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Abstract

The β-galactoside binding protein galectin-7 (gal-7) is constitutively expressed at abnor-

mally high levels in the outside milieu and intracellular compartments of many types of epi-

thelial cancer cells, most notably in aggressive forms of ovarian and breast cancer. It is thus

of utmost importance to understand how gal-7 traffics between both intracellular and extra-

cellular compartments to develop novel drugs that target the protumorigenic functions of

galectin-7. In the present work, we report that extracellular gal-7 plays a central role in con-

trolling intracellular gal-7 in cells. It does so via two distinct yet complementary mechanisms:

firstly by increasing the transcriptional activation of lgals7 gene transcription, and secondly

via re-entry into the cells. Increased mRNA levels were dose- and time-dependent and

occur in all cell lines tested, including ovarian and breast cancer cell lines. Addition of recom-

binant gal-7 to MDA-MB-231 transfected with a luciferase reporter vector containing

response elements of the lgals7 promoter indicated that increased mRNA level of lgals7

occurs via de novo gene transcription. Re-entry of extracellular gal-7 inside cells was rapid,

and reached cytosolic and mitochondrial compartments. Taken together, these findings

reveal the existence of a positive self-amplification pathway that regulates intracellular gal-7

expression in breast and ovarian cancer cells.

Introduction

Galectins are intracellular small molecular weight soluble proteins that are released in the

extracellular space via a non-classical export mechanism. Once in the extracellular space, they

bind to repeating units of high density O-glycans on the peptide backbone of membrane

receptors, facilitating the packing of glycosylated receptors into an ordered cross-linked lattice

at the cell surface [1–3]. In the cytosol, they accomplish various cellular functions by interact-

ing with multiple ligands using CRD- and CRD-independent interactions [4]. This is particu-

larly true for galectin-7 (gal-7). We and others have found that gal-7 is constitutively expressed

in the cytosol of multiple types of cancer cells of epithelial origin, most notably breast and
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ovarian cancer cells [5–7]. The mechanisms responsible for such constitutive expression of

gal-7 intracellularly, however, remain largely unknown although it is logical to assume that

gal-7 in cancer cells is regulated, at least in part, at the transcriptional level via DNA methyla-

tion and the implication of specific transcription factors, such as mutant p53, Nf-kB, and the

CCAAT/enhancer-binding protein beta-2 isoform (CEBPβ-2) [8–10]. Because galectins are

well known for their ability penetrate cells via endocytosis following binding to cell surface gly-

coreceptors [11,12], another possibility is that cytosolic gal-7 originates from endocytic uptake

from the pool present in the extracellular milieu. Solving this issue is critical for the design of

gal-7-specific drugs aimed at inhibiting gal-7 protumorigenic functions, most notably in high

fatality cancer for which no effective treatment exists. In the present work, we provide evidence

that expression of gal-7 inside cancer cells results from both an autocrine transcriptional

mechanism and the endocytosis of extracellular gal-7.

Material and methods

Reagents and cell lines

The breast MDA-MB-231, MCF-7, MDA-MB-468 cell lines and the human fibrosarcoma

HT1080 cell lines were obtained from the American Tissue Culture Collection (ATCC, Manas-

sas, VA). The ovarian cancer cell lines were kindly provided by Dr. E. Asselin (University of

Quebec in Trois-Rivières). The ovarian human A2780 and OVCAR-3 cell lines were main-

tained in RPMI 1640 medium and SKOV-3 cell line was maintained in McCoy’s 5A medium

supplemented with 2 mM L-glutamine, 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid

(HEPES) buffer and 15% (vol/vol) FBS. The other cell lines were maintained in culture in Dul-

becco modified Eagle Medium (DMEM) supplemented with 2 mM L-glutamine, 1mM sodium

pyruvate 10 mM, HEPES, and 10% (vol/vol) FBS. All cell culture products were purchased

from Life Technologies (Burlington, ON, Canada). Pitstop-2 was obtained from Abcam

(Toronto, ON, Canada) and Dynasore from Sigma-Aldrich (Oakville, ON, Canada). Anti-

human galectin-7 was purchased from R&D Systems (Minneapolis, MN, USA) while anti-

lamin A/C, anti-Cox IV and anti-β-tubulin were obtained from Cell Signaling (Danvers, MA,

USA). All other chemicals, including anti-β-actin and anti-FITC antibodies, were from Sigma

Aldrich (St. Louis, MO, USA) unless stated otherwise.

RNA extraction and semi-quantitative RT-PCR

Total RNA was isolated from cells using Trizol reagent according to the manufacturer’s

instructions (Invitrogen, Burlington, ON, Canada). After reverse transcription with an Omnis-

cript reverse transcriptase kit from QIAGEN (Toronto, ON, Canada), cDNA was amplified

using the following conditions: 94˚C for 1 min, followed by 30–40 cycles of the following:

94˚C for 1 min, 58–64˚C for 1min (depending on the primers) for hybridization temperature,

and 72˚C for 1 min, followed by a final extension step at 72˚C for 10 min. PCR assays using

equal amounts of RNAs that were reverse-transcribed and amplified by PCR with genes spe-

cific primers (Table 1) confirmed that the amplification was in the linear range for each gene.

As an internal control, amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

mRNA. PCR reactions were performed in a thermal cycler (MJ Research, Watertown, MA)

and amplicons analyzed by electrophoresis on agarose gels using SYBR Safe DNA staining

(Invitrogen) and UV illumination.
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Vectors, transfection and luciferase assays

The pGL3 Basic luciferase reporter vector encoding for the human lgals7 promoter region has

been described [8]. For transfection, cells were plated at equal density 16–24 h before transfec-

tion. Cells were then transfected using DNAfectin 2100 (ABM, Richmond, BC, Canada)

according to the manufacturer’s protocol. After transfection, cells were incubated in complete

medium at 37˚C in 5% CO2 for the indicated periods of time and subjected to a dual reporter

assay. Luciferase activity was measured using the Luciferase Assay System protocol (Promega,

Madison, WI, USA) and a luminometer (Lumat LB 9507, Berthold). β-galactosidase activity

was measured using a colorimetric enzyme assay using the Luminescent β-Galactosidase

Detection Kit II according to the manufacturer’s instructions (Clontech Laboratories, Moun-

tain View, CA). Luciferase expression levels were normalized to the levels of β-galactosidase

expression.

Western blot analysis

Whole cell extracts were homogenized in RIPA lysis buffer (Thermo Fisher Scientific, Rock-

ford, IL) containing protease inhibitors (Roche-Diagnostic, Mississauga, ON, Canada) follow-

ing the manufacturer’s instructions. Mitochondria, nuclear and cytoplasm proteins were

extracted using commercial kits (Sigma-Aldrich). Extracellular proteins were collected from

cell supernatant and concentrated under vaccum. Equal amounts of proteins were loaded and

separated on a 15% SDS-PAGE gel. After transfer, nitrocellulose membranes were first blocked

with in a 5% milk in PBS/0.05% Tween 20 solution for 1h and subsequently blotted overnight

at 4˚C with the primary antibody. Secondary antibodies consisted of horseradish peroxidase

(HRP)-conjugated anti-rabbit, anti-mouse, or anti-goat antibodies (GE Healthcare, Missis-

sauga, ON, Canada). Detection was performed using the enhanced chemiluminescence (ECL)

method.

Production of recombinant galectin

Production of human recombinant gal-7 was carried out as described using a pET-22b(+) plas-

mid encoding a synthetic, codon-optimized cDNA [13]. In some experiments, recombinant

gal-7 was labeled with fluorescein isothiocyanate (FITC) as described [13]. FITC-labeled gal-7

was purified using a PD-10 Sepharose column (GE healthcare) and eluted with PBS.

Confocal analysis

Cells were fixed in paraformaldehyde 3% [w/v] for 15 min, permeabilized in PBS/Triton X-100

0.1% [v/v] for 5 min and blocked 30 min at 4˚C in 1% [v/v] BSA diluted in PBS (PBA) before

addition of the antibodies. All antibodies were diluted in PBA and all washing steps were per-

formed with PBS. Nuclei were stained with ProLong Gold Antifade Reagent with DAPI (Life

Technologies). For live cell imaging, cells were seeded in 6-well plates and incubated with

Table 1.

Gene Sense Antisense

MMP-9 5’-CAA CAT CAC CTA TTG GAT CC-3’ 5’-CGG GTG CAC CTA TTG GAT CC-3’

GAPDH 5’-CGG AGT CAA CGG ATT TGG TCG TAT-3’ 5’-CAG AAG TGG TGG TAC CTC TTC CGA-3’

Lgals3 5’-ATG GCA GAC AAT TTT TCG CTC C-3’ 5’-ATG TCA CCA GAA ATT CCC AGT T-3’

Lgals7 5’-ATG TCC AAC GTC CCC CAC AAG-3’ 5’-TGA CGC GAT GAT GAG CAC CTC-3’

https://doi.org/10.1371/journal.pone.0187194.t001
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FITC-labeled recombinant gal-7 for time-courses ranging from 5 min to 1 hr. DAPI and

WGA were used as counterstain. 3D confocal time-lapse imaging was performed at 37˚C in a

humidified, temperature- and CO2-controlled live cell chamber. Images were collected

sequentially in three channels (633, 488 and 561nm laser) every 15 sec. Confocal image z-

stacks of live cells were recorded with a frame size of 724x724 pixels, a pixel size of 70 nm

(0.07μm x 0.07 μm x 1.00 μm) and a z-step size of 1.00 μm every 1.75 seconds. Images shown

are maximum intensity projections of few mid-z-sections. All immunofluorescence analyses

were carried out using a LSM 780 laser-scanning microscope (Zeiss, Jena, Germany).

Statistical analysis

Statistical significance was calculated using the unpaired Student’s t-test. Results were consid-

ered statistically significant at p� 0.05.

Results

Autocrine regulation of lgals7 in cancer cells

Sustained expression of gal-7 is commonly observed inside and outside aggressive carcinoma

cells. Because binding of extracellular galectins to cell surface receptors is well known to trigger

gene expression in a wide spectrum of cell types, we first investigated whether extracellular

gal-7 can induce its own expression via an autocrine regulatory loop. For this purpose, cancer

cells were incubated with increasing concentrations of recombinant human gal-7 for different

period of times. Cells were then harvested and lgals7 gene expression measured by standard

RT-PCR. Our results showed that exposure of cancer cells to gal-7 did induce lgals7 mRNA

expression (Fig 1A). Gal-7 did not induce or modulate expression of lgals3, indicating that this

autocrine regulation was specific. This induction of lgals7 by recombinant gal-7 was rapid and

could readily be detected 3 hr. after addition of gal-7 (Fig 1B). Upregulation of lgals7 by

recombinant gal-7 was observed in both ovarian and breast cancer cell lines, including the

human breast cancer cell line, MDA-MB-231 (Fig 1C and 1D). Experiments where addition of

recombinant gal-7 to MDA-MB-231 transfected with a luciferase reporter vector containing

response elements of the lgals7 promoter indicated that increased mRNA level of gal-7 in can-

cer cells occurs via de novo gene transcription (Fig 1E). Similar results were obtained using

MCF-7 and HT1080 cells (S1 Fig). Upregulation of lgals7 by recombinant gal-7 was found to

be dose-dependent (Fig 1F). Treatment with cycloheximide (CHX) partically inhibited the

pool of intracellular gal-7 in MDA-MB-231 cells, consistent with de novo expression of gal-7 at

the protein level (S2 Fig). Taken together, these findings reveal the existence of a gal-7 auto-

crine positive feedback in ovarian and breast cancer cells.

Increased intracellular expression of gal-7

Western blot analysis of cell lysates collected from MDA-MB-231 cells following treatment

with recombinant human gal-7 showed a time-dependent increase of gal-7 at the protein level

that was detectable at 1–5 min post-incubation (Fig 2). This induction was temperature depen-

dent (Fig 3). Increased expression of gal-7 inside the cells occurred in both cytosolic and mito-

chondrial compartments where gal-7 is normally found (Fig 3).

Endocytosis of extracellular gal-7

To further study the entry of extracellular gal-7 inside the cells, we tagged recombinant gal-7

with FITC, allowing to follow the entry of gal-7 inside the cells using anti-FITC antibodies

(Fig 4A). Western blot analysis of cytosolic and mitochondrial extracts of MDA-MB-231 cells
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using anti-FITC antibodies confirmed the entry of extracellular FITC-tagged gal-7 in the cytosol

and mitochondria (Fig 4B). The entry of extracellular FITC-labeled gal-7 inside MDA-MB-231

cells was confirmed by confocal microscopy analysis (Figs 5 and 6). Successive imaging using

live confocal microscopy revealed that entry of gal-7 occurred within minutes following a multi-

step process initiated by the binding and aggregation of FITC-gal-7 at the membrane level fol-

lowed by a progressive accumulation in the cytosol (Fig 7).

Discussion

Our results suggest that extracellular gal-7 controls the intracellular pool of gal-7. It does so via

two distinct yet complementary mechanisms: firstly by increasing the transcriptional

Fig 1. Increase mRNA levels of human gal-7 in cancer cells following stimulation with human recombinant galectin-7 (rhGal-7).

(A) Levels of transcripts were measured by RT-PCR 16 h after addition of rhGal-7. (B) Kinetic analysis of lgals7 mRNA expression induced

by rhGal-7 (5μM) in OVCAR and A2780 cells. (C) mRNA level of lgals7 in MDA-MB-231 cells after treatment with rhGal-7 (5μM). (D)

Quantitative analyses of lgals7 mRNA levels in MDA-MB-231 as measured by imaging densitometry. (* p� 0.05). (E) Luciferase activity

measured in protein extracts collected from MDA-MB-231 cells transfected with a luciferase reporter vector containing p200-gal7 promoter

following treatment with rhGal-7 (** p� 0.005). (F) lgals7 expression induced by rhGal-7 at different concentrations. Data are representative

of at least three independent experiments.

https://doi.org/10.1371/journal.pone.0187194.g001

Fig 2. Induction of galectin-7 in MDA-MB-231 cells is CRD-dependent. Expression of galectin-7 was

measured by Western blot at different times following stimulation with rhGal-7.

https://doi.org/10.1371/journal.pone.0187194.g002

Fig 3. Mitochondrial localization of galectin-7. Western blot analysis in MDA-MB-231 cells showing

expression of cytosolic and mitochondrial galectin-7 15 min after stimulation with rhGal-7 at 0˚C or 37˚C.

Tubulin and CoxIV were used as controls for cytosolic and mitochondrial extracts respectively.

https://doi.org/10.1371/journal.pone.0187194.g003
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activation of lgals7 gene transcription, and secondly via re-entry into the cells. These findings

are of great importance in the design of gal-7 inhibitors for the treatment of various diseases

where gal-7 plays a central role, most notably in cancer [6,7,9]. These findings suggest that

targeting extracellular gal-7 using either CRD-specific inhibitors [14] or dimer-disrupting pep-

tides (DIPs) [13] may be more efficient than expected for targeting intracellular gal-7-medi-

ated interactions. Furthermore, our results showing that extracellular gal-7 induces de novo
lgals7 gene activation and our approach using FITC-tagged recombinant gal-7 to follow the

fate of extracellular gal-7 inside the cells provide new and original in vitro model systems to

investigate the inhibitory activity of these gal-7-specific inhibitors. They also provide a simple

and reliable experimental platform to identify and study membrane receptors that bind extra-

cellular gal-7.

Historically, galectins have been mostly known for their presence outside the cells following

their release via a non-conventional pathway and their entry into the cells into endosomal

compartments. This paradigm is based on solid experimental evidence obtained in studies that

focused largely on gal-1 and gal-3. For example, Lepur et al., have shown that gal-3 enter

Fig 4. Western blot analysis showing endocytosis of FITC-labeled galectin-7. (A) Western blot analysis

of cell lysates collected from MDA-MB-231 cells treated with rh-Gal-7 or FITC-rhGal-7 (15 min. post-

treatment) (B) Expression of cytosolic or mitochondrial galectin-7 following treatment with rhGal-7 or FITC-

rhGal-7 (15 min. post-treatment).

https://doi.org/10.1371/journal.pone.0187194.g004
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macrophage-like cells via early endosomes rapidly (within 5–10 min) and to non-degradative

vesicles, where it remains detectable for at least 24 h [11]. Such rapid re-entry of gal-3 inside

cells has also been shown in cells of epithelial origin [15]. These findings with gal-1 and -3,

together with our results with gal-7, support the idea that entry of extracellular galectins inside

cells is a common mechanism adopted by multiple members of the galectin family. The level

of redundancy shared by the different members of the galectin family with regards to the iden-

tity of glycoreceptors involved and the intracellular trafficking pathways that mediate such re-

entry into cells remains, however, to be established. Although a detailed mechanism underly-

ing entry of gal-7 is beyond the scope of this study, our preliminary results with Dynasore and

Pitstop-2, two small molecular weight inhibitors of endocytosis, suggest that gal-7 enter cells

via clathrin-mediated endocytosis, a major pathway for internalization of cell surface glycopro-

teins in mammalian cells (S3 Fig) [16]. Dynasore inhibits endocytic pathways by rapidly block-

ing coated vesicle formation via its interaction with dynamin [17] while Pitstop-2 is well

known for its ability to inhibit clathrin-mediated endocytosis [18]. Clathrin-coated endocyto-

sis has been shown to be used by other galectins, including gal-1 and gal-3, for their entry into

cells [11, 19]. The inhbition observed with these inhibitors was, however, only partial for both

MDA-MB-231 and OVCAR cells, suggesting that gal-7 may also enter cells via a clathrin-inde-

pendent pathway as well. This would be consistent with the lack of inhibition observed with

CPZ, another inhibitor normally associated with clathrin-mediated endocytosis (S3 Fig). The

entry of gal-7 may thus depend on the cell type and/or the receptors involved. This has been

well documented for gal-3 [11]. One must, however, be careful in the interpretation of experi-

mental results obtained from using such pharmacological inhibitors. Many inhibitors of endo-

cytosis have cell-specific effects [20, 21]. Notwithstanding these limitations, interesting

Fig 5. Endocytosis FITC-labeled galectin-7 viewed by confocal microscopy. Confocal microscopy of MDA-MB-231 cells treated

with FITC-rhGal-7 during 25 minutes. Staining with DAPI (a) and WGA (c), which target the nucleus and plasma membrane respectively,

are shown. In (b), staining of FITC-gal-7. (e) and (f) show cross sections of the cell.

https://doi.org/10.1371/journal.pone.0187194.g005
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Fig 6. Confocal microscopy of 3D sections of MDA-MB-231 cells treated with FITC-rhGal-7. (A) 3D reconstruction of

endocytosed FITC-rhGal-7 as described in Fig 5. In (B), multiple cross sections in the thickness of the cell.

https://doi.org/10.1371/journal.pone.0187194.g006

Fig 7. Real-time analysis showing internalization of FITC-rhGal-7. Time-lapse imaging of FITC-rhGal-7 endocytosis in MDA-MB-231 cells. T0: 0

sec, T1 to T5: 210 at 270 sec (at 15 seconds intervals).

https://doi.org/10.1371/journal.pone.0187194.g007
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questions arise: what happens in tissue expressing more than one extracellular galectin? Do

they compete with each other for the same receptors/endocytic pathways? Do they have over-

lapping or competitive functions? This is a critical issue if one wants to inhibit the protumoral

functions of galectins. We and others have already provided evidence that multiple galectins

are expressed simultaneously in different tissues, most notably in prostate and breast cancer

tissues [22–24].

The functions of endocytosed galectin-7 inside the cells remain unclear at present. Previous

studies have shown that gal-7 can bind bcl-2 and translocates to mitochondria to control apo-

ptosis [6,25]. Interestingly, our preliminary results suggest that endocytosed gal-7 is found in

mitochondrial protein extracts. Additional, however, experiments will be necessary to confirm

the presence of gal-7 in mitochondria and whether endocytosed en gal-7 gains access to mito-

chondrial interactors such as bcl-2. Although this is not a common pathway, exogenous pro-

teins or endosomal proteins have been shown to reach mitochondria after leaving the endo-

lysosomal compartments [26, 27]. The ability of gal-1 to re-enter breast cancer cells and to

translocate to the nucleus has been recently shown to control cell invasiveness [28]. Given the

fact that galectins can be released by stromal cells, these results suggest that cancer cells may

take advantage of extracellular galectins that are released by neighboring cells to ensure their

own survival. This is a real possibility supported by previous findings showing that gal-7 can

be expressed by stromal cells, including infiltrating T cells [29]. Such mechanism would be

reminiscent of HMGB1, a protein that is normally located inside the cells but that is released

via a non-classical mechanism in danger situation [30,31]. Following its re-entry into cells,

cytosolic HMGB1 triggers programmed cell death, possibly by interfering with beclin1-Bcl-2

complexes [32,33]. Interestingly, galectins show a number of structural and functional similar-

ities with HMGB1. In fact, galectins are increasingly recognized as alarmins, just like HMGB1

[34–36]. Whether re-entry is dependent of the glycan-binding site of gal-7 or whether other

galectins that share fine specificities with gal-7 is currently unknown. These issues are cur-

rently being investigated.

Supporting information

S1 Fig. Activation of galectin-7 promoter by human recombinant galectin-7 in MCF-7

cells. Luciferase activity measured in protein extracts collected from MCF-7 cells transfected

with a luciferase reporter vector containing p200-gal7 promoter following treatment with

rhGal-7. Statistical analysis were carried out using Student’s t test for unpaired samples (��

p� 0.001).

(TIFF)

S2 Fig. Effect of cycloheximide of intracellular pool of gal-7 in MDA-MB-231 cells. Cells

were treated 4 h with cycloheximide (CHX; 20 μM) before addition of rhGal-7 for 16h. Cells

were then harvested and intracellular gal-7 protein levels measured by Western blot using

anti-gal-7 antibodies. The results are representative of two independent experiments.

(TIFF)

S3 Fig. Inhibition of internalization of galectin-7. (A) Western blot analysis showing expres-

sion of intracellular galectin-7 in MDA-MB-231 cells after treatment (15 min) with rhGal-7

(5 μM) in absence or presence of Pitstop-2 (30 μM). (B) Expression of cytosolic or mitochon-

drial gal-7 in absence or presence of Pitstop-2 and rhGal-7 (5 μM) following a 15 min treatment

of MDA-MB-231 cells. Tubulin and CoxIV were used as controls for cytosolic and mitochon-

drial extracts. (C) Effect of chlorpromazine (CPZ; 25 μM) and anrtimycin A (AMA; 1 μM) on

galectin-7 expression in MDA-MB-231 cells. Cells were treated 3 h with the inhibitors before
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addition of rhGal-7 for 16h. (D) Western blot analysis of cell lysates from OVCAR-3 cells show-

ing intracellular galectin-7 following a 15 min treatment with rhGal-7 (5 μM) in absence or

presence of Pitstop-2 (30 μM) or Dynasore (30 μM). Actin was used as a control for A, C, and D

experiments. Data are representative of three independent experiments.

(TIFF)
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