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ABSTRACT

Distinguishing between promoter-like sequences in
bacteria that belong to true or abortive promot-
ers, or to those that do not initiate transcription at
all, is one of the important challenges in transcrip-
tomics. To address this problem, we have studied
the genome-reduced bacterium Mycoplasma pneu-
moniae, for which the RNAs associated with tran-
scriptional start sites have been recently experimen-
tally identified. We determined the contribution to
transcription events of different genomic features:
the –10, extended –10 and –35 boxes, the UP element,
the bases surrounding the –10 box and the nearest-
neighbor free energy of the promoter region. Using a
random forest classifier and the aforementioned fea-
tures transformed into scores, we could distinguish
between true, abortive promoters and non-promoters
with good –10 box sequences. The methods used in
this characterization of promoters can be extended
to other bacteria and have important applications for
promoter design in bacterial genome engineering.

INTRODUCTION
The breakthroughs in bacterial transcriptomics technolo-
gies in recent years have altered our simplistic perspective
on transcriptional regulation of prokaryotic genomes, re-
vealing novel and complex layers of transcriptional regu-
lation (1–6). These discoveries have been accompanied by
the computational challenge of predicting novel features
for the subsequent interpretation of transcriptomic exper-
iments. Promoter prediction is a key computational chal-
lenge, necessary for characterizing the transcriptional units
of bacterial cells, traditionally known as operons (7). The
complexity of these units is greater than expected, usually
showing more than one transcription start site (TSS) and

therefore more than one associated promoter, as well as dif-
ferent transcription termination sites (5).

A number of algorithms employ sequence features to
identify promoter sites in prokaryotic genomes (8–19).
Some of these work using position-weight matrices (PWMs)
of the different promoter motifs to scan the genome (8,9),
whilst others implement hidden Markov models to identify
promoters (10). Another group of algorithms has applied
machine-learning techniques to promoter recognition, such
as support vector machines (SVMs) (11) or artificial neural
networks (12–16). Lastly, some algorithms apply a combi-
nation of some of the methods above (17). Most of these
algorithms rely on the sequence motifs recognized by sigma
factors, which guide the RNA polymerase complex to TSSs.
In many bacteria, the housekeeping transcription factor
sigma 70 binds to two regions upstream of the transcription
start site: one region located 10 bp upstream the TSS (–10
box, or Pribnow box) with the consensus motif TANAAT
(where N is any base) (20) and another region around 35 bp
upstream the TSS bearing the motif TTGACA (–35 box)
(21). The spacer between these two boxes may span from
15 to 21 bases (22–24). However, sigma 70 binding motifs
are not fully conserved in all bacteria. For example, some
Mycoplasma species lack the consensus sigma 70 –35 motif
and have a degenerate –35 box instead, which is dispens-
able in some promoters (25,26). In this respect, it has been
shown mainly in Gram-positive bacteria like Bacillus sub-
tilis that the lack of a –35 motif can be compensated by the
presence of an extended –10 box (TG-N-Pribnow) (27,28),
which is sufficient to trigger transcription initiation (29,30).
This sigma 70 variability limits a broad applicability of the
aforementioned methods. Many bacteria have additional
sigma factors that bind to different motifs in response to ex-
ternal conditions or perturbations (31,32). A further motif,
called the UP element, was later found located upstream of
the –35 box; this element consists of an AT-rich tract and in-
teracts with the alpha subunit of the RNA polymerase (33).
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Figure 1. Promoter features. (A) Web logo of the Pribnow motif (also termed the –10 box) as determined by MEME analysis (http://meme.nbcr.net/
meme/) of experimentally determined TSSs. (B) Nearest-neighbor free energy scores. The nearest-neighbor free energy scores of the regions surrounding
the experimentally determined promoters in the plus and minus strands are represented (left and central panel, respectively). The right panel corresponds
to the scores of random sequences in the genome of M. pneumoniae. (C) Frequencies of the four different nucleotides on both sides of the –10 box in
promoter-like elements (see ‘Materials and Methods’ section). Dashed lines represent non-promoter sequences bearing the Pribnow motif, while solid lines
represent true promoter sequences. Colored arrows indicate the positions in which a nucleotide is significantly overrepresented (P < 0.001) in the group of
non-promoter sequences.

http://meme.nbcr.net/meme/


3444 Nucleic Acids Research, 2015, Vol. 43, No. 7

A

B

A
U

C
 d

iff
er

en
ce

 (
%

)

-2
0

2
4

6
8

2-4 4-8 8-16 16-32 32-64 64-128 128-256 256-512 512-1024

0
2

4
6

8
10

F
re

qu
en

cy

0.85 0.86 0.87 0.88 0.89 0.90 0.91

TG

UP element

Base penalties

−35 Score

Energy Score

Pribnow Score

Variable importance

100 150 200 250 300 3500 50

False positive rate
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T
ru

e 
po

si
tiv

e 
ra

te

ROC curve

DC

AUC: 0.904

Mean Gini Decrease

AUC

Number of trees increase

Figure 2. Random forest results. (A) Number of trees for the random forest classifier. The boxplots represent the AUC increase when doubling the number
of trees, selecting 20 different training and test sets. From 256 trees onward, the average gain in the AUC is close to zero and thus not significant. (B)
Random forest AUCs. The histogram represent the AUC values obtained with the random forest using 100 different training and testing sets to test the
robustness of the method. Values range from 0.85 to 0.92. (C) Variable importance as given by the mean decrease in the Gini coefficient, which represents
the contribution of each variable to the homogeneity of the results of the random forest. The Pribnow score and the free energy score are the variables
with the highest importance in our study. (D) ROC curve of the random forest, obtained after training the random forest and testing its performance on a
group of promoter-like sequences. The area under the curve obtained is 0.904.
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Table 1. Results from the promoter prediction in M. pneumoniae

Prediction results Initial assessment After re-annotation

709 predicted promoters 133 false positives 44 TSSs or tssRNAs
89 false positives

498 TSSs 498 TSSs
35 tssRNAs 35 tssRNAs
43 close to an ATG start codon 43 close to an ATG start codon

146 false negatives 146 false negatives 146 false negatives

Results are classified according to the different stages of the analysis, and separate columns for the initial assessment and the re-annotation are shown.

In addition to the specific-sequence motifs at promoters,
several studies have shown that the DNA double helix is
less stable or more conformationally flexible at promoter re-
gions, facilitating the opening of the double-stranded DNA
to accommodate the transcription machinery (34–39). In-
deed, it has recently been possible to correlate some of
these physical properties to functional features of promot-
ers, such as regulation by transcription factors (40). Based
on the above information, some algorithms identify pro-
moters by considering: (i) relative stability of the DNA, as
measured by its free energy (41–44); (ii) stress-induced du-
plex destabilization (SIDD) of the DNA (45) or (iii) DNA
bendability or curvature (40,46). As in the sequence-based
prediction methods, machine-learning approaches such as
neural networks have been used in combination with these
properties to identify promoter sequences (47,48). Presum-
ably, structure-based methodologies have a broader scope
than sequence-based approaches, as they avoid the limita-
tion of the latter regarding interspecies variability in sigma
70 factors. However, it has been shown that these physical
properties are highly correlated with the GC content of the
genomes analyzed (49,50), and that the majority of available
methods are specific to bacteria with medium-to-high GC
content, with lower sensitivity or specificity in other scenar-
ios (44).

A few methods have combined sequence motifs and
structural properties of the DNA to predict promoters,
mostly in eukaryotes (51) but also for some prokaryotes
(52). Although the combination of both types of features
improves the classification of promoter sequences, the same
restrictions and species-specificity stated above apply.

In general, sequence-based and structure-based methods
find that promoter-like motifs usually outnumber the true
promoters in bacterial genomes, resulting in large numbers
of false positives from these predictions (15,18). Indeed, it
has been observed that true promoters tend to be found in
clusters of promoter-like motifs that compete for the bind-
ing of the sigma 70 factor (19). Surprisingly, it is not un-
common to find that in these clusters, there is at least one
promoter-like sequence that holds a better score than the
true positive promoter (19). This is an indicator that the sole
presence of the consensus motifs is not sufficient to initiate
transcription.

We have recently uncovered the existence of a class
of small RNAs, termed tssRNAs, found at the TSSs of
genes, but also in isolation (‘abortive promoters’) in both
Gram-negative (Escherichia coli) and Gram-positive (My-
coplasma pneumoniae) bacteria (53). tssRNAs found in iso-
lation present Pribnow box promoter sequences but result
in short transcripts (of around 40 bases) that are not associ-

ated to transcription of longer RNAs. Furthermore, merg-
ing a tssRNA to a gene encoding for a GFP protein does
not result in expression of the gene (53). This shows that
besides having an appropriate Pribnow box, other require-
ments have to be fulfilled to accomplish productive tran-
scription (note that we consider promoters that result in
RNAs longer than 80 bases as true promoters). So far, there
are no methods that distinguish between promoters that re-
sult in productive or abortive transcription.

Here, we have constructed a random forest (54) classifier
based on both structural and sequence features of M. pneu-
moniae promoters. A random forest is a machine learning
technique to perform classification and regression. The ma-
jor difference with other machine learning approaches used
in promoter prediction, such as artificial neural networks
or support vector machines, is that random forests are en-
semble methods. This means that they compile the output
of individual predictors with an overall performance better
than the performance of any of the individual predictors
(55). In the case of random forests, the individual predic-
tors are decision trees. Each decision tree uses a randomly-
drawn subset of the training data (two-thirds), in a process
termed ‘bagging’, and a subset of the variables to construct
an individual classifier. Then, the test samples are classified
by each individual tree, and the random forest returns the
mode of all the trees as the output of the prediction. One
of the major advantages of the random forests is that they
are highly robust to noise in the data and less prone to over-
fitting as compared to other machine learning techniques
(54). The main disadvantage of the random forests is that
they cannot extrapolate values in regression tasks, as they
average the output of a number of decision trees.

Mycoplasma pneumoniae is a genome-reduced bacterium
(with 816 kb and 689 ORFs) (56) that belongs to the Molli-
cutes class and is characterized by the lack of a cell wall and
by having low GC-content genomes. The low GC content
results in a genome-wide spread of promoter-like elements,
which pose the intriguing question of what determines if
a sequence is transcribed. We show that in this bacterium,
the majority of experimentally determined TSSs have pro-
moters with a consensus Pribnow box motif of TANAAT
(where N is any base) with almost no degeneration. How-
ever, having a good Pribnow box is not enough to drive pro-
ductive transcription. We have looked at different features
that could affect transcription like the –35 box, the UP ele-
ment, the extended –10 motif, the energy of the DNA region
containing the Pribnow box and the nature of the bases sur-
rounding the Pribnow, all of which we included in a random
forest classifier for promoter site prediction. To our knowl-
edge, this is the first method that uses random forests for
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Figure 3. Promoter prediction in M. pneumoniae. (A) Random forest
scores for promoter-like sequences in M. pneumoniae. There is a clear sep-
aration between true promoters and the other two groups (tssRNA pro-
moters and non-promoter sequences). tssRNAs, despite triggering tran-
scription of short sequences (∼45 bp), are more similar to non-promoter
sequences than to true promoters. (B) Random forest scores for promoter-
like sequences in M. pneumoniae, after shuffling the energy scores of all
sequences. (C) Random forest scores for promoter-like sequences in M.
pneumoniae, after shuffling the Pribnow scores of all sequences. The re-
moval of structural or Pribnow parameters worsens the prediction of the
classifier, resulting in the scores of the three categories being much closer
and overlapping with each other.

promoter prediction, and it can distinguish between pro-
ductive promotors, abortive promoters and promoter-like
sequences with no transcriptional activity (non-promoters).
We propose that a similar methodology could be applied to
other bacteria to classify promoters.

MATERIALS AND METHODS

We constructed a random forest classifier to identify pro-
moter sequences in M. pneumoniae. Random forests are en-
semble classifiers that use decision trees as individual pre-
dictors (Supplementary Figure S1). Each of these decision
trees uses a subset of the training data and a subset of the
variables to generate an independent classifier. The ran-
dom forest compiles the results of each individual tree to
produce an ensemble output. This random forest classifier
uses the following criteria in order to discern between pro-
moter and non-promoter sequences: (i) the –10 box (Prib-
now box) motif; (ii) the –35 box motif; (iii) the UP element;
(iv) the nearest-neighbor DNA duplex free energies of the
bases surrounding the promoter; (v) the presence of G and
C bases adjacent to the Pribnow box and (vi) the presence of
an extended –10 box (TG-TANAAT). All of these criteria
were independently measured and transformed into scores
that were used for the RF training.

Pribnow motif score

Six hundred forty-seven TSSs from productive promoters
that had been experimentally determined to a single base
resolution (53) and manually curated (Supplementary Ta-
ble S1) were used as the input for the MEME motif find-
ing software (57) to identify the canonical Pribnow box in
M. pneumoniae. Only TSSs from protein-coding genes and
ncRNAs larger than 100 bases were considered. For the
analysis, sequences of 16 bp upstream of the TSSs were se-
lected. A unique TANAAT motif was found for 511 of the
sequences analyzed (Figure 1A), representing the Pribnow
box (e-value of 1.5e-158). The Position Probability Matrix
(PPM), which indicates the frequency of each nucleotide at
each position of the motif, was therefore used to scan the M.
pneumoniae genome according to the following equation:

− 10score(P) = − log2

(
i=P+l∏

i=P

Ni

)

where P is the position of the genome being scanned, l is
the length of the motif (l = 6 for the –10 box) and Ni is the
frequency of the nucleotide N in the ith position of the mo-
tif, according to the corresponding PPM. The score given to
each hexamer was divided by the maximum possible score
and then log-normalized. After this normalization, lower
values of the normalized Pribnow score will correspond to
better promoter sequences.

–35 motif

The –35 box of TTGACA that is observed in other well-
studied Gram-positive and Gram-negative bacterial species
is rarely found in M. pneumoniae promoters (25). A search
of the 647 TSSs (19– 25 bp upstream the Pribnow box,
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with a spacer of 15– 21 bp (24)) identified the canonical
TTGACA motif in only 18 promoters, while a search across
all promoter regions did not reveal a significant motif in
a MEME. However, by visual inspecting the promoter re-
gions in M. pneumoniae, we identified a degenerated –35
box with the consensus sequence TTGANN in 107 pro-
moter regions. Other Gram-positive bacteria, such as B.
subtilis, also present a similarly degenerated –35 element.
Therefore, we used the sigma 70 promoters from B. subtilis
(58) to derive a PPM for interrogating the genome of M.
pneumoniae as follows:

− 35score(P) = − log2

(
i=P+l∏

i=P

Ni

)

where P corresponds to the genome position being scanned,
l is the length of the motif and Ni is the frequency of the nu-
cleotide N at the position i within the motif. As the spacer
between the –35 and the –10 boxes in M. pneumoniae pro-
moters is variable, we assigned the best –35 box for each in-
stance of the –10 motif in the possible range (e.g. 19–25 bp
upstream the Pribnow box, with a spacer of 15–21 bp (24)).
As noted above, lower values of this score will correspond
to better –35 boxes.

UP element

The presence of the UP element was considered for the ran-
dom forest as the fraction of ATs located in the –45 region.
For this purpose, we considered the fraction of ATs in the
region between 30 and 45 bp upstream of the Pribnow box.
This fraction was log-normalized to convert it into a score
for the random forest classifier.

Free energy

The matrix of nearest-neighbor free energies of the different
pairs of consecutive bases (obtained from (59)) was scaled
by dividing each value by the maximum absolute energy, to
have all of them ranging from 0 to 1 (Supplementary Ta-
ble S2). The free energy score is the –log2 of the product of
the scaled nearest-neighbor free energies of a promoter 60
bases window (located between 35 bases upstream the –10
box and 25 bases downstream the –10 box), and it was then
normalized over the mean of all the genome (Figure 1B).

�G0
score(P) = − log2

(
i=P+25∏
i=P−35

�G0
i,i+1

)

where �G0
i,i+1 represents the nearest-neighbor free energy

of the bases ith and (i + 1)th and P corresponds to the
genome base being scanned. Higher scores for this param-
eter represent more favorable energies for the separation of
the double-stranded DNA.

Base penalties

A preliminary analysis of all the instances of the TANAAT
motif in the M. pneumoniae genome was performed, com-
paring the sequences that gave rise to promoters versus the
ones that were not associated to any transcriptional event.

This analysis showed that, in experimentally determined
promoters, there are certain biases toward the exclusion of
G and C bases in the immediate vicinity of the –10 box (e.g.
two bases before and three bases after; Figure 1C). There-
fore, we included the log-normalized fraction of G and C
nucleotides in the vicinity of the Pribnow box as an inde-
pendent criterion for the random forest.

Extended Pribnow box

There is one remarkable exception regarding the biases
against guanidine and cytosine nucleotides next to the –
10 box: the presence of a guanidine nucleotide before the
Pribnow box is not depleted, as it can exist as a part of the
so-called ‘extended Pribnow motif ’ of TG-N-Pribnow (60).
The TG pair located immediately upstream of the Pribnow
box was regarded as a categorical variable in the RF, repre-
sented as 0 or 1 for the presence or absence of each of the
pairs next to the Pribnow motif, respectively.

Construction of the RF classifier

Once all the criteria had been defined, we scanned all posi-
tions of the M. pneumoniae genome to score them accord-
ing to each criterion. We scanned the genome of M. pneu-
moniae using the Pribnow sequence probability matrix de-
fined above using FIMO (61). This tool allows all the oc-
currences of a given motif in a DNA or protein sequence to
be identified by evaluating their similitude with the consen-
sus one. 81 087 sequences were found to match the Prib-
now element with a P < 0.05. We mapped each known,
experimentally-determined TSS to its corresponding Prib-
now box and found that only 28 of 647 TSSs did not have
any associated –10 box. To remove some of the 81 087 se-
quences, we looked at the top 90% of the 619 sequences
that passed the filter of P < 0.05. These sequences had
an associated Pribnow motif with a P ≤ 0.00824. We used
this value as a threshold to filter non-promoter sequences
and obtained a list of 14 663 sequences (14 374 plus the
true promoters that did not pass the filter of P < 0.00824).
These promoter-like sequences fall into three different cate-
gories: RNA promoters that give rise to RNAs longer than
80 bp (647); tssRNA promoters that produce abortive tran-
scripts shorter than 45 bp (5379; (53)); and non-promoter
sequences, promoter-like sequences not associated to any
transcriptional event (8438).

From this set of 14 663, abortive promoters giving rise
to independent tssRNAs (5379; (53)) were not included in
the random forest classifier as they may have features of
both RNA promoters and non-promoter sequences. Of the
remaining 9284 sequences, we selected a random set using
70% of the hits, formed by 453 true promoters (positive set)
and 5906 non-promoter sequences (negative set). In order
to further constrain the method, we added 5000 sequences
selected randomly from the M. pneumoniae genome to the
negative set.

The selection of the number of trees in the random forest
was performed empirically. We followed the approach de-
scribed in Oshiro et al. (62) and generated random forests
of 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 trees. For each
number of trees, we generated 20 different random forests
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by choosing different subsets to train the method, and
we calculated the receiver-operating characteristic (ROC)
curves specifying the sensitivity and the specificity of the
classifier. ROC curves display the true positive rate of the
method (or sensitivity, calculated as the number of true pos-
itives divided by the total number of positives in the sample)
versus the false positive rate (1 − specificity, calculated as
the number of false positives divided by the total number of
negatives in the sample). These values are plotted using dif-
ferent thresholds and thus form a curve. The performance
of the classifier is assessed by determining the area under the
curve (AUC). AUC values can range from 0.5 (the method
does not perform better than random) and 1 (the method
classifies all the samples perfectly with no mispredictions).
Accordingly, larger areas signify better classifiers.

RESULTS

Promoter features

Taking advantage of the experimentally-determined 647
TSSs, we derived a promoter-scoring matrix for the Pribnow
box after a motif search using the MEME suite (Figure 1A;
see ‘Materials and Methods’ section) (63). Furthermore, we
determine the nearest-neighbor free energy for these TSSs
by using a 60-bp window (of 35 bases upstream to 19 bases
downstream of the Pribnow box). We observed that true
promoters have a specific average profile, while tssRNAs
have a less pronounced one and non-promoter sequences
are flat (Figure 1B). From these analyses, we derived two
scoring functions (see ‘Materials and Methods’ section)
and used them to scan the whole genome of M. pneumo-
niae. Only using the Pribnow score to identify promoters
led to significant overprediction (14 374 sequences with a
Pribnow box of P < 0.00824). Apart from experimentally-
determined promoters, we found that some of the pre-
dicted hits coincided with non-productive promoters that
produce independent short abortive transcripts (tssRNAs,
(53)), while for others, we could not find any evidence of
transcriptional activity in the previous-published microar-
ray and deep sequencing data obtained under many dif-
ferent perturbations (non-promoters (1,53)) (Supplemen-
tary Figure S2A). Using a set of 14 663 promoter-like se-
quences (comprising the 14 374 sequences plus the TSSs
above the threshold, see ‘Materials and Methods’ section),
we found that RNA promoters have on average slightly bet-
ter Pribnow box scores (Supplementary Figure S2B) and
energy scores (Supplementary Figure S2C) than tssRNAs
and non-promoter sequences. However, although the differ-
ences were statistically significant between the real promot-
ers and the two other categories (Mann–Whitney U-test, P
<2.2 × 10−16 for both the Pribnow and energy scores), there
is a large overlap among the three classes described.

Sequence properties of the bases surrounding the promoter
stabilize the polymerase complex

To test whether promoter prediction could be improved and
the number of false positives reduced, we analyzed four
other different criteria known to be involved in promoter
strength in bacteria: the –35 box, the frequency of AT bases
in the –45 region (also termed the UP element), the biases

toward excluding certain nucleotides next to the –10 mo-
tif and the presence of a TG dinucleotide that generates an
extended Pribnow box (see ‘Materials and Methods’ sec-
tion). We then compared the discrimination against G and
C bases before and after the Pribnow box in productive
promoters versus non-promoters (Figure 1C). For the ex-
tended –10 box motif, no significant enrichment was ob-
served in true promoters (it was associated 139 times to real
promoters, and 3438 times to tssRNAs and non-promoter
sequences). Nonetheless, we decided to keep this parame-
ter, as it has been described that the presence of the TG up-
stream the Pribnow box renders the –35 motif unnecessary
in Gram-positive bacteria (27,28). For the UP element, we
observed an AT enrichment in real promoters (Supplemen-
tary Figure S2D). Finally, the –35 scores of true promoter
sequences are slightly better than those of non-promoters
(Mann–Whitney U-test, P = 2.41 × 10−5), deeming this
factor important for the construction of the random forest
despite the degeneration of the consensus –35 motif. There-
fore, it seems that true promoters have other features in ad-
dition to a good Pribnow box and a favorable energy pro-
file as compared with non-promoter sequences with similar
Pribnow boxes.

Random forest classifier

To determine if the discrimination between RNA promot-
ers, tssRNA promoters and non-promoter sequences with
good Pribnow boxes could be improved, we built a random
forest classifier using the four criteria discussed above (e.g.
the extended –10 bp, the –35 and the UP elements and the
biases against G and C bases close to the Pribnow motif) in
addition to the Pribnow and DNA duplex. To choose an ad-
equate number of trees, we first analyzed the increase of the
AUC versus the increase in the number of trees (Figure 2A)
and set the number of trees when we reached a plateau (128
trees), as any further increase in the number of trees did not
result in a significant AUC gain. To determine the specificity
and sensitivity of the generated random forest, we used the
promoter-like sequence set, from which we excluded the se-
quences used to train the random forest classifier (see ‘Ma-
terials and Methods’ section). We tested the random forest
by choosing 100 different subsets for the training and ob-
tained very similar results in terms of sensitivity and speci-
ficity (Figure 2B).

From the six parameters used, the most important one
is the Pribnow box score, followed by the nearest-neighbor
free energy score (Figure 2C). Other sequence features, such
as the –35 box, the UP element and the biases toward ex-
cluding G and C nucleotides in the vicinity of the –10 box,
had smaller contributions to the predictor. The presence of
the TG motif extending the –10 box had little value for the
classifier.

The performance of the random forest classifier was de-
termined twofold. Firstly, we determined the out-of-bag
(OOB) error estimate. The random forest classifier uses two-
thirds of the training data (sampled with replacement) to
build each tree (‘bagging’). Therefore, on average, each sam-
ple will be excluded from one-third of the trees. The random
forest uses the set of trees in which a sample has been left
‘out of the bag’ to classify it. The total proportion of mis-
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predictions is the OOB error estimate. The reported OOB
error was 3.43%. Secondly, we analyzed the predictive value
of the random forest classifier on a test set formed by the
promoter-like sequences not used for training the classifier
and random sequences (see ‘Materials and Methods’ sec-
tion). For the test set, we calculated the ROC curve to as-
sess the performance of the method (Figure 2D). The scores
used to calculate the ROC curve represent the frequency of
trees in the RF that predict a sequence as a promoter and
were used as the different thresholds to construct the ROC
curve. The AUC corresponding to the test set was 0.904.

Promoter prediction in M. pneumoniae

In order to choose for a score threshold to reliably de-
termine promoters in M. pneumoniae, we studied the dis-
tributions of the output scores of the random forest pre-
diction. For this purpose, we analyzed the scores of the
14 463 promoter-like sequences (see ‘Materials and Meth-
ods’ section). These sequences were grouped into three cat-
egories: real promoters (experimentally determined and an-
notated in (53)), independent tssRNAs and non-promoter
sequences (e.g. not associated to transcription events). The
results showed that experimentally-determined promoters
are separate from the other two groups, whilst tssRNAs,
despite having –10 boxes similar to those of promoters, are
more similar to non-promoter sequences (Figure 3A). Since
the energy and Pribnow scores are the more important pa-
rameters, we determined if removing one of them would still
allow the random forest to efficiently discriminate between
the three promoter categories. For this, we randomly shuf-
fled the energy or Pribnow values of the 14 463 promoter-
like sequences and tested the performance of the random
forest classifier with this new dataset. The separation of the
different categories worsened after the resampling of energy
and Pribnow values, indicating that both are essential for
productive promoters (Figure 3B and C).

With these results, we set the score threshold for promoter
identification to 0.6 in order to minimize the number of false
positives obtained (211 non-annotated promoters) while re-
taining the largest number of real promoters possible (498
of 647).

Re-annotation of promoter sequences in M. pneumoniae

Using the 0.6 cutoff, the random forest classifier was able to
find 709 putative promoters in the genome of M. pneumo-
niae (Supplementary Table S3). Of these, 576 coincide with
steep changes both in RNA-seq and tiling data, indicating
a TSS in the vicinity of the predicted promoter (Figure 4A).

Out of the 709 promoters predicted, 498 were found to
be at a distance closer than 25 bp to an annotated TSS
(70.15%, Table 1). Of the remaining 211 hits, 35 corre-
sponded to annotated independent tssRNAs and 43 were
located at less than 200 bp from a starting ATG codon.
Ten of these predicted promoters were intragenic, while the
remaining 33 were found in intergenic regions. This latter
group could represent internal promoters at operons with
non-annotated TSSs.

The remaining 133 false positives were manually cu-
rated by manual inspection of different RNA-seq exper-

iments (53) and visualizing them on the Integrative Ge-
nomics Viewer (IGV) (64). We found that 44 of these are
associated to non-annotated TSSs (either corresponding to
tssRNAs or longer transcripts; Figure 4B) (65). With this
re-annotation of new promoter sites, only 89 of the total
709 predicted promoters (12.55%) are not associated to any
transcriptional event (false positives) under the experimen-
tal conditions tested (Table 1).

We also analyzed the TSSs of known full-length tran-
scripts for which the promoter was not predicted by our
approach (false negatives). Out of the initial 647 curated
TSSs, 501 had one associated promoter (and three had two
promoters and TSSs). We studied the properties of the re-
maining 146 TSSs (false negatives). For each of these TSSs,
we selected the putative promoter as the position with the
highest random forest score up to 25 bp upstream of the
TSS. The general scores for these promoters followed a uni-
form distribution between 0 and 0.6. The false negatives
could be divided in two groups: one group with good –10
element scores (<15; 63 sequences) and one group with bad
–10 scores (≥15; 83 sequences). It is very likely that the lat-
ter group was not identified by the random forest classifier
because of their poor Pribnow scores (note that this param-
eter is the most important for the classifier). For the former
group, we investigated the possible reasons why these se-
quences were not identified as real promoters. We found that
energies were slightly worse than energies of real promoters
in this group (t-test, P = 1.77 × 10−4). Also, the presence of
G and C nucleotides next to the Pribnow box was higher in
these sequences (t-test, P = 0.01). Regarding the set of false
positives with worse Pribnow scores there was not signifi-
cantly difference to the set of true positives regarding this
parameter (t-test, P = 0.54). This could point to a com-
pensatory mechanism for promoters with worse Pribnow,
favoring the stabilization of the open loop.

Out of the 146 false negatives, 70 (47.94%) are ncRNAs,
representing a large enrichment related to the number of
ncRNAs in the genome of M. pneumoniae (Fisher’s exact
test, P = 1.184 × 10−5). This could suggest that some of
them could be tssRNAs and therefore non-productive pro-
moters. Finally, while we observed no significant differences
in the gene length of the true positives and false negatives
(Mann–Whitney U-test, P = 0.07), we did see differences in
their gene expression: false negatives had lower expression
levels than true positive promoters in the exponential phase
(Mann–Whitney U-test, P = 0.001) (Supplementary Figure
S2E).

DISCUSSION

We constructed a random forest classifier for promoter pre-
diction based on six different parameters, both structural
and sequence-based. We trained this classifier with a sub-
set of known promoters from the low GC-content bac-
terium M. pneumoniae, as well as with negative sets of non-
promoter sequences. From the six parameters used to evalu-
ate promoter sequences, the –10 motif score and the nearest-
neighbor free energy score were the most important ones
to discern between true promoters and non-promoter se-
quences. Therefore, we conclude that both sequence-based
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and biophysical parameters are determinants of an optimal
promoter prediction.

By applying this random forest to the whole set of
promoter-like sequences in M. pneumoniae, which com-
prises true promoter sequences, promoters of independent
tssRNAs (not associated to full-length transcripts) and
non-promoters (i.e. promoter-like sequences that are not as-
sociated to any transcriptional event), we observed that the
scores reported for tssRNAs were more similar to those of
false promoters and deviated from the values of real pro-
moters. Previous studies on tssRNAs in bacteria (53) found
that tssRNAs that are associated to full-length transcripts
had sequence features similar to independent tssRNAs. By
adding the parameter of DNA structural properties, we
were able to make a significant distinction between both
types of sequences. The fact that promoters of independent
tssRNAs present lower scores than promoters of full-length
transcripts points to a failure in one of the steps of transcrip-
tion initiation. It was shown that while these sequences are
able to recruit the RNA polymerase holoenzyme, they are
for some reason unable to produce long transcripts (53). To-
gether, these results suggest that the higher stability of the
sequences surrounding these promoters prevents the dou-
ble helix from correctly unwinding to facilitate transcription
elongation. In the case of promoter-like sequences that are
not associated to any transcription event, these sites must
be unable to recruit the RNA polymerase and initiate tran-
scription.

Given the elevated AT content of Mycoplasma genomes,
it is not rare that non-productive promoter-like sequences
arise randomly due to point mutations, especially in the
core –10 box, which has a low information content (66). If
these sequences are not deleterious, they will not be selected
against and will rather accumulate in the genome. Some se-
quences will not be able to recruit the RNA polymerase to
initiate transcription, but others will, giving rise to indepen-
dent tssRNAs or even in some cases to longer transcripts
such as ncRNAs (67).

By using a combined approach, we now show that it is
possible to distinguish promoters of full-length transcripts
from abortive and non-productive promoters. These find-
ings highlight that an adequate structural context is essen-
tial for the complete assembly of the RNA polymerase com-
plex and for DNA unwinding to initiate transcription; thus,
the structural properties also need to be considered. Fur-
thermore, the methods used here can be applied to other
bacteria, provided that appropriate training sets are avail-
able. Therefore, this work may aid in the species-specific de-
sign of synthetic promoters, allowing the researcher to pre-
dict beforehand whether or not the designed sequence will
give rise to a productive transcription event.
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