$ $2.6E-04$ Protein domain7619 $2.0E-02$ $2.6E-04$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-05$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-02$ Prolyl oligopeptidase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85<	Mitotic checkpoint	16	1	1.3E-02	8.3E-04
Cell proliferation 1356 190 1.2E-01 8.9E-05 Epidermal differentiation 80 22 2.2E-03 2.8E-05 Glutamine family amino acid metabolism 46 15 2.9E-03 6.3E-05 Amine metabolism 283 60 0.0E+00 0.0E+00 Histogenesis 131 28 4.3E-02 3.3E-04 Glucuronosyltransferase activity 1634 224 1.3E-01 8.1E-05 Transferase activity transferring glycosyl groups 225 42 7.0E-02 3.1E-04 Transferase activity transferring lage activity 25 9 2.1E-02 8.3E-04 Other carbon-mitrogen ligase activity 25 9 2.1E-02 8.3E-04 Parine nucleotide binding 1723 233 2.3E-01 1.4E-04 Intermediate filament cytoskeleton 76 19 2.9E-02 3.8E-04 Fibrillar collagen, C-terminal 23 14 0.0E+00 0.0E+00 Endoplasmic reticulum targeting sequence 76 19 2.0E-02 2.6E-04 Protein domain 11 8 2.2E-05	Ectoderm development	98	26	1.1E-03	1.1E-05
Epidermal differentiation80222.2E-032.8E-03Glutamine family amino acid metabolism46152.9E-036.5E-05Amine metabolism283600.0E+000.0E+00Histogenesis131284.3E-023.3E-04Glucurnoosyltransferase activity16342.241.3E-018.1E-05Transferase activity transferring lycosyl groups225427.0E-023.1E-04Transferase activity transferring lycosyl groups148342.5E-031.7E-05Other carbon-mitrogen ligase activity2592.1E-028.3E-04Adenyl nucleotide binding12921793.4E-012.6E-04Adenyl nucleotide binding12921793.4E-012.6E-04Intermediate filament cytoskeleton76192.9E-022.6E-04Protein domain711.1E-026.9E-040.0E+000.0E+00Eibrillar collagen, C-terminal23140.0E+000.0E+00Endoplasmic reticulum targeting sequence76192.0E-022.6E-04MCM family1182.2E-052.0E-052.0E-06Prolyl oligopeptidase1268.6E-037.1E-04McM family1185.5E-043.5E-04Intermediate filament protein671.7E-048.6E-03Prolyl endopeptidase, serine active site854.4E-035.5E-04Intermediate filament protein67773.6E-034.3E-04	Cell proliferation	1356	190	1.2E-01	8.9E-05
Gutamine tamity amino acid metabolism 40 15 $2.9E-05$ $6.5E-05$ Amine metabolism 283 60 0.0E+00 0.0E+00 Histogenesis 131 28 $4.3E-02$ $3.3E-04$ Glucuronosyltransferase activity 1634 224 $1.3E-01$ $8.1E-05$ Transferase activity transferring glycosyl groups 225 42 $7.0E-02$ $3.1E-04$ Transferase activity transferring hexosyl groups 148 34 $2.5E-03$ $1.7E-05$ Other carbon-mitrogen ligase activity 25 9 $2.1E-02$ $8.3E-04$ Purine nucleotide binding 1723 233 $2.3E-01$ $1.4E-04$ Adenyl nucleotide binding 1292 179 $3.4E-01$ $2.6E-04$ Intermediate filament cytoskeleton 76 19 $2.9E-02$ $3.8E-05$ Protein domain 23 14 $0.0E+00$ $0.0E+00$ Endoplasmic retriculum targeting sequence 76 19 $2.2E-05$ $2.0E-02$ Proly oligopeptidase 11 8	Epidermal differentiation	80	22	2.2E-03	2.8E-05
Amme metabolism28360 $0.0E+00$ $0.0E+00$ Histogenesis13128 $4.3E-02$ $3.3E-04$ Glucuronosyltransferase activity188 $5.5E-03$ $3.1E-04$ Transferase activity transferring hexosyl groups22542 $7.0E-02$ $3.1E-04$ Transferase activity transferring hexosyl groups14834 $2.5E-03$ $1.7E-05$ Other carbon-nitrogen ligase activity259 $2.1E-02$ $8.3E-04$ Purine nucleotide binding1723233 $2.3E-01$ $1.4E-04$ Adenyl nucleotide binding1292179 $3.4E-01$ $2.6E-04$ Intermediate filament cytoskeleton7619 $2.9E-02$ $3.8E-04$ Protein domain7619 $2.0E-02$ $2.6E-04$ Epsin N-terminal homology167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Nor Willbehand factor, type D96 $7.7E-04$ $8.6E-03$ UDP-glucoronsyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Optiendowin199 $1.0E-03$ $5.4E-05$ UDP-glucoronsyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Optiendiae, serine active site8 <td>Glutamine family amino acid metabolism</td> <td>46</td> <td>15</td> <td>2.9E-03</td> <td>6.3E-05</td>	Glutamine family amino acid metabolism	46	15	2.9E-03	6.3E-05
Histogenesis151284.5E-023.3E-04Glucuronosyltransferase activity1885.5E-033.1E-04Transferase activity transferring glycosyl groups16342241.3E-018.1E-05Transferase activity transferring bexosyl groups148342.5E-031.7E-05Other carbon-nitrogen ligase activity2592.1E-028.3E-04Purine nucleotide binding17232332.3E-011.4E-04Adenyl nucleotide binding12921793.4E-012.6E-04Intermediate filament cytoskeleton76192.9E-023.8E-04Protein domain	Amine metabolism	283	60	0.0E+00	0.0E+00
Glucuronosyltransferase activity 18 8 5.2E-03 3.1E-04 Transferase activity transferring glycosyl groups 225 42 7.0E-02 3.1E-04 Transferase activity transferring hexosyl groups 148 34 2.5E-03 1.7E-05 Other carbon-nitrogen ligase activity 25 9 2.1E-02 8.3E-04 Purine nucleotide binding 1723 233 2.3E-01 1.4E-04 Adenyl nucleotide binding 1292 179 3.4E-01 2.6E-04 Intermediate filament cytoskeleton 76 19 2.9E-02 3.8E-04 Protein domain 7 11E-02 6.9E-04 0.0E+00 0.0E+00 Erbinllar collagen, C-terminal 23 14 0.0E+00 0.0E+00 0.0E+00 Edoplasmic reticulum targeting sequence 76 19 2.0E-02 2.6E-04 MCM family 11 8 2.2E-05 2.0E-06 Prolyl oligopeptidase 12 6 8.6E-03 7.1E-04 Intermediate filament protein 67 17 3.0E-02 4.4E-04 von Willebrand factor, type D 9<	Histogenesis	131	28	4.3E-02	3.3E-04
Transferase activity1634224 $1.5E-01$ $8.1E-05$ Transferase activity transferring glycosyl groups22542 $7.0E-02$ $3.1E-04$ Transferase activity transferring hexosyl groups14834 $2.5E-03$ $1.7E-05$ Other carbon-nitrogen ligase activity259 $2.1E-02$ $8.3E-04$ Purine nucleotide binding1723233 $2.3E-01$ $1.4E-04$ Adenyl nucleotide binding1292179 $3.4E-01$ $2.6E-04$ Intermediate filament cytoskeleton7619 $2.9E-02$ $3.8E-04$ Protein domain	Glucuronosyltransferase activity	18	8	5.5E-03	3.1E-04
Transferase activity transferring by cosyl groups 225 42 $7.0E-02$ $3.1E-02$ Transferase activity transferring hexosyl groups 148 34 $2.5E-03$ $1.7E-05$ Other carbon-nitrogen ligase activity 25 9 $2.1E-02$ $8.3E-04$ Purine nucleotide binding 1723 233 $2.3E-01$ $1.4E-04$ Adenyl nucleotide binding 1292 179 $3.4E-01$ $2.6E-04$ Intermediate filament cytoskeleton 76 19 $2.9E-02$ $3.8E-04$ Protein domain 23 14 $0.0E+00$ $0.6E+00$ Endoplasmic reticulum targeting sequence 76 19 $2.0E-02$ $2.6E-04$ MCM family 11 8 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase 12 6 $8.6E-03$ $7.1E-04$ Nullebrand factor, type D 9 6 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase 15 7 $6.4E-03$ $4.3E-04$ Immunoglobulin V-type 146 32 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal 19	Transferase activity	1634	224	1.3E-01	8.1E-05
Transferase activity transferring hexosyl groups148	Transferase activity transferring glycosyl groups	225	42	7.0E-02	3.1E-04
Other carbon-nitrogen ligase activity259 $2.1E-02$ $8.3E-01$ Purine nucleotide binding1723233 $2.3E-01$ $1.4E-04$ Adenyl nucleotide binding1292179 $3.4E-01$ $2.6E-04$ Intermediate filament cytoskeleton7619 $2.9E-02$ $3.8E-04$ Protein domain7619 $2.0E-02$ $2.6E-04$ Endoplasmic reticulum targeting sequence7619 $2.0E-02$ $2.6E-04$ Endoplasmic reticulum targeting sequence7619 $2.0E-02$ $2.6E-04$ Proty167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Proly loigopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-03$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat	Transferase activity transferring hexosyl groups	148	34	2.5E-03	1./E-05
Puttine indicide binding17232.35 $2.3E-01$ $1.4E-04$ Adenyl nucleotide binding1292179 $3.4E-01$ $2.6E-04$ Intermediate filament cytoskeleton7619 $2.9E-02$ $3.8E-04$ Protein domain7619 $2.0E-02$ $2.6E-04$ Endoplasmic reticulum targeting sequence7619 $2.0E-02$ $2.6E-04$ Epsin N-terminal homology167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Wilderand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, C-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat6922 $6.9E-05$ $1.0E-06$	Other carbon–nitrogen ligase activity	25	9	2.1E-02	8.3E-04
Adenyl nucleotide binding1292179 $3.4E-01$ $2.6E-04$ Intermediate filament cytoskeleton7619 $2.9E-02$ $3.8E-04$ Protein domain2314 $0.0E+00$ $0.0E+00$ Endoplasmic reticulum targeting sequence7619 $2.0E-02$ $2.6E-04$ Epsin N-terminal homology167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$	Purine nucleotide binding	1723	233	2.3E-01	1.4E-04
Intermediate filament cytoskeleton7619 $2.9E-02$ $3.8E-04$ Protein domainFibrillar collagen, C-terminal2314 $0.0E+00$ $0.0E+00$ Endoplasmic reticulum targeting sequence7619 $2.0E-02$ $2.6E-04$ Epsin N-terminal homology167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Adenyl nucleotide binding	1292	1/9	3.4E-01	2.6E-04
Protein domain Fibrillar collagen, C-terminal 23 14 0.0E+00 0.0E+00 Endoplasmic reticulum targeting sequence 76 19 2.0E-02 2.6E-04 Epsin N-terminal homology 16 7 1.1E-02 6.9E-04 MCM family 11 8 2.2E-05 2.0E-06 Prolyl oligopeptidase 12 6 8.6E-03 7.1E-04 Intermediate filament protein 67 17 3.0E-02 4.4E-04 von Willebrand factor, type D 9 6 7.7E-04 8.6E-05 UDP-glucoronosyl/UDP-glucosyl transferase 15 7 6.4E-03 4.3E-05 Prolyl endopeptidase, serine active site 8 5 4.4E-03 5.5E-04 Immunoglobulin V-type 146 32 6.3E-03 4.3E-05 Cyclin, C-terminal 19 9 1.0E-03 5.4E-05 Disulphide isomerase 12 7 8.4E-04 7.0E-05 Cyclin, N-terminal domain 34 12 3.7E-03 1.1E-04 Histone core 25 9 1.7E-02 6.7E-04 </td <td>Intermediate filament cytoskeleton</td> <td>/6</td> <td>19</td> <td>2.9E-02</td> <td>3.8E-04</td>	Intermediate filament cytoskeleton	/6	19	2.9E-02	3.8E-04
Firstillar collagen, C-terminal2.314 $0.0E+00$ $0.0E+00$ Endoplasmic reticulum targeting sequence7619 $2.0E-02$ $2.6E-04$ Epsin N-terminal homology167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-03$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$	Protein domain	22	14	0.05.00	0.05.00
Endoplasmic reticultur targeting sequence7619 $2.0E-02$ $2.6E-02$ $2.6E-04$ Epsin N-terminal homology167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Oyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Fibrillar collagen, C-terminal	23	14	0.0E+00	0.0E+00
Epsin N-terminal homology167 $1.1E-02$ $6.9E-04$ MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Endoplasmic reticulum targeting sequence	/6	19	2.0E-02	2.6E-04
MCM family118 $2.2E-05$ $2.0E-06$ Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Epsin N-terminal homology	16	/	1.1E-02	6.9E-04
Prolyl oligopeptidase126 $8.6E-03$ $7.1E-04$ Intermediate filament protein6717 $3.0E-02$ $4.4E-04$ von Willebraud factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	MCM family	11	8	2.2E-05	2.0E-06
Intermediate filament protein 67 17 $3.0E-02$ $4.4E-04$ von Willebrand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Prolyl oligopeptidase	12	6	8.6E-03	/.IE-04
von Willebrand factor, type D96 $7.7E-04$ $8.6E-05$ UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Intermediate filament protein	6/	17	3.0E-02	4.4E-04
UDP-glucoronosyl/UDP-glucosyl transferase157 $6.4E-03$ $4.3E-04$ Prolyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin4414 $4.7E-03$ $1.1E-04$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	von Willebrand factor, type D	9	6	7.7E-04	8.6E-05
Protyl endopeptidase, serine active site85 $4.4E-03$ $5.5E-04$ Immunoglobulin V-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin4414 $4.7E-03$ $1.1E-04$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	UDP-glucoronosyl/UDP-glucosyl transferase	15	7	0.4E-03	4.3E-04
Immunogloulin v-type14632 $6.3E-03$ $4.3E-05$ Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin4414 $4.7E-03$ $1.1E-04$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Protyl endopeptidase, serine active site	8	5	4.4E-03	5.5E-04
Cyclin, C-terminal199 $1.0E-03$ $5.4E-05$ Disulphide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin4414 $4.7E-03$ $1.1E-04$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	immunogiobulin v-type	146	32	0.3E-03	4.3E-05
Distiplide isomerase127 $8.4E-04$ $7.0E-05$ Cyclin4414 $4.7E-03$ $1.1E-04$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Cyclin, C-terminal	19	9	1.0E - 03	5.4E-05
Cyclin4414 $4.7E-03$ $1.1E-04$ Cyclin, N-terminal domain3412 $3.7E-03$ $1.1E-04$ Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Disulphide isomerase	12	1	8.4E-04	/.0E-05
Cyclin, N-terminal domain 34 12 3.7E-03 1.1E-04 Histone core 25 9 1.7E-02 6.7E-04 Collagen triple helix repeat 106 28 3.2E-04 3.0E-06 Collagen helix repeat 69 22 6.9E-05 1.0E-06	Cyclin Craclin N terminal 1	44	14	4./E-03	1.1E-04
Histone core259 $1.7E-02$ $6.7E-04$ Collagen triple helix repeat10628 $3.2E-04$ $3.0E-06$ Collagen helix repeat6922 $6.9E-05$ $1.0E-06$	Cyclin, N-terminal domain	34	12	3./E-03	1.1E-04
Conagen imple neux repeat 106 28 3.2E-04 3.0E-06 Collagen helix repeat 69 22 6.9E-05 1.0E-06	Histone core	25	9	1./E-02	6./E-04
Conagen neux repeat 69 22 6.9E-05 1.0E-06	Collagen triple nellx repeat	106	28	3.2E-04	3.0E-06
	Conagen neux repeat	09	22	0.9E-03	1.0E-06

Table 3	• Continuea
---------	-------------

Annotation term	Total	Found	Expected	<i>P</i> -value
Pathway				
Cell_cycle	133	43	5.7E+00	4.3E-02
Glutamate metabolism	27	12	3.2E-01	1.2E-02
MAP00251//glutamate metabolism	43	15	6.5E-01	1.5E-02
Androgen_and_estrogen_metabolism	15	7	1.1E-01	7.0E-03
MAP00150//androgen and estrogen metabolism	32	11	3.5E-01	1.1E-02
Chromosomal location				
7	961	129	8.7E-01	9.1E-04
1g	920	126	4.4E - 01	4.8E-04
8q	388	67	5.8E-03	1.5E-05

Details are as described in Table 2.

associated genes and their putative regulatory transcription factors. Only some salient findings can be presented due to the size of the dataset and full details are provided as Supplementary Material.

In a separate study, we identified 88 lung cancer associated genes (data not shown) from our microarrays, using a feature partitioning method we developed earlier (37). However, here, we aimed to identify the broadest set of cancer associated genes (M_{AD}) by using fold-ratio analysis, and to examine their functional annotations in order to understand the biological processes that are altered in cancer when compared with normal tissue. A broad gene set was important to ensure statistical validity when determining the functional groups (gene ontology terms) that were overrepresented in the gene population in M_{AD} . More than three thousand genes were found to be up- or down-regulated by >2-fold and all 88 cancer associated genes identified using the earlier method (37) were found in this set.

In previous works (38–40), differential gene expression in cancer was reported but relatively little elaboration of the genes' functions, or the regulatory cascades and biological processes underlying the observations was made. Here, we found that many gene ontology terms disproportionately occurred (P < 0.001) among the sets of genes that were either substantially up- or down-regulated in adenocarcinomas. This gave evidence of the systematic up- or down-regulation of several biological processes directly linked to oncogenesis. Such processes included increased cell multiplication, angiogenesis, vascularization, and glucose and amino acid metabolism.

Glucose metabolism is crucial because cancer cell growth depends on glucose availability, rather than respiration, for biomass construction (41). Increased expression of glycolytic enzymes, including pyruvate carboxylase, citrate synthase, aconitate hydratase, oxalosuccinate decarboxylase, glucose-6-phosphate isomerase, fructose-bisphosphate aldolase, glucose transporter (GLUT) and L-lactate dehydrogenase were observed in the microarray data. This is consistent with the fermentation metabolism (needed for ATP synthesis in the absence of efficient respiration), and with entry into a tricarboxylic acid pathway for glutamate and aspartate synthesis (i.e. biomass construction) rather than respiration.

Unlike mostly resting normal cells, where oxygen is used in oxidative phosphorylation for ATP synthesis and cell maintenance, cancer cells metabolize glucose at a much higher rate, in order to generate ATP and use pyruvate as the substrate to generate lactate to replete the NAD pool (Warburg's effect), while stopping the cycling of the tricarboxylic acid pathway (42,43). The major outcome of this metabolic shift is, by preventing the tricarboxylic acid pathway cycling, to produce biomass rather than energy. This effect, overlooked for some time, was discovered >70 years ago (41). Much effort has been initiated to identify the transcription factor(s) that facilitate this change of course in cancer cells (from aerobic slow growth or resting state into anaerobic use of glucose while growing) by up-regulating the expression and activity of all enzymes directly related to this essential metabolic pathway. In recent publications, several transcription factors [hypoxia inducible factor 1 (HIF-1) (44); Myc (45); Ras (46); v-SRC(47); p53(48) and pVHL(49)] were reported to play a role in the regulation of the expression of these glycolytic enzymes.

From the genes in $M_{\rm AD}$ associated with each overrepresented gene ontology term, a subset of genes with more consistent expression profiles was identified and the upstream regions of these genes were searched for conserved elements. Such conserved DNA regions, if they exist, are likely to be evolutionarily significant (50-54). Wasserman et al. (55) showed that a large proportion (>98%) of experimentally defined transcription factor binding sites are restricted to the most conserved residues within their own promoter regions. Earlier studies have used databases such as TRANSFAC to search for transcription factor binding sites in the upstream regions of genes; however, this can lead to many false positives (56,57). Clustering of genes based on expression profiles has been used to select sets of genes more likely to be co-regulated (20); however, with increasing numbers of genes in the clusters, the number of false positive identifications increases. One reason for this is the inclusion of genes in the cluster that are not actually co-regulated, hampering the correct detection of conserved DNA regions by most motif discovery tools (21,22). Methods to evaluate putative regulatory sites and newly detected motifs have also been proposed (58).

To address this issue, we combined the gene expression correlation coefficients and gene functional classes of all the cancer-associated genes (M_{AD}) to select a more consistent set of likely co-regulated genes. These genes not only had a consistent expression pattern with the highest possible pairwise gene correlation, but also shared the same functional role. No limit was placed on the number of genes that would be selected from each functional group, and all genes with expression profiles within a cutoff value (d < 0.20) were selected. These criteria were motivated by there being

Table 4. Highly conserved DNA regions, detected with MODEL, in regions 5 kb directly upstream of the transcription start site in putatively co-regulated gene sets

Gene Ontolog	y	Location ^b	Frequency ^c	Similar regulation ^d	Putative transcription factors ^e
Gene up-regu NM 004526 NM 002916 NM 003504	lated in lung adenocarcinomas cells DNA replication and chromosome cycle ^a ggggcgt GGTGGCTCACGCCTGTAATCCTAGCACTATGGGAGGCCAAGGCAGGC	cact -2467 ccga -2920 acct -3179	1 7 1	100% 75% 100%	Whn,AhR,GATA-1,PITX2,HIF-1 MyoD,E47,AREB6,E12,USF,GATA-1,PITX2 Whn,AhR,GATA-1,PITX2,Major,MyoD,E47, TTF1-1,AREB6,TA1,1,E12,USF,HIF-1
Profile	RGGYRY GGTGGCTCACRCCTRTAATCCYAGCACTWTGGGAGGCMRAGGYRGGYGGGA TB	MSMM			
NM 004701 NM 001211 NM 020242	Nuclear division ^a agtagt CCCAGCTACTCGGGTGGGTGGGGAGGATCACTTGAGCCCGGGGGAT tg tatagt CCCAGCTACATGGGAGGATGAGGCAGGAAGGATCGCTTGAACCTGGGAGGGT gg tgtagt CCCAGCTGCTTGAGGGCTGAGGGCAGGAGGATCACTTGAGCCCAGGAGGT ca	aggc -3735 aggt -3705 aggc -2016		100% 100% 100% 1100%	HES1,SREBP-1,TFII-I,DEC,USF,Nkx2-5,GATA-1 TFII-1,EIk-1,NERF1a,c-Eis-1(p54),68,AREB6 TAL1,HEB,TFII-1,Zta,c-Eis-1(p54),DEC,SREBP-1, TEC Nin-2, & DODAIADA
NM 022346 NM 003981 NM 001237 NM 001213	ctgtaat CCCAGCTACTTTGGGAGACTGAGGCGGGAGAATCGCTTCAACCCGGGAGGC ag tgtaat CTGAGCTACTTTGGGAGGGCTGAAGCAGGAGGAAGCC ttgaac TGCAAGAACAGCCGGCGGGGGGGGGGGGGGGGGG ct ttgaac TGCAAGAACAGCCGGCGGGCGGGGGGGGGGGGGGGGG ct tgtaat CCCAGCTACTGGGGAGGCTGAGGCAGGAGAATCACTTGAATGCAGGAGGT gg	aggt -2071 aggt -866 ttgg -167 aggc -715		100% 100% 100% 100%	TFII-I,DEC,Nkx2-2,SREBP-1,USF,Nkx2-5,AREB6,HIF-1 TFII-I,Zta,DEC,Nkx2-2,SREBP-1,USF,TTF1,Nkx2-5, 6 Fig. 16 Fig. 16:543 ADEPEA
NM 002358 NM 022346 Profile	tgtagt CTCAGCTACTTGGGAGTCCGAGGCAGGAGAATTGCTTGAACCTGGGAGGC ag ctgtaa CCCAGCTACTTGGGAGACTGAGGCGGGGGGAGAATCGCTTCAACCCGGGAGGC ag HDKWRH YBSARSWRCWBSVGHSDMYSMRGVRGCVRGGMDRMTYRCTKSADYBYDGGRSRY ND	aggt -4881 aggt -2071 WKGB	1	$100\% \\ 100\%$	TFII-I,C/EBPdelta,AREB6
Gene down-re NM 005874 NM 000265	<pre>sgulated in lung adenocarcinomas cells Cellular defense response^a cttgat GGTCCCGGGGACCCTGTGGGCATCTCGCCTCTGGTG ag tggcag GATCTCGGGTCACTGCAACCTCCACCTCCTGGTTCAAGTGATTCTCCTG tc</pre>	tccg -715 ttac -3997	1 2	$100\% \\ 100\%$	USF,AREB6,GR RFX1,TFII-1,AREB6,DEC,SREBP-1,Nkx2-2,Nkx2-5,
NM 016382	tggcgt GATCTCGGCTCACCTCCACCTCCTGGATTCAAGTGATTCTCCTG cc	tcag -3907	1	100%	USF, HIF-1 RFX1,TFII-1,AREB6,c-Ets-1(p54),GATA-1,DEC, TTF1,SREBP-1,Nkx2-2,Nkx2-5,USF,Zta
Profile	YKKSRK GRTCYCGGSWCMCTGYRRCMTCYMMCYYCYKGVYTCWRKTSWTTCTYSTG HS	TYMS			
NM 000459 NM 005308 NM 000115	Signal transduction ^a tcagga GGCTGAGGCAGAAAACGCTTGAACCCAGGAGGCGGACGTTGCAGTGAG cc ttggga GGCTGAAGTACAAACCATTGAAACCTGGGAGGGCGCAGGTTGCAGTGAG cc ttggga GGCTGAGGCAGGAGAATCACTTGAACCTGGGAGGCCGGAGGTTGCAGTGAG ct	gaga -2597 gaga -2401 gaga -1967	1 -	100% 100% 50%	Zta.c-Ets-1(p54),RFX1 GATA-1,AREB6,RFX1 TFILI_Zta,DEC,SREBP-1,Ntx2-2,USF,Ntx2-5,
NM 005424 NM 003991 NM 005795 NM 005795 NM 003357 NM 003856 NM 004844 Profile	gccagt GGTGGCAAGAGGTGGAACGGGTGGCAGGGCAGGGAGGGGAGGTGAGTCTG gg tggggcg CGCTGCGGGAGCTGTAGCCAGCCAGGCAGGGAGGTAGCGGCGTTTCATCCG cc ttgggga GGTTGAGGCAGGAGGAGTTGCTTGAACCCGGGGAGGTGGAGGTTGCAGTGAG ct ttgggga GGCTGAGGCAGGAGAATTGCTTGAACCCGGGAGGTGGAGGTTGCAGTGAG cc ttgtga GGCTGAGGCAGGAGAATCGTCTTGAATCCAGGGAGGTGGAGGTTGCAGTGAG cc acagga GGCTGAGGCAGGAGAATGCTTTGAATCCAGGGAGGTGCAGGTGAGGTGG GGCTGAGGCAGGAGAATGCTTGAATCCCAGGAGGTGCAGGTGAGGTG acagga GGCTGAGGCAGGAGAATGCTTGAATCCCAGGAGGCGGAGGTTGCAGTGAG ct bBVDSD SGYKGMRRAASVWGDAKHDHHKSVWBYYRGGRVUBVGMSRKKBMRTSHG SB	aggg -1039 ggga -340 ggga -1930 ggga -1624 ggga -3601 aaca -4824 RVBR		100% 100% 100% 100% 100%	AREB0,v-Els-1(D-4) SMAD-3 SMAD-3 Zta, TFII-I,C/EBPdelta,c-Ets-1(p54),AREB6 Zta, TFII-I,c-Ets-1(p54),AREB6,RFX1 Zta, TFII-I,c-Ets-1(p54),AREB6,RFX1 Zta, TFII-I,c-Ets-1(p54)
The complete	table can be downloaded at http://bioinfo.hku.hk/~daniely/lung_microarray.				

^aOverrepresented gene ontology terms. ^bLocation of conserved sequence upstream of the transcription start site. ^cFrequency of occurrence of conserved sequence in 5 kb upstream regions of genes given in (32). ^dPercentage of the genes with a matched upstream sequence and their expression trends. ^eTranscription factor name from TRANSFAC (8.3) FACTOR table (35,73).

many examples, which show that transcription factors have multiple target genes, of which a significant portion is involved in a common metabolic pathway. For instance, the CAP transcription factor in *Escherichia coli* has been shown to mediate the regulation of dozens of genes involved in glucose metabolism (59,60). In humans, the GATA binding protein 1 (globin transcription factor 1, GATA-1) plays an important role in erythroid development by regulating hemoglobin production (61). The majority of genes that are regulated by this transcription factor contain the gene ontology term 'hemoglobin'. Moreover, growth factor independent 1 (Gfi-1) acts on a subset of genes involved in the differentiation of the hematopoietic lineage (62).

MoDEL, the motif discovery program used here, has been demonstrated extensively and compared with other existing motif finding algorithms by analyzing sets of complex natural amino acid sequences (e.g. HTH protein motifs) and artificial datasets (planted motifs) (26). It was shown to have a more efficient optimization method than other local multiple alignment methods. Unlike algorithms that search for motifs by exhaustive enumeration of overrepresented words (63), MoDEL looks for a set of conserved occurrences based on information content (26). The objective of MoDEL is to identify exactly one occurrence per sequence in such a way that all chosen occurrences are maximally similar across the sequence set. A validation of MoDEL on the CAP-mediated gene set (59) in bacteria successfully extracted the conserved regions that incorporate the CAP binding sites (Supplementary Material).

Having identified conserved DNA regions associated with genes with the same functional annotation and similar expression profiles, *in silico* pattern-based scanning against the TRANSFAC 8.3 database for transcription factors with binding site motifs in these conserved DNA regions was performed. Among the transcription factors identified as putative regulatory factors for these genes (Table 4), some had been reported in previous publications to promote or suppress cancer formation, whereas the remaining transcription factors have generally not been sufficiently characterized *in vivo*. Four of these appear to be particularly significant, namely: HIF-1, Gfi-1, nuclear factor TG-interacting factor (TGIF) and erythroid transcription factor (GATA-1).

HIF-1 is a regulatory heterodimer consisting of two subunits; HIF-1 β is constitutively expressed in all conditions, whereas HIF-1 α is rapidly degraded under normal conditions but is stabilized under hypoxia (64). Despite an average upregulation of this protein (HIF-1 α) by ~30% in our dataset, our initial screening for cancer gene markers did not reveal this protein because the expression change was too small to be selected. From our microarray findings, the up-regulation of this protein did not result in a systematic activation of gene clusters with a specific function. However, the fact that HIF-1 binding sites were found to be enriched in some down-regulated genes that belonged to the cellular defense response gene ontology term (Table 4), suggested that this protein might be one of the cellular components responsible for the suppression of the defense response of hypoxic cancer cells. Other genes related to growth factor, protease and apoptosis pathways, e.g. epidermal growth factor receptor, carbonic anhydrase IX, p53-, matrix metalloproteinase 9, that were known to be dependent on HIF-1 α for their activation (65) had fold changes of 2.41, 2.8, 6.5 and 2.51, respectively, in our dataset.

Gfi-1 is a zinc finger protein that binds DNA and functions as a transcriptional repressor through its unique repressor domain, SNAG (66). In our arrays, this gene was downregulated in adenocarcinoma cells by an average of 69%, and it was observed that genes that contain activation sites for Gfi-1 were mostly up-regulated in adenocarcinoma cells. One example is the pro-apoptotic regulator gene Bax which was up-regulated by 2.3-fold in adenocarcinoma cells but was shown to be down-regulated by Gfi-1 in immortalized T-cell lines and primary transgenic thymocytes (67).

TGIF is a transcriptional core-repressor that directly associates with Smad (Sma- and Mad-related protein) proteins and inhibits Smad-mediated transcriptional activation (68). The gene responses activated by Smad underlie both proliferative and anti-proliferative events that contribute to cancer (69,70). Originally, TGIF was isolated as a ubiquitously expressed homeodomain protein that can bind to the retinoid X receptor (RXR) response element (71). Based on our analysis, this gene was up-regulated in lung cancer cells by an average of 2.6fold while the RXR gene was repressed by an average of 25%.

GATA-1 is a factor that had been shown to be important in the regulation of globin and non-globin genes in erythroid, megakaryocytic and mast cell lineages (72). From our arrays, this gene was down-regulated by an average of ~40% in cancer cells. This is consistent with our findings that members in globin gene family (α , β and γ) were all repressed in adenocarcinomas, despite their weak association with primary lung cancers (Table 2).

In conclusion, by investigating the statistical distribution of the functional annotations attached to cancer associated genes (M_{AD}) derived from lung tissue microarrays, we have identified functions, corresponding to several key biological systems, which are overrepresented in cancer associated genes (Tables 2 and 3). The congruence of these functions with known cancer cell oncogenic processes suggests the up- or down-regulation of genes in M_{AD} is linked to cancer-related metabolism processes. Subsequently, we clustered the genes in $M_{\rm AD}$ into putatively co-regulated gene sets by assuming that co-regulated genes will share common functional roles and exhibit very similar expression profiles. Conserved DNA segments in the upstream regions of these putatively co-regulated gene sets were found and transcription factors that recognize these DNA regions were identified (Table 4). A literature search on these transcription factors, which are putative regulatory factors in adenocarcinoma development, substantiated that the majority had been previously documented experimentally to be oncogenic transcription factors. These transcription factors, together with their conserved binding sites, suggest new candidates for therapeutic intervention in the treatment of lung adenocarcinomas.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

Indispensable support was provided by a doctoral fellowship from The University of Hong Kong and the Hong Kong Innovation and Technology Fund (ITF) BIOSUPPORT Programme. The microarray experiments are supported by the HKSAR RGC grants 7486/03M, 7468/04M. Work at the Genetics of Bacterial Genomes Unit is supported by the Centre National de la Recherche Scientifique (CNRS, URA 2171).

REFERENCES

- 1. Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer. *Cell*, **100**, 57–70.
- Jemal, A., Murray, T., Samuels, A., Ghafoor, A., Ward, E. and Thun, M.J. (2003) Cancer statistics, 2003. *CA Cancer J. Clin.*, 53, 5–26.
- Venter,J.C., Adams,M.D., Myers,E.W., Li,P.W., Mural,R.J., Sutton,G.G., Smith,H.O., Yandell,M., Evans,C.A., Holt,R.A. *et al.* (2001) The sequence of the human genome. *Science*, 291, 1304–1351.
- Ramaswamy,S. and Golub,T.R. (2002) DNA microarrays in clinical oncology. J. Clin. Oncol., 20, 1932–1941.
- Geller,S.C., Gregg,J.P., Hagerman,P. and Rocke,D.M. (2003) Transformation and normalization of oligonucleotide microarray data. *Bioinformatics*, 19, 1817–1823.
- Hoffmann,R., Seidl,T. and Dugas,M. (2002) Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. *Genome Biol.*, 3, RESEARCH0033.
- Quackenbush, J. (2002) Microarray data normalization and transformation. *Nature Genet.*, 32 (Suppl.), 496–501.
- Zien,A., Aigner,T., Zimmer,R. and Lengauer,T. (2001) Centralization: a new method for the normalization of gene expression data. *Bioinformatics*, 17 (Suppl. 1), S323–331.
- Cope,L.M., Irizarry,R.A., Jaffee,H.A., Wu,Z. and Speed,T.P. (2004) A benchmark for Affymetrix GeneChip expression measures. *Bioinformatics*, 20, 323–331.
- Brazma, A. and Vilo, J. (2001) Gene expression data analysis. *Microbes Infect.*, 3, 823–829.
- Krajewski, P. and Bocianowski, J. (2002) Statistical methods for microarray assays. J. Appl. Genet., 43, 269–278.
- Zhang,H., Yu,C.Y., Singer,B. and Xiong,M. (2001) Recursive partitioning for tumor classification with gene expression microarray data. *Proc. Natl Acad. Sci. USA*, **98**, 6730–6735.
- Theilhaber, J., Bushnell, S., Jackson, A. and Fuchs, R. (2001) Bayesian estimation of fold-changes in the analysis of gene expression: the PFOLD algorithm. J. Comput. Biol., 8, 585–614.
- Horn,D. and Axel,I. (2003) Novel clustering algorithm for microarray expression data in a truncated SVD space. *Bioinformatics*, 19, 1110–1115.
- Nguyen,D.V. and Rocke,D.M. (2002) Tumor classification by partial least squares using microarray gene expression data. *Bioinformatics*, 18, 39–50.
- Lee, S.I. and Batzoglou, S. (2003) Application of independent component analysis to microarrays. *Genome Biol.*, 4, R76.
- Somorjai, R.L., Dolenko, B. and Baumgartner, R. (2003) Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. *Bioinformatics*, 19, 1484–1491.
- Cora, D., Di Cunto, F., Provero, P., Silengo, L. and Caselle, M. (2004) Computational identification of transcription factor binding sites by functional analysis of sets of genes sharing overrepresented upstream motifs. *BMC Bioinformatics*, 5, 57.
- Tullai,J.W., Schaffer,M.E., Mullenbrock,S., Kasif,S. and Cooper,G.M. (2004) Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol 3-kinase and MEK/ERK signaling pathways. J. Biol. Chem., 279, 20167–20177.
- Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. and Church, G.M. (1999) Systematic determination of genetic network architecture. *Nature Genet.*, 22, 281–285.
- Liu,X.S., Brutlag,D.L. and Liu,J.S. (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. *Nat. Biotechnol.*, 20, 835–839.
- Zheng, J., Wu, J. and Sun, Z. (2003) An approach to identify over-represented cis-elements in related sequences. *Nucleic Acids Res.*, 31, 1995–2005.

- Bussemaker,H.J., Li,H. and Siggia,E.D. (2001) Regulatory element detection using correlation with expression. *Nature Genet.*, 27, 167–171.
- Conlon,E.M., Liu,X.S., Lieb,J.D. and Liu,J.S. (2003) Integrating regulatory motif discovery and genome-wide expression analysis. *Proc. Natl Acad. Sci. USA*, **100**, 3339–3344.
- Nitschke, P., Guerdoux-Jamet, P., Chiapello, H., Faroux, G., Henaut, C., Henaut, A. and Danchin, A. (1998) Indigo: a World-Wide-Web review of genomes and gene functions. *FEMS Microbiol. Rev.*, 22, 207–227.
- Hernandez, D., Gras, R. and Appel, R. (2004) MoDEL: An efficient strategy for ungapped local multiple alignment. *Comput. Biol. Chem.*, 28, 119–128.
- Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena, N., Holloway, E., Kapushesky, M., Kemmeren, P., Lara, G.G. et al. (2003) ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res., 31, 68–71.
- Rocca-Serra, P., Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Contrino, S., Vilo, J., Abeygunawardena, N., Mukherjee, G., Holloway, E. *et al.* (2003) ArrayExpress: a public database of gene expression data at EBI. *C R Biol.*, **326**, 1075–1078.
- Li,C. and Wong,W. (2003) DNA-Chip Analyzer (dChip). In Parmigiani,G., Garrett,E.S., Irizarry,R. and Zeger,S.L. (eds), *The Analysis of Gene Expression Data: Methods and Software*. Springer, pp.120–141.
- Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.*, 4, 406–425.
- Kumar,S., Tamura,K., Jakobsen,I.B. and Nei,M. (2001) MEGA2: molecular evolutionary genetics analysis software. *Bioinformatics*, 17, 1244–1245.
- 32. Aach,J., Bulyk,M.L., Church,G.M., Comander,J., Derti,A. and Shendure,J. (2001) Computational comparison of two draft sequences of the human genome. *Nature*, **409**, 856–859.
- Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C., Baldwin,J., Devon,K., Dewar,K., Doyle,M., FitzHugh,W. *et al.* (2001) Initial sequencing and analysis of the human genome. *Nature*, 409, 860–921.
- Cravchik, A., Subramanian, G., Broder, S. and Venter, J.C. (2001) Sequence analysis of the human genome: implications for the understanding of nervous system function and disease. *Arch. Neurol.*, 58, 1772–1778.
- Wingender, E. (2004) TRANSFAC, TRANSPATH and CYTOMER as starting points for an ontology of regulatory networks. *In Silico Biol.*, 4, 55–61.
- Kel,A.E., Gossling,E., Reuter,I., Cheremushkin,E., Kel-Margoulis,O.V. and Wingender,E. (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. *Nucleic Acids Res.*, **31**, 3576–3579.
- Yap, Y., Zhang, X., Ling, M., Wang, X., Wong, Y. and Danchin, A. (2004) Classification between normal and tumor tissues based on the pair-wise gene expression ratio. *BMC Cancer*, 4, 72.
- Beer,D.G., Kardia,S.L., Huang,C.C., Giordano,T.J., Levin,A.M., Misek,D.E., Lin,L., Chen,G., Gharib,T.G., Thomas,D.G. *et al.* (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. *Nature Med.*, 8, 816–824.
- Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R., Gillette, M. *et al.* (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. *Proc. Natl Acad. Sci. USA*, 98, 13790–13795.
- Fardin, P., Bahler, J., Capanni, P., Inglese, E., Ricciardi, A. and Ferrara, G.B. (2003) Gene expression analysis in non small cell lung cancer (NSCLC) using microarray technology. *Hum. Immunol.*, 64, S116.
- 41. Warburg,O. (1930) *The Metabolism of Tumours*. Arnold Constable, London.
- Goel, A., Mathupala, S.P. and Pedersen, P.L. (2003) Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J. Biol. Chem., 278, 15333–15340.
- Lee, M.G. and Pedersen, P.L. (2003) Glucose metabolism in cancer: importance of transcription factor-DNA interactions within a short segment of the proximal region of the type II hexokinase promoter. J. Biol. Chem., 278, 41047–41058.
- 44. Carmeliet,P., Dor,Y., Herbert,J.M., Fukumura,D., Brusselmans,K., Dewerchin,M., Neeman,M., Bono,F., Abramovitch,R., Maxwell,P. *et al.* (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. *Nature*, **394**, 485–490.

- An,W.G., Kanekal,M., Simon,M.C., Maltepe,E., Blagosklonny,M.V. and Neckers,L.M. (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. *Nature*, **392**, 405–408.
- Mathupala,S.P., Heese,C. and Pedersen,P.L. (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. *J. Biol. Chem.*, 272, 22776–22780.
- Rempel,A., Mathupala,S.P., Griffin,C.A., Hawkins,A.L. and Pedersen,P.L. (1996) Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. *Cancer Res.*, 56, 2468–2471.
- Gnarra, J.R., Zhou, S., Merrill, M.J., Wagner, J.R., Krumm, A., Papavassiliou, E., Oldfield, E.H., Klausner, R.D. and Linehan, W.M. (1996) Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. *Proc. Natl Acad. Sci. USA*, 93, 10589–10594.
- Lewis, B.C., Shim, H., Li, Q., Wu, C.S., Lee, L.A., Maity, A. and Dang, C.V. (1997) Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. *Mol. Cell. Biol.*, 17, 4967–4978.
- Akiyama,Y., Hosoya,T., Poole,A.M. and Hotta,Y. (1996) The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. *Proc. Natl Acad. Sci. USA*, 93, 14912–14916.
- Liu,E.S. and Lee,A.S. (1991) Common sets of nuclear factors binding to the conserved promoter sequence motif of two coordinately regulated ER protein genes, GRP78 and GRP94. *Nucleic Acids Res.*, 19, 5425–5431.
- Singh,H., Sen,R., Baltimore,D. and Sharp,P.A. (1986) A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. *Nature*, 319, 154–158.
- Siomi,H., Matunis,M.J., Michael,W.M. and Dreyfuss,G. (1993) The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. *Nucleic Acids Res.*, 21, 1193–1198.
- 54. Srinivasula,S.M., Hegde,R., Saleh,A., Datta,P., Shiozaki,E., Chai,J., Lee,R.A., Robbins,P.D., Fernandes-Alnemri,T., Shi,Y. *et al.* (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. *Nature*, **410**, 112–116.
- Wasserman, W.W., Palumbo, M., Thompson, W., Fickett, J.W. and Lawrence, C.E. (2000) Human-mouse genome comparisons to locate regulatory sites. *Nature Genet.*, 26, 225–228.
- Fickett, J.W. and Hatzigeorgiou, A.G. (1997) Eukaryotic promoter recognition. *Genome Res.*, 7, 861–878.
- Claverie, J.M. and Audic, S. (1996) The statistical significance of nucleotide position-weight matrix matches. *Comput. Appl. Biosci.*, 12, 431–439.
- Jakt,L.M., Cao,L., Cheah,K.S. and Smith,D.K. (2001) Assessing clusters and motifs from gene expression data. *Genome Res.*, 11, 112–123.
- 59. Gosset,G., Zhang,Z., Nayyar,S., Cuevas,W.A. and Saier,M.H.,Jr (2004) Transcriptome analysis of Crp-dependent catabolite

control of gene expression in *Escherichia coli*. J. Bacteriol., **186**, 3516–3524.

- Magasanik,B. and Neidhardt,F.C. (1987) Regulation of carbon and nitrogen utilization. *Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology*. American Society for Microbiology, Washington, DC, Vol. 2, pp. 1318–1325.
- Trainor, C.D., Evans, T., Felsenfeld, G. and Boguski, M.S. (1990) Structure and evolution of a human erythroid transcription factor. *Nature*, 343, 92–96.
- Duan,Z. and Horwitz,M. (2003) Targets of the transcriptional repressor oncoprotein Gfi-1. *Proc. Natl Acad. Sci. USA*, **100**, 5932–5937.
- van Helden, J., Andre, B. and Collado-Vides, J. (1998) Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. *J. Mol. Biol.*, 281, 827–842.
- Huang,L.E., Gu,J., Schau,M. and Bunn,H.F. (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. *Proc. Natl Acad. Sci. USA*, **95**, 7987–7992.
- Swinson,D.E., Jones,J.L., Cox,G., Richardson,D., Harris,A.L. and O'Byrne,K.J. (2004) Hypoxia-inducible factor-lalpha in non small cell lung cancer: relation to growth factor, protease and apoptosis pathways. *Int. J. Cancer*, **111**, 43–50.
- Zweidler-Mckay, P.A., Grimes, H.L., Flubacher, M.M. and Tsichlis, P.N. (1996) Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. *Mol. Cell. Biol.*, 16, 4024–4034.
- Grimes, H.L., Gilks, C.B., Chan, T.O., Porter, S. and Tsichlis, P.N. (1996) The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death. *Proc. Natl Acad. Sci. USA*, 93, 14569–14573.
- Wotton, D., Lo, R.S., Lee, S. and Massague, J. (1999) A Smad transcriptional corepressor. *Cell*, 97, 29–39.
- Eppert, K., Scherer, S.W., Ozcelik, H., Pirone, R., Hoodless, P., Kim, H., Tsui, L.C., Bapat, B., Gallinger, S., Andrulis, I.L. *et al.* (1996) MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. *Cell*, 86, 543–552.
- Lagna,G., Hata,A., Hemmati-Brivanlou,A. and Massague,J. (1996) Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. *Nature*, 383, 832–836.
- Bertolino, E., Reimund, B., Wildt-Perinic, D. and Clerc, R.G. (1995) A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. *J. Biol. Chem.*, 270, 31178–31188.
- Orkin,S.H. (1990) Globin gene regulation and switching: circa 1990. *Cell*, **63**, 665–672.
- Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A.E., Kel-Margoulis, O.V. *et al.* (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. *Nucleic Acids Res.*, 31, 374–378.