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A B S T R A C T   

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be configured by the 
user after manufacturing, making them suitable for customized hardware prototypes, a feature 
not available in general-purpose processors in Application Specific Integrated Circuits (ASIC). In 
this paper, we review the vast Machine Learning (ML) algorithms implemented on FPGAs to 
increase performance and capabilities in healthcare technology over 2001–2023. In particular, we 
focus on real-time ML algorithms targeted to FPGAs and hybrid System-on-a-chip (SoC) FPGA 
architectures for biomedical applications. We discuss how previous works have customized and 
optimized their ML algorithm and FPGA designs to address the putative embedded systems 
challenges of limited memory, hardware, and power resources while maintaining scalability to 
accommodate different network sizes and topologies. We provide a synthesis of articles imple-
menting classifiers and regression algorithms, as they are significant algorithms that cover a wide 
range of ML algorithms used for biomedical applications. This article is written to inform the 
biomedical engineering and FPGA design communities to advance knowledge of FPGA-enabled 
ML accelerators for biomedical applications.   

1. Introduction 

The field of medicine has witnessed the application of Artificial Intelligence (AI) in two primary domains: physical and virtual [1]. 
The first aspect refers to physical objects, medical devices, care bots [2], assistant surgeon robots [3], and humanoid robots, which can 
help monitor the effectiveness of treatment in rehabilitative care [4]. On the other hand, the virtual component encompasses Machine 
Learning (ML) techniques, which utilize mathematical algorithms to develop learning through experience [1]. ML has been used in 
diverse biomedical areas such as genomics and proteomics [5], medical imaging [6], bio-imaging [7], Brain-Computer Interface (BCI) 
[8], and Public and medical health management (PmHM) (Healthcare big data analysis) [9]. The combination of large datasets, 
high-performance computational capacities, and improving algorithms has facilitated many successful biomedical applications that 
were previously challenging to implement [10]. However, implementing these ML algorithms on high-performance, real-time, 
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low-power mobile hardware, which suits biomedical applications, still needs to be completed. 
Field Programmable Gate Arrays (FPGAs) emerge as a promising hardware candidate to meet the requirements of ML at the 

processing edge. For instance, FPGAs are highly suitable for latency-sensitive inference applications such as real-time image processing 
[11]. FPGAs are one of the most desirable architecture options for ML algorithms when any of the following are required [12].  

• High performance and throughput  
• Parallel processing  
• Real-Time processing  
• Reconfigurability 

FPGAs have been shown to be a remarkable hardware tool for ML biomedical applications. Therefore, in this article, we review 
previous work on FPGA-based ML inference accelerators for various biomedical applications. In particular, we review and discuss nine 
different classifiers and regression algorithms implemented on FPGAs during 2001–2023. Additionally, we present an extensive 
analysis and comprehensive comparison of previous works while discussing their challenges and shortcomings. Moreover, we propose 
crucial future research trends. This paper’s motivation is that ML is a prominent topic in biomedical engineering, and its efficient 
hardware implementation is paramount. To address this, we aim to answer the following research questions. 

– How can the best hardware architecture be found for different classifiers and regression algorithms to embedded systems con-
straints, especially for biomedical applications?  

– How do existing FPGA-based implementations of ML algorithms compare in terms of efficiency and accuracy?  
– What trade-offs are desirable to achieve higher classification accuracy while meeting the design constraints of embedded systems?  
– What are the advantages and limitations of FPGA-based implementations for each of the surveyed machine learning algorithms? 
– What are the current trends and advancements in FPGA architectures, tools, and design methodologies that impact the imple-

mentation of machine learning algorithms?  
– In terms of performance, energy consumption, and resource utilization, how do FPGA-based implementations compare with 

conventional software implementations? 
– What are the future directions and potential research opportunities for FPGA-based implementation of machine learning algo-

rithms in biomedical applications? 

While several previous review articles [13,14] have discussed one or more specific ML algorithms, they have yet to cover and 
compile all ML algorithms used in biomedical applications. This article is the first to provide a comprehensive overview of nine distinct 
ML algorithms, excluding deep learning algorithms implemented on FPGAs for various biomedical uses. To indicate the contribution of 
this article in the area of FPGA-based hardware acceleration of ML algorithms, Table 1 compares the discussed ML algorithms in our 
work and previous survey papers. The table clearly shows that our work is the most comprehensive survey. The main contributions of 
the research are defined below. 

2. Research methodology 

This review started with a comprehensive search that yielded hundreds of publications within the initial scope of ML algorithm 
implementation on FPGA, concentrating on biomedical applications. During the search procedure, six distinct scientific databases were 
considered: IEEE Xplore, Scopus, Google Scholar, the ACM Digital Library, PubMed, and ScienceDirect. In addition, machine learning 
algorithms, FPGA implementation, FPGA hardware architecture, embedded systems, and biomedical applications were used as search 
terms. The resulting compilation of papers contains only conference and journal articles published after the year 2000. Given the 
significant advancements in FPGA technology to the present day, this period selection guarantees a comprehensive view of technology. 
This study’s primary objective was to examine numerous facets of FPGA-based hardware systems. 

This section provides a comprehensive overview of the research methodology employed in this review, including literature 
searches, data collection, validity threats, and data curation. 

Table 1 
Comparing the contribution of this article as a survey paper in the field of FPGA-based implementation of ML algorithms with other previously 
published literature.  

Discussed Topics Afifi et al. [13] Skoda et al. [14] This work 

Regression Algorithms × × ✓ 
Decision Tree × ✓ ✓ 
K-Nearest Neighbor × × ✓ 
Support Vector Machine ✓ ✓ ✓ 
Clustering Algorithms × × ✓ 
K-Means Algorithms × ✓ ✓ 
Random Forest × × ✓ 
Mixture Models × × ✓ 
Genetic Algorithm × × ✓  
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2.1. Literature search 

To ensure a thorough review, we conducted an extensive literature search. To ensure a comprehensive review, we conducted a 
comprehensive literature search. The process involved several key steps, as described as follows. 

2.1.1. Selection of databases 
This review started with a comprehensive search that yielded publications within the initial scope of ML algorithm implementation 

on FPGA, with a concentration on biomedical applications, by exploring various scientific databases renowned for their coverage of 
relevant academic publications. Specifically, we utilized six distinct databases: IEEE Xplore, Scopus, Google Scholar, the ACM Digital 
Library, PubMed, and ScienceDirect. These databases were selected due to their extensive coverage of research articles in machine 
learning, FPGA-based hardware acceleration, and biomedical applications. Using multiple databases can ensure consideration of all 
the relevant articles. 

2.1.2. Search terms 
We employed a carefully crafted set of keywords to retrieve articles of interest. These keywords encompassed relevant terms such as 

“machine learning algorithms,” “FPGA implementation,” “FPGA hardware architecture,” “embedded systems,” “FPGA Hardware 
Acceleration,” and “biomedical applications.” When searching for a specific algorithm, e.g., “Support Vector Machine,” we used the 
particular name of the algorithm along with these keywords. Using these keywords allowed us to focus our search on articles directly 
related to our research objectives. We created comprehensive search criteria that include relevant keywords, synonyms, and Boolean 
operators (AND, OR) to ensure we capture a wide range of relevant articles. 

2.1.3. Publication date filter 
To ensure the inclusion of the most recent and comprehensive research, our search was limited to articles published after 2000. This 

restriction was prompted by the rapid evolution of FPGA technology over the past few years, guaranteeing that our review includes the 
most recent developments in the field. 

2.1.4. Inclusion criteria 
We evaluated each article’s relevance to our review’s scope during the initial search. We included conference and journal articles 

that addressed the implementation of machine learning algorithms on FPGA platforms, specifically within the context of biomedical 
engineering applications. Using the search terms explained in Subsection 2.1.2, we filtered the Selection of papers, discerning those 
that bore direct or indirect relevance to the subject matter. The word “direct” pertains to instances where the article explicitly ref-
erences the application of the implemented algorithm on FPGA within its title or contextual content. On the other hand, the term 
“indirect” pertains to cases where the discussed architectures possess a broader scope but may also find applications within 
biomedicine. 

2.1.5. Processing tools 
To collect, organize, and cite research materials, including articles and web pages, we used Zotero reference management software 

and Microsoft Excel. For visualization and diagramming, we employed Inkscape. The project management tool that we used for 
organizing tasks and workflows was Trello. 

2.1.6. Relevant articles 
A systematic and organized approach is used to ensure we consider all the relevant articles. Clearly defined the scope and objectives 

of your review paper, including the specific research questions we wanted to address; comprehensive search criteria that include 
relevant keywords, synonyms, and Boolean operators (AND, OR) is created to ensure we capture a wide range of relevant articles, 
multiple databases, including IEEE Xplore, Scopus, Google Scholar, the ACM Digital Library, PubMed, and ScienceDirect are used, 
search filters provided by databases to narrow down results are applied based on publication date, article type, and relevant keywords, 
and the search queries, date of search, and the number of results retrieved is documented to conduct a systematic search. In the next 
step, the search results are reviewed, and the titles and abstracts of articles are checked to determine their relevance to your research 
questions. We created a systematic way to organize the articles we find using reference management software (Zotero) to keep track of 
articles, their titles, authors, publication dates, and relevance and avoid duplicated articles. We also examined the reference lists of the 
articles we found (especially in seminal papers) to identify additional relevant sources. Continuously, our search is updated as we 
progress with our review paper as new research might have emerged during our writing process, and before finalizing the review 
paper, seeking input from colleagues and experts in this field is considered to ensure that we have not missed any critical articles. 

2.2. Data collection 

To maintain transparency and facilitate reproducibility, we meticulously documented the details of our data collection process for 
each algorithm discussed in the paper. In the initial phase, we initiated our inquiry by employing the search queries mentioned in 
Section 2.1.2. These search terms were accompanied by the specific designation of the algorithm under investigation, such as KNN or 
SVM. In the subsequent step, we assessed the relevance of the identified sources to biomedical applications, considering both direct and 
indirect connections. We also checked specific biomedical applications as a keyword, e.g., “image processing,” at the next step. This 
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search yielded a total of 316 conference and journal articles. Subsequently, a meticulous examination of the abstracts and applying the 
criteria outlined in Table 2 reduced the number of papers to 143. 

Furthermore, Table 2 presents a comprehensive breakdown of the individual counts of papers scrutinized for each algorithm. In 
Table 2, some algorithms were directly relevant to a biomedical application, mentioned explicitly in the article. This inclusion criterion 
is demonstrated by the biomedical relevance (BR) tag. However, in some cases, e.g., when investigating the Ridge Regression algo-
rithm, the application is mentioned as “real-time optical flow,” which is the basis for applications in biomedicine. In this case, we used 
the FPGA hardware architecture for medical applications (FHA) tag as the inclusion criterion. 

2.3. Validity threats and data curation 

To mitigate validity threats, we acknowledge potential sources of bias or limitations in our review process. These include language 
bias, as our search was conducted in English. The data Curation process involved careful screening of articles to ensure they met our 
inclusion criteria. We employed a systematic approach, with two independent reviewers assessing each article’s relevance. Any dis-
crepancies were resolved through discussion and consensus. 

3. Groundwork 

We introduce the fundamental concepts behind the hardware acceleration of ML algorithms by explaining the basics of FPGA 
technology and its advantages for implementing these algorithms. This section will also describe FPGA implementation techniques. We 
then introduce concepts surrounding performance and energy analyses, followed by a subsection on codesigning ML algorithms and 
architectures. These background concepts are provided to assist our discussions in the overview of ML algorithm implementations on 
FPGAs. 

3.1. Fundamentals of FPGA technology and its benefits for ML algorithm implementation 

Due to their distinctive characteristics and capabilities, FPGAs have become a robust hardware platform for implementing ML 
algorithms. FPGAs offer a hardware architecture that is highly flexible and configurable and is capable of being programmed and 
customized to perform particular tasks efficiently. FPGAs facilitate the creation of application-specific hardware accelerators, making 
them well-suited for accelerating ML algorithms in various applications, including biomedical domains. FPGAs are comprised of a set 
of programmable logic units linked by programmable routing channels [15]. These logic blocks, which are shown in Fig. 1, can be 
configured to perform specific functions, such as arithmetic operations, memory access, and control logic. In addition, FPGAs provide 
dedicated resources, such as Digital Signal Processing (DSP) blocks, on-chip memory, and high-speed interfaces [16], which can be 
utilized to optimize the performance and efficacy of ML algorithms. 

One of the most significant benefits of FPGA-based designs is the ability to parallelize computations. FPGAs can use fine-grained 
parallelism by executing multiple tasks or data operations concurrently, resulting in significantly increased processing rates. This 
parallelism is especially advantageous for ML algorithms involving computationally intensive operations such as matrix multiplica-
tion, convolution, and traversal of decision trees. Using the parallel nature of FPGAs, ML algorithms can be executed in real-time, 
enabling applications with stringent latency requirements [17,18]. Moreover, FPGAs provide the versatility of reconfigurability. 
FPGAs can be reprogrammed and reconfigured to accommodate changing conditions or algorithm optimizations, unlike 
application-specific integrated circuits (ASICs), which are designed for specific tasks and are challenging to modify. This flexibility 
permits researchers and developers to iteratively refine and improve FPGA-based implementations of ML algorithms, thereby 
enhancing performance and resource utilization. For example, they can experiment with various architectural configurations, memory 
organizations, and algorithmic optimizations to achieve the desired balance between precision and efficiency. FPGAs have the po-
tential for low-power implementations [19], an additional benefit. By meticulously designing the hardware architecture and utilizing 

Table 2 
The number of reviewed articles regarding the algorithms implemented on FPGA during 2000–2023 and the filter criteria of the articles by type of 
algorithm.  

Algorithm Number of reviewed papers Number of papers included Inclusion Criteria 

Regression Linear 18 9 FHA 
Ridge 11 5 FHA 
Logistic 13 6 FHA 

Classifiers KNN 35 11 FHA - BR 
DT/RF 32 16 BR 
SVM 86 40 FHA - BR 

Clustering Mean-Shift 20 9 FHA 
K-means 47 23 FHA- BR 

mixture models Gaussian 28 12 BR 
Genetic 26 12 FHA 
Total 316 143 – 

BR: Biomedical relevance, FHA: FPGA hardware architecture for medical applications. 
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the parallelism inherent in ML algorithms, it is possible to decrease power consumption. FPGAs also provide the ability to activate 
hardware components only when necessary selectively, facilitating dynamic power management and reducing energy waste [20]. This 
is especially significant in energy-constrained applications, such as wearable devices, implantable medical devices, and remote sensing 
systems, where power efficiency is essential for extending battery life or reducing energy consumption. 

Additionally, FPGAs offer a perfect platform for hardware/software co-design because they enable the implementation of ML al-
gorithms’ algorithmic components in hardware while leaving control and management tasks to embedded processors or co-processors. 
This combination of hardware acceleration and software control permits efficient resource utilization and the execution of ML al-
gorithms [21]. This implementation technique will be discussed in the following section. The unique properties of FPGAs, such as their 
configurability, parallelism, reconfigurability, and potential for low-power implementations, make them a compelling choice for 
accelerating ML algorithms. By leveraging the capabilities of FPGAs, researchers and engineers can create high-performance, ener-
gy-efficient solutions for various biomedical applications, facilitating real-time data analysis, decision-making, and individualized 
healthcare interventions. 

Fig. 1. A typical FPGA architecture, which includes logic blocks and I/O blocks (IOBs).  

Fig. 2. The standard framework of FPGA-based hardware accelerator.  
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3.2. FPGA Implementation techniques 

FPGAs provide a flexible substrate for implementing machine learning algorithms, and a number of techniques and methodologies 
can be employed to optimize their performance and resource utilization. This section discusses the most essential aspects of FPGA 
implementation techniques. 

3.2.1. Hardware/software Co-design 
Hardware/Software co-design (HW/SW Co-design) is an approach to implementing complicated systems, such as ML algorithms, 

on FPGA platforms that incorporate hardware and software components. By employing a hardware/software co-design strategy, FPGA- 
based ML implementations can benefit from the inherent parallelism and reconfigurability of FPGAs while preserving the flexibility 
and control of software components [22]. This method facilitates the efficient use of system resources, improved performance, and the 
ability to meet the specific design constraints of biomedical applications. Identifying the algorithmic components that can be effec-
tively implemented in hardware and those that are better adapted for software execution is the first step in hardware/software 
co-design. In general, computationally intensive duties or data-parallel operations are excellent candidates for hardware acceleration, 
whereas software typically implements control functions and sequential procedures [23]. Fig. 2 depicts a generic FPGA-based HW 
accelerator architecture designed in Ref. [22]. This optimization method improves system performance by employing the loop 
unrolling or multiple processing elements (PEs) technique. FPGAs offer parallelism and high-performance capabilities that can sub-
stantially accelerate the execution of ML algorithms by implementing specific components in hardware. The algorithmic details 
implemented in hardware can exploit the parallelism inherent to the FPGA architecture, allowing for the simultaneous and efficient 
processing of multiple data samples or iterations. While hardware components handle computationally intensive duties, embedded 
processors, or coprocessors, typically execute control and management functions. These software components perform data pre-
processing, algorithm configuration, decision-making, and device or network interfacing. To ensure efficient operation and data flow, 
hardware and software members communicate and synchronize with one another. This involves establishing interfaces and protocols 
for exchanging data between the software and hardware domains, managing synchronization points, and coordinating the system’s 
overall behavior. One of the critical merits of hardware/software co-design is its inherent flexibility [24]. FPGAs can be reprogrammed 
to conform to changing algorithm requirements, allowing ML models to be refined and optimized iteratively. This flexibility permits 
the investigation of various hardware/software partitioning strategies and the ability to fine-tune the system based on performance, 
resource utilization, and energy efficiency objectives. 

3.2.2. Algorithm mapping 
The process of transforming an ML algorithm into a hardware design that can be effectively implemented on an FPGA is known as 

algorithm mapping. It involves decomposing algorithmic operations into computational assignments that can be executed efficiently 
on an FPGA architecture. This may entail identifying critical algorithmic functions, such as matrix multiplications, convolutions, or 
evaluations of decision trees, and determining how these operations can be distributed efficiently across the FPGA’s configurable logic 
resources. FPGAs excel at parallel computation, and mapping algorithmic duties to similar hardware resources can substantially boost 
performance [25]. Loop unrolling [26], in which iterations of loops are processed in parallel, and pipeline parallelism [27], in which 
multiple computation phases are overlapped, are utilized to increase throughput. 

The mapping procedure is affected by data dependencies within the algorithm. Techniques such as scheduling and data buffering 
[28] are used to manage dependencies and ensure efficient data flow between computational duties. Utilizing the FPGA’s routing 
resources can facilitate data transfer and reduce delays caused by dependencies. In addition, FPGAs provide various memory options, 
such as on-chip block RAM and external memory interfaces, and selecting the appropriate memory type and access mechanism can 
substantially affect performance. Techniques such as data streaming [29], where data is transmitted directly from memory to 
computation units, and data partitioning [30] are utilized to optimize memory access patterns. Alternatively, task partitioning 
techniques enable the subdivision of the algorithm into smaller, more manageable tasks that can be efficiently assigned to FPGA 
resources. Methods such as spatial and temporal partitioning are applied in which duties are time-multiplexed on shared resources 
[31]. 

3.2.3. Trade-offs and design constraints 
In implementing ML algorithms on FPGAs, tradeoffs and design constraints play a crucial role. It is essential to consider a range of 

factors and make well-informed decisions based on the specific needs of biomedical applications. Following is a discussion of the most 
crucial elements of design constraints. 

3.2.4. Resource utilization vs. algorithm accuracy 
Achieving the optimal balance between algorithm accuracy and resource utilization involves a trade-off. Each algorithm 

component implemented on an FPGA consumes a certain quantity of resources (logic elements, memory blocks, DSP blocks, and other 
specialized components). As the algorithm’s complexity and accuracy requirements increase, resource consumption rises. ML algo-
rithms, on the other hand, strive for high accuracy in their predictions or classifications. However, greater precision frequently ne-
cessitates additional computational resources. Precision requirements, such as those for fixed-point or floating-point arithmetic, 
impact the use of resources. Designers may investigate techniques such as dynamic precision scaling [32], in which precision can be 
dynamically adjusted based on the computational requirements of individual algorithm components. In addition, algorithmic opti-
mizations such as quantization-aware training [33] and reduced precision quantization can mitigate the impact of lower precision on 
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accuracy while minimizing resource consumption. Reducing the precision of calculations can substantially reduce resource re-
quirements, albeit at the expense of some precision. It is possible to use approximate computing techniques to sacrifice accuracy for 
reduced resource consumption. Also, algorithmic optimizations, such as removing redundant connections or quantizing weights [34], 
can reduce computational complexity and, consequently, resource consumption. 

3.2.5. Power management and energy efficiency 
Power management and energy efficiency are crucial considerations in FPGA-based implementations, including biomedical ap-

plications. Efficient power management strategies can aid in reducing power consumption while preserving performance levels. 
Dynamic power gating is a technique that entails selectively shutting off power to inactive or idle FPGA design components. Dynamic 
power gating reduces energy consumption by shutting off power to unused modules and features [35]. This method can be beneficial 
when dealing with FPGA designs with dynamic duties or variable computational demands. It permits power allocation on demand, 
reducing power waste and enhancing energy efficiency. Clock gating is an additional power management method. Clock gating 
selectively turns clock signals on or off for particular FPGA circuit elements. Hence, it reduces unnecessary clock switching and 
associated power consumption by turning off the clock on inactive or dormant components [36]. This technique helps conserve energy 
by lowering switching activity and can be advantageous in designs with lengthy periods of inactivity or minimal training. 

Voltage scaling is an additional power management technique utilized in FPGA-based implementations. It involves dynamically 
adjusting the operational voltage of FPGA components [37]. By decreasing the voltage supplied to particular regions or modules within 
the FPGA, power consumption can be drastically reduced. Utilizing the fact that power consumption is proportional to the square of the 
voltage, this method enables significant power savings without sacrificing performance. However, voltage scaling must be carefully 
managed to avoid degrading performance or introducing functional errors. Suitable control mechanisms must accompany power 
management techniques to ensure a seamless transition between power-saving states and active operation, thereby preserving system 
dependability and responsiveness. Reconfigurable architectures, such as FPGAs and Coarse-grained Reconfigurable Arrays (CGRAs), 
are gaining popularity in biomedical applications [38–41]. They have the potential to improve efficiency and performance. Never-
theless, programming models for such architectures frequently have limitations. Traditional Hardware Description Languages (HDLs) 
lack the abstractions necessary for productivity, whereas using higher-level languages can add complexity. To overcome these limi-
tations, Koeplinger et al. [42] developed Spatial, a novel domain-specific language and compiler for describing application acceler-
ators at a high level. They outlined the compiler stages required to support hardware-centric abstractions such as scheduling the 
pipeline, automatic memory banking, and active ML-driven automated design tuning. In addition, applications written in Spatial were 
42% shorter on average. They achieved a mean speedup of 2.9 × over Xilinx SDAccel HLS when targeting a Xilinx UltraScale with 
VU9PFPGA on an Amazon EC F1 case. 

4. An overview of the implementation of ML algorithms on FPGA 

This section will review some of the recent studies implementing the ML algorithms presented in Table 1. 

Fig. 3. Flowchart of simple linear regression. Adapted from Ref. [44].  
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4.1. Linear regression 

Regression algorithms are essential in biomedical applications because they facilitate the analysis and prediction of continuous 
variables based on input features. There are numerous advantages to implementing regression algorithms on FPGAs, but unique 
challenges must be addressed. This section will examine implementing regression algorithms on FPGAs, highlighting their benefits, 
difficulties, and performance evaluations in biomedical applications. 

4.1.1. Hardware design of linear regression algorithms 
Based on continuous variables, linear regression is utilized to approximate actual values. The relationship between independent 

and dependent variables is determined by fitting the finest line. This line, known as the regression line, is characterized by the linear 
equation y=α+βx where y is the Dependent Variable, β represents the Slope, x is the Independent Variable, and α represents the 
Intercept. The α and β coefficients are identified by minimizing the distance between each data point and the regression line. To fit this 
model, the optimal parameters and the ordinary least squares approach are required [43]. In Ref. [44], a basic linear regression model 
was developed, whereby the function predicting y takes a single x variable as its input, as illustrated by equation (1): 

y=φ1x + φ0 (1) 

Using matrix algebra operations and the least-squares estimation method, it is possible to modify φ values using (2) [44]: 

φ=

[
φ0
φ1

]

=
(
XT X

)− 1XT y (2)  

Where, X and y are the training data points. Fig. 3 shows the flowchart of simple linear regression and its relevant algorithm via matrix 
algebra is represented in algorithm 1. 

Algorithm 1. Matrix algebra as a linear regression algorithm  

Input: Training data point (X = [x0…xn− 1] and y = [z0…zn− 1]) and start signal 

Output: φ =

[
φ0
φ1

]

1: Insert n (the amount of training examples) 
2: if rising edge (start) then 

3: Compute (XTX) =

⎡

⎢
⎢
⎢
⎣

n
∑n− 1

i=0
xi

∑n− 1

i=0
xi

∑n− 1

i=0
xi

2

⎤

⎥
⎥
⎥
⎥
⎦

4: Compute (XTX)− 1 

5: Compute (XTX)− 1XT 

6: Compute (XTX)− 1XTy =

[
φ0
φ1

]

7: end if 
8: return φ  

The linear regression algorithm was implemented using the Very High-Speed Integrated Circuit Hardware Description Language 
(VHDL) on the Altera DE2-115 development board [44]. Fixed-point arithmetic was utilized by Ferreira et al. to optimize the execution 
time. Signed integer numbers were modeled as decimal values using 32-bit arrays. To address (2), the linear algebra operations were 
divided into sequential operations and encoded within a PROCESS VHDL structure. The sensitivity list included the start signal. The 
obtained modeling generated a unique intellectual property (IP) entity. With eight training data points, the embedded FPGA system 
consumed approximately 136.82 mW of energy. In Ref. [45], the authors discuss the computational challenges associated with 
microarray analysis, specifically the computation of linear regressions in a high-dimensional parameter space. They effectively 
demonstrate the suitability of FPGAs by achieving a remarkable 1600-fold increase in speed over serial implementations. This study 
highlights the efficacy of FPGA coprocessors in resolving comparable problems in functional genomics. 

Different hardware architectures were proposed to implement the linear regression method on FPGAs, focusing on restrictive area 
systems [46–48] because linear regression finds wide application in digital signal processing. These architectures conserved space by 
restricting input signal lengths to predetermined values. An Automatic Modulation Classifier (AMC) scheme employing statistical 
characteristics of phase and instantaneous frequency for real-time signal processing was proposed in Ref. [44]. Fixed-point arithmetic 
and the Altera Quartus II 12.0 Web Edition were utilized to implement the system. Executing in a single clock cycle, the FPGA design 
supported a custom linear regression and prediction entity with eight training data points. The architecture could be expanded to 
accommodate larger training data sets and more complicated ML hardware implementations, such as Deep Learning (DL) algorithms. 
To implement the linear regression algorithm on FPGAs, Royer et al. [46] offered a number of hardware topologies, focusing on 
space-constrained devices. To achieve its space-saving goals, the suggested system would limit the duration of the input signals to 
predetermined values. Similar to Ref. [44], they implemented their proposed scheme using AMC, meeting the problematic real-time 
limitations of this system. To find the linear function that best matches a particular set of samples, the coefficients α and β should 
minimize the Mean Squared Error (MSE) [46,49]. 
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Fig. 4 depicts the proposed implementation plan for minimizing the MSE. Constants can be stored in read-only memory (ROM) 
using this scheme. This linear regression model can be utilized for an AMC, specifically for the computation of the critical statistics for 
detecting phase modulations applicable to bio-signal processing. Unknown in length, the input data is a two-sample per clock cycle 
signal. The signal is divided into 256 sample segments that are fed to the linear regression module for processing. The scheme proposed 
in Fig. 4a primarily employs accumulators (ACCs) and multiply accumulators (MACCs), making the Xilinx-embedded DSP48E a 
suitable choice for its implementation. According to the Xilinx DSP48E architecture, a 25 × 18 signed multiplier with ports A and B is 
followed by a 3-input 48-bit arithmetic logic unit (ALU), which can also operate as an accumulator [50]. The DSP48E can be configured 
as a 2-input accumulator (Fig. 4b). 

Similarly, in implementing a real-time AMC on a Xilinx Virtex 4 LX100 FPGA, built-in multipliers and the CORDIC algorithm led to 
efficient resource utilization [47]. With sampling rates exceeding 1 Gsample/s, the classifier operated in real-time. The linear 
regression blocks occupied most of the area (71%), whereas the CORDIC submodule occupied a minor portion (6.5%) but provided the 
optimal area and performance. The FPGA utilization attained 16%, which was lower than the target of 25%, and the system achieved a 
fivefold increase in speed relative to the required input rate of 20 Msamples/s. The implementation operated at 100 MHz and satisfied 
real-time requirements. Recent literature [51] presents an FPGA-based system that uses a visible light optical spectrometer and a 
regression predictor to measure neurotransmitter concentration. The design makes efficient use of hardware resources and predicts 
molecule concentrations from measured data with exceptional accuracy. This study emphasizes the potential of FPGAs to enable 
accurate and real-time measurements of neurotransmitter concentration, thereby enhancing biomedical researchers’ ability to 
comprehend brain behavior. 

4.2. Ridge regression 

Tikhonov Regularization, usually known as ridge regression, is the most commonly used regression algorithm to approximate an 
equation with no unique solution. The ridge regression model may be used imaginatively to analyze medical data rather than abandon 
the usual regression approach [52]. For instance, ridge regression can be applied as a classifier in biomedical image processing [53]. 
While optical flow algorithms are primarily used in image processing applications, they can also have biomedical applications. It has 
been shown to be efficient in real-time optical flow sensors [54]. Motion estimation and video compression have developed as sig-
nificant aspects of optical flow research [55]. A ridge regression-based optical flow algorithm was developed to overcome the collinear 
problem in conventional least-squares approaches. Implemented on a BYU Helios FPGA board [56], the algorithm incorporated spatial 
and temporal smoothing operations to enhance accuracy. Traditional computationally expensive algorithms are not suitable for many 
real-time applications because of the computation power constraint. Hence, Wei et al. [56] devised and implemented a real-time 
optical flow algorithm on a low-power, compact FPGA device. As advancement, a new hardware architecture for calculating the 
optical flux of real-time video streams is introduced in Ref. [57]. Similarly, in Ref. [58], a pipelined hardware architecture using a 
full-search block matching (FSBM) algorithm is proposed for real-time optical flow estimation. The system was implemented on a 
Xilinx Virtex-5 FPGA XC5VLX330-10 device, achieving a processing speed of 400 frames per second (fps) for standard VGA images at 
the maximum frequency of 160.7 MHz. 

4.3. Logistic regression 

Advances in biosensors and wearable technology enable the collection of routine health data. Real-time detection of health events 
like epileptic convulsions using electroencephalography (EEG) is possible with suitable models [59]. Page et al. [60] discussed using 
logistic regression (LR) for a low-power, multi-channel EEG feature extractor and classifier to predict seizures from scalp EEG data. The 
proposed scheme allows sequential processing of each channel’s extraction and classification within a half-second computation time 
[61]. A sequential implementation of classifier algorithms was achieved on the Virtex-5 FPGA platform. A 22-channel seizure detection 
hardware system was developed, with the LR classifier performing best regarding FPGA resource utilization, power consumption, and 
computation latency for 256 samples per window. Fig. 5 illustrates the Block diagrams of Logistic Regression’s Feature Extraction 

Fig. 4. (a) The scheme proposed in Ref. [46] for computing α and β coefficients, and (b) DSP48E implementation of a 2-input accumulator, 
connected to terminals A, B, and C, the two inputs load the X and Y multiplexers. P is connected to Z, which is a multiplexer [46]. 
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(Fig. 5a) and reconfigurable classifier (Fig. 5b) [61]. 
Logistic regression implemented in PLINK has proven to be a robust framework for evaluating gene-gene interactions, particularly 

for complex chronic diseases like ankylosing spondylitis [62]. However, computing regression models for each pair of markers in a 
genome-wide dataset is computationally demanding. To address this [63], introduced a combination of a Xilinx UltraScale FPGA and 
an Nvidia Tesla GPU, achieving significantly faster runtimes (minutes) for genome-wide logistic regression tests. This approach 
resulted in potential speedups of 1000 to 1600 compared to multi-threaded PLINK on a server-grade computing platform. The het-
erogeneous FPGA-GPU computing architecture, initially proposed in Ref. [64] and further improved in Ref. [63], demonstrates sig-
nificant performance gains by utilizing high-end off-the-shelf components. The system consists of a powerful mainboard with dual Intel 
XeonE5-2667v4 8-core CPUs, 256 GB of RAM, an NVIDIA Tesla P100 GPU with 16 GB VRAM, and an Alpha Data ADM-PCIE-8K5 FPGA 
accelerator card. The FPGA accelerator features a modern Xilinx Kintex UltraScale KU115 FPGA with 8 GB SODIMM memory modules. 
As depicted in Fig. 6 of [63], the architecture exhibits a notable acceleration, exceeding 10 to 15 times for the given example datasets, 
even when conducting double-precision calculations. This performance improvement is primarily attributable to the synergistic effect 
of the FPGA and GPU accelerators, whose combined processing capacity enhances the overall processing capabilities. 

Reference [65] presents a novel method for producing real-time vibrotactile feedback signals in a robotic hand. By combining FPGA 
technology with Multinomial Logistic Regression, this approach shows promise for classifying vibrotactile feedback in real time. The 
experiment involved a prosthetic hand equipped with sensors, with the sensor data transmitted to the FPGA card. While Multinomial 
Logistic Regression performed well in identifying object types, improvements are needed for movement and combined types. Exploring 
alternative machine learning algorithms is recommended to enhance classification accuracy. Overall, this approach offers the potential 
for real-time vibrotactile feedback in robotic hands. 

4.4. Classifiers 

For classification purposes, numerous ML techniques are applicable. Usually, the backpropagation (BP) and iterative characteristics 
of these methods are not appropriate for high-performance applications with large-scale data since the ML algorithms’ parameters 
require to be gradually tuned in a learning process. In the upcoming sections, we will explore the utilization of various classification 
algorithms on FPGAs specifically for biomedical applications. 

4.4.1. K-nearest neighbors algorithm 
The K-nearest neighbor (KNN) classifier is one of the most prevalent ML classification algorithms. Typically, this algorithm is 

utilized for pattern recognition [66], text categorization [67], data mining [68], image classification [69], and predictive analysis [70]. 
In biomedicine, KNN finds extensive application in the pharmaceutical industry, particularly in identifying the proliferation of 
oncogenic (cancerous cells) [71]. Other applications consist of predicting solvent accessibility in protein molecules [72], data analysis 

Fig. 5. The figure illustrates (a) the block diagrams of the feature extraction process and (b) reconfigurable classifier employing Logistic Regression. 
The diagrams are adapted from Ref. [61]. 

Fig. 6. Workflow of a heterogeneous FPGA-GPU system for the compute-intensive biomedical task of assessing gene-gene interaction for epistasis 
detection [63]. 
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of microarray gene expression [73], Studying Heart Rate Signals [74], and medical image segmentation for brain Magnetic Resonance 
Imaging (MRI) region classification [75]. KNN, as a nonparametric classification method, is widely used in three critical applications, 
including (i) entropy estimation (tomography, motion estimation, and object tracking), (ii) classification and clustering (pattern 
recognition systems), and (iii) content-based image retrieval. Here, we focus only on the second application, as it has been imple-
mented on FPGAs in recent literature and used in medical engineering. 

Several research works have been achieved in recent years, primarily focused on enhancing the performance and efficiency of the 
KNN algorithm through hardware implementations, specifically using FPGAs. Table 3 presents a summary of these studies. These 
works explore various techniques, platforms, and architectures to accelerate the KNN algorithm and improve its execution time 
compared to general-purpose processors (GPPs) (such as works [76,77]) or other hardware devices. The authors employ high-level 
synthesis (HLS), parallelization, pipelining, and heterogeneous computing systems to optimize the KNN algorithm’s execution on 
FPGAs. Some related efforts leverage OpenCL and Dynamic Partial Reconfiguration (DPR) to improve FPGA-based implementation 
performance and flexibility. Speedup ratios, energy efficiency, classification accuracy, and dataset dimensions are analyzed in most 
related papers. 

Reference [78] presents an early study on FPGA-based implementation of KNN algorithms. The proposed approach utilizes Partial 
Distance Search (PDS) in the wavelet domain to determine the k nearest vectors in the design set for each input vector. By employing 
techniques such as subspace search, bit-plane reduction, and multiple-coefficient accumulation, the design achieves a cost-effective 
FPGA implementation with high throughput and low area cost, suitable for image processing and pattern recognition applications. 
Reference [79] offers a high-performance, HLS-based KNN method. Thus, operating at higher levels of abstraction and verifying 
scheme functioning at the C-Level made HLS more efficient than traditional HDLs and increased hardware designer productivity. They 
optimized their plan and pipelined the design using C code and Vivado HLS (Fig. 7a). In this figure, the DC block is made up of several 
calculation units to compute the distances between the query vector and all the training vectors, and the KF block is comprised of K 
comparators, used to determine the K nearest neighbors and store their correspondent distances and class labels. The CLV block is a 
majority voter that involves C counters and a comparator. The authors evaluated their IP core on the Xilinx ZC706 FPGA board with 
Vivado 2015.2 at 100 MHz. They tested their design with 1024 training vectors, 2D, 2 classes, and K = 7. The hardware architecture 
they designed exhibits a speed improvement of 35.1 times compared to a GPP-based implementation. However, two-dimensional 
testing does not demonstrate the design’s capabilities. Pu et al. introduce in Ref. [80] a highly efficient parallel implementation of 
the KNN algorithm. This implementation leverages the architecture of FPGA-based heterogeneous computing systems and utilizes the 
Open Computing Language (OpenCL) framework (Fig. 7b). The GPU implementation is 410 times faster than the CPU. 

In contrast, the FPGA implementation is 148 times faster. The FPGA also demonstrates higher energy efficiency compared to the 
GPU. However, the classification accuracy is not mentioned in the results. 

In [81,82], the designers introduced a systematic design for two linear array IP cores for a KNN classifier (Fig. 8). The architecture 
proposed in Ref. [81] incorporated M + k+1 PEs, while [82] proposed an architecture with 2 N + 1 processors, where N and M 
represent the number of vectors and features, respectively. To reduce classification time, the data paths of the two designs have been 
pipelined. The design has been parameterized so it can be utilized for different M, N, and K values. However, the number of processors 
varied depending on M and K in Ref. [81] and N in Ref. [82]. The design has been parameterized so it can be utilized for different M, N, 
and K values. However, the number of processors varied depending on M and K in Ref. [81] and N in Ref. [82]. Therefore, the two 
distinct architectures in Refs. [81,82] result from the fact that the first architecture does not fit in the FPGA device when N is 

Table 3 
The key features of the literature discussed in Section 4.4.1.  

Reference Hardware Platform Speedup Features 

[76] Xilinx ML 403 platform board with 
XilinxXC4VFX12FF668-10 FPGA 

FPGA: 92 × faster than GPP Implementation of a multi-core ensemble K-NN classifier/About 5 ×
faster reconfiguration time 

[77] Xilinx ML 403 platform board with 
XilinxXC4VFX12FF668-10 FPGA 

FPGA: 76 × faster than GPP FPGA implementation of KNN classifier with fixed K value 

[78] Altera Stratix EP1S40 Not mentioned a cost-effective FPGA-based implementation of KNN classification 
embedded in a softcore CPU 

[79] Xilinx ZC706 FPGA board FPGA: 35.1 × faster than GPP HLS-based KNN algorithm solution, C-Level verification/ 
parallelism, and design pipelining 

[80] Stratix IV 4SGX530 GPU: 410 × faster than CPU, 
FPGA: 148 × faster than CPU 

Parallel implementation using FPGA-based heterogeneous 
computing systems architecture with OpenCL/Comparison with 
CPU and GPU implementations. 

[81] Virtex 2 Pro XC2VP30-6 FPGA board FPGA:1.5 × to 2.96 × faster 
than GPU 

Systematic design of IP cores with linear arrays for KNN classifier. 
Comparison of performance with CUDA-based GPU implementation. 

[82] Virtex 5 XC5VLX110T-3 FPGA FPGA: Slower than GPU in most 
cases 

Similar to [81] 

[83] Virtex-6 FPGA FPGA: 127 × speedup compared 
to software 

Novel hardware architecture for KNN classifier on mobile devices. 
Mixed VHDL and Verilog design. 

[88] Xilinx XC4VSX35 FPGA about 8 × speed up in 
reconfiguration time 

Application of FPGA-KNN to the analysis of biomedical data, such as 
Microarray data, with decreased power consumption. 

[89] Not mentioned Not mentioned a breathing disorder recognition system with a high accuracy 
[90] ARM processor FPGA Not mentioned Remote cardiac monitoring: ECG signal processing and KNN-based 

abnormality detection  
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significantly smaller than M, and the second architecture does not fit in the FPGA device when N is substantially larger than M. In 
Fig. 8, the KNN algorithm is divided into two phases. Several exemplar vectors (N) with M dimensions (features) are kept in memory 
along with their class labels during the first or training phase. A test vector of an unknown class is provided in the subsequent, or 
classification, phase, and its distances from each training vector are computed. The k-lowest distances between the training vector and 

Fig. 7. (a) The K-NN hardware architecture proposed in Ref. [79], and (b) The OpenCL platform in Ref. [80].  

Fig. 8. The Dependences Graph (DG) of the KNN algorithm (N = 7, M = 4 and k = 3) in Refs. [81,82], and Signal Flow Graph (SFG) array ar-
chitectures of a horizontal and a vertical DG projection [82]. 

Fig. 9. High-Level Architecture of User-Designed Hardware Module proposed in [83].  
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the test vector are determined. In Ref. [81], the FPGA architecture achieved a speed of 100 MHz on a Virtex 2 Pro XC2VP30-6 FPGA 
board, while in Ref. [82], the same architecture ran at 100 MHz on a Virtex 5 XC5VLX110T-3 FPGA. A comparison was made with the 
results from Ref. [82], where a CUDA API-based implementation on a Pentium 4 PC with an NVIDIA GeForce 8800GTX GPU was used. 
The results showed that in Ref. [81], the FPGA was generally 1.5 to 2.96 times faster than the GPU for various K and N values. 
However, in Ref. [82], the FPGA was slower than the GPU in most cases, with the best case showing equivalent speeds between the 
FPGA and GPU. 

In [83], a novel hardware design for accelerating the KNN classifier on mobile devices was presented, addressing complexity and 
processing capacity limitations. The hardware architecture was 127 times faster than its software counterpart while maintaining 100 
percent classification accuracy. The design was implemented and verified on a 100 MHz Virtex-6 FPGA using VHDL/Verilog hardware 
modules, as shown in Fig. 9 [83]. Verification was performed using Xilinx ISE, XPS, and iSim, while C-written software modules were 
optimized and tested on a Micro Blaze FPGA. The architecture consisted of four stages: min-max normalization, Euclidean distance 
measurement, distance value sorting, and data classification. 

In [84], the authors introduced a perfecting technique to mitigate high memory access latency. The classification accuracy 
depended on different datasets and test set percentages. For the Iris dataset, a test set percentage of 10% resulted in 100% classification 
accuracy across different K values. The heart dataset achieved the % classification accuracy of 83.6% when the test set percentage was 
70% and K was 9. It’s worth noting that this scheme did not employ parallel processing techniques. Supervised learning methods, 
including Support Vector Machines (SVM), KNNs, and neural networks, are commonly used to analyze biomedical data, such as 
Microarray data. Data mining techniques applied to these datasets have led to the discovery of disease-associated genes, particularly in 
cancer research [85–87]. These findings have been utilized to improve predictive models, leading to the development of commercial 
diagnostic kits like Mamma Print and Symphony by Agendia. The hardware architecture described in Ref. [88] offers the potential to 
build ensemble classifiers for Microarray and other biomedical data, aiming to enhance the accuracy of prediction models. 

Reviewing existing research and implementations shows that FPGA-based KNN designs can achieve substantial speedup and power 
efficiency improvements compared to traditional computing platforms. FPGAs’ parallelism and reconfigurability enable concurrent 
processing of multiple data points, resulting in faster classification or regression predictions. These advancements have shown 
promising results in addressing the challenges of large-scale datasets and real-time requirements. However, FPGA-based KNN 
implementations still face memory constraints [84], design complexity, and algorithm scalability. There is a need for further inves-
tigation into innovative approaches that resolve these obstacles and enhance the precision and efficiency of FPGA-based KNN systems. 

4.4.2. Decision tree and random forest classifiers 
Implementing decision trees and Random Forest algorithms on FPGAs has attracted considerable interest in biomedical applica-

tions. FPGAs provide parallel processing capabilities and hardware-level customization, making them ideal for real-time and resource- 
constrained applications. Decision tree and Random Forest algorithms are extensively utilized in biomedical domains for disease 
diagnosis, patient monitoring, and healthcare decision-making. This paper examines the benefits, challenges, and advancements of 
utilizing FPGA technology to accelerate decision tree and Random Forest algorithms for biomedical applications. By exploiting the 
parallelism and reconfigurability of FPGAs, these implementations are anticipated to improve the efficacy, precision, and speed of 
biomedical data analysis, leading to enhanced healthcare outcomes and individualized treatment strategies. In this section, the existing 
literature for hardware implementation of the decision tree/random forest algorithm on FPGA is reviewed, and several publications 
are identified. 

Struharik [91] presented four distinct architectures, including a single module per level (SMPL) and SMPL-P architectures, as well 
as a universal node (UN) and UN-P architectures with varying hardware complexity, throughput, classification speed, and speedup. 
Using an FPGA, Narayanan et al. [92] proposed a decision tree classification that was 5.58 times faster than a software imple-
mentation. They focused on optimizing the compute-intensive kernel, Gini score computation, by employing a bitmapped data 
structure and rearranging calculations to reduce bandwidth requirements. Saqib et al. [93] developed a pipelined architecture for 
parallel decision tree binary classification that outperformed existing hardware implementations with a speed improvement of 3.5 
times. The architecture included a high-speed communication unit to enhance data processing and transmission. 

Meanwhile, Kulaga et al. [94] implemented decision trees and their ensembles using Vivado High-Level Synthesis, optimizing 
classification accuracy, throughput, and resource utilization. Their approach of employing fixed-point arithmetic and processing 
significant sample inputs resulted in the highest classification throughput and resource utilization, as indicated by the results. Bar-
bareschi et al. [95] proposed a Von Neumann architecture dubbed tree visiting processing unit (TVPU) and an FPGA accelerator 
architecture, attaining remarkable efficiency and speed. In addition, they offered an FPGA accelerator architecture based on majority 
voting citeBarbareschi2015 and demonstrated a 114-fold increase in performance and a mere 0.03% increase in energy consumption 
compared to software approaches. The authors introduced an FPGA accelerator architecture design for the decision tree classifier and 
its ensemble using majority voting [96]. This architecture is based on a pipelined technique and follows the decision tree design 
presented in Ref. [97]. Compared to the software approach, the proposed architecture offers a 114-fold increase in performance with 
minimal energy usage. Tong et al. demonstrated the advantages of FPGA implementations for decision tree algorithms in biomedical 
applications by showing increased speed, enhanced throughput, and effective resource utilization. 

In a different paper, Barbareschi [98] proposed hardware implementation of a decision tree using Xilinx Virtex-5 XC5VLX110T 
FPGA device to determine the scalability of required resources. In Ref. [99], an FPGA-based decision tree classifier for intrusion 
detection systems is proposed. The architecture includes three modules: transformation and integration, semantic classifier, and 
post-reasoner. The design achieves excellent performance with high decision box rates and low delay times using pipelined decision 
boxes and a Boolean Net. The Hybrid DT (HDT) [100] offers simplified training and obtains an 8 × speedup compared to conventional 
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decision trees. Its hardware implementation permits the FPGA to operate at a maximal frequency of 125 MHz, resulting in a 1000 ×
acceleration over software-based performances and a 60 × acceleration over existing FPGA training accelerators. In addition, a 
wearable intelligent Electromyography (sEMG) recorder with incorporated gradient boosting decision tree (GBDT)-based hand gesture 
recognition is proposed in Ref. [101], using a low-latency parallel implementation of GBDT. The neural signal processing unit (NSPU) 
based on GBDT is implemented on an FPGA adjacent to the analog front-end (AFE) microprocessor. Overall, 91% of the hand gestures 
that were tested were correctly identified. Recent research has proposed an FPGA-based Automatic Pill Dispenser with a DT Classifier 
[102]. The authors suggested that the DT algorithm could classify features with high accuracy among all ML algorithms and manage 
complex datasets. In this study, the Decision Tree algorithm is developed for a sample time-based tablet dispensing dataset. Using a 
real-time Xilinx Artix-7 FPGA device, the developed decision tree-based classification is encoded in HDL and validated. Overall, the 
studies that were looked at show that using FPGAs to implement decision tree algorithms in biomedical applications has benefits, such 
as increased speed, throughput, and use of resources [[[91–99]]]. These results contribute to the expanding corpus of knowledge on 
leveraging FPGA technology for efficient and high-performance implementations of decision trees. Table 4 provides information 
regarding the throughput and clock rate of the architectures above. 

4.4.2.1. Works related to accelerating RF/DT training on FPGAs. A few studies on training RF/DT on FPGA platforms have been pro-
posed. FPGA is utilized in Ref. [92] to speed up the search for the optimal split point (weak learner) while the host computer conducts 
the sorting operation. Vertical data parallelism is the foundation of the parallel scheme. Chrysos et al. presented HC-CART [103], a 
heterogeneous GPP-FPGA system to address DT training issues. The system is equipped with an FPGA-based coprocessor designed to 
expedite the partitioning of categorical attribute lists. On a Convey HC-1 server, the coprocessor consists of multiple FPGAs and a scalar 
processor. Utilizing a large memory bandwidth and scalable shared memory, this architecture optimizes parallel operator networks 
across FPGAs. Like [92], the system parallelizes processing using vertical data parallelism. In Ref. [104], a proposed FPGA architecture 
speeds up the training of DT ensembles using a bagging technique [105]. The architecture incorporates HereBoy [106], an evolu-
tionary algorithm that induces oblique DTs. While the hardware implementation does not utilize data parallelism, a parallel processing 
module computes the oblique weak learners involved in the training algorithm. Table 5, which was introduced previously, compares 
multiple FPGA-based works. 

4.4.3. Support Vector Machines 
Support vector machines (SVM) are a supervised algorithm for object labeling [107], including classifying microarray gene 

expression profiles and cancer. SVMs also find applications in classifying protein and DNA sequences, microarray expression profiles, 
and mass spectra [108]. The computational complexity of SVM algorithms poses challenges for embedded systems, leading to efforts in 
optimizing performance and cost through hardware implementations, particularly on FPGAs. FPGA hardware architectures have 
emerged as a promising solution for overcoming the constraints of embedded systems. This section offers an overview of FPGA-based 
architectures for implementing SVMs, addressing the need for efficient and effective SVM implementations in various biomedical and 
real-time applications. Due to their computational complexity, software implementations of SVM that attain high accuracy could be 
better for embedded applications. Reconfigurable computing provides a solution for attaining high-performance computing with 
minimal expenses and power usage [109]. The hardware implementation of SVM classifiers can be divided into six distinct categories 
based on their architecture (Fig. 10). Some studies have investigated multiple architectures and, as a result, belong to various cate-
gories. Reconfigurable computing enables the efficient and economical implementation of SVM algorithms, making them appropriate 
for embedded applications. 

4.4.3.1. Architectures using parallel pipelined structure. Several pipelined architectures for accelerating SVM classification using FPGAs 
for effective parallel processing have been proposed. One study [110] used an FPGA Xilinx Virtex-6 to construct a fully pipelined 
architecture. To implement an SVM classifier with 760 support vectors, 768 DSP48E1 slices and 800 Block RAMs (BRAMs) were used. 
At a frequency of 370.096 MHz, the architecture obtained a throughput of 2.89106 classifications per second. Another pipelined 
architecture that aims to achieve a flexible SVM with adaptable input data, kernel selection, dimensions, and support vectors [111]. 
This architecture supported the runtime selection of linear, polynomial, and Radial Basis Function (RBF) kernels. For exponential 
function computation, it utilized embedded DSP-based Multiply-Accumulate (MAC) units, a Look-Up Table (LUT)-based adder tree, 

Table 4 
A comparison among different decision tree implementations mentioned in section 5.2.  

Reference Maximum clock rate Average Throughput 

[91] 100 MHz SMPL-P > SMPL = UN-P < UN 
[92] 100 MHz 3.24 Gbps 
[93] 100 MHz 96.26% 
[94] 100 MHz 1.3508 MSa/s 
[95] 360 MHz 26.91 Gbps 
[96] (Not specified) 112.8796 MS/s 
[97] 180 MHz/334 MHz 460 Gbps/6 Gbps 
[98] 450 MHz – 
[99] (Not specified) 562113546.9 (float/s) 
[100] 125 MHz –  
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and the Xilinx Coordinate Rotation Digital Computer (CORDIC) [112] IP core. The RBF kernel attained a speed of 50 MHz by 
employing fixed-point arithmetic for dot-product calculations and single-precision floating-point format for all other calculations. A 
pipelined architecture for a universal coarse-grained reconfigurable architecture capable of implementing multiple ML tools, including 
SVM, was proposed in Ref. [113]. The SVM implementation employed reconfigurable blocks, adders, multipliers, and subtractors for 
partial sums governed by an FSM model. Compared to software implementations, this implementation exhibited significant accel-
eration while effectively utilizing hardware resources. Another hardware architecture demonstrated in Ref. [114] used FPGAs’ 
parallelism and pipelining properties. It utilized a standard single-precision floating-point format and addressed generation counters to 
access data stored in BRAMs to perform required calculations. The architecture’s maximal clock frequency was 200 MHz, and its 
simulation accuracy was 97.87%. The study [115] introduces a parallel architecture consisting of a two-stage pipeline that employs 
resource sharing to facilitate both linear and nonlinear SVM classification. The circuit, which included shared adders and multipliers 
for performing inner product computations, achieved a frame rate of 33.8 fps when operating at a maximum frequency of 152 MHz for 
640 × 480 images. Other architectures for three-class SVM identification systems have been proposed [116,117]. These architectures 
used fixed-point arithmetic with variable bit lengths to balance identification precision and hardware area. 

Additionally, a combination of two-class classifiers was implemented, resulting in an 18% increase in processing performance for 
inner-product computations. An improved two-pipelined-stage architecture was proposed in Ref. [118], which obtained a system 
throughput greater than 21.2 frames per second at 100 MHz with an accuracy greater than 90%. Reference [119] describes a pipelined 
FPGA scheme that implements a simplified SVM algorithm based on posterior probability. The structure utilized LUTs for calculating 
sigmoid functions and added, multiplied, and divided for other computations. Compared to the original floating-point algorithm, 
experimental results revealed a marginal decrease in recognition rate and a reduction in computation complexity, making this al-
gorithm plausible for real-time constraints. A comparison was conducted between FPGA and GPU implementations of a human 
epidermis classifier [120,121]. The FPGA implementation used entirely pipelined architectures, whereas the GPU implementation was 
extremely power-hungry. The findings indicated that the FPGA implementation outperformed the GPU implementation when handling 
a small number of image pixels. However, the GPU exhibited superior performance for larger pixel counts, albeit at the cost of higher 
power consumption, making it less suitable for embedded applications. 

4.4.3.2. Systolic array architectures in SVMs. The systolic array architecture combines parallelism and pipelining techniques to 
enhance computation speed. It employs an array of simple processors (PEs) for efficient data transmission and memory management 
[13]. In the context of matrix multiplication-based applications, the systolic array architecture is implemented using parallel FPGAs. 
Kyrkou and Theocharides introduced the Systolic Chain of Processing Elements (SCoPE) to realize a generic systolic array for SVM 
object classification in embedded image and video applications [122]. Building upon this framework, a scalable, flexible, and adaptive 
parallel architecture was proposed in Ref. [123]. The hardware implementations achieved high frame rates of 40, 46, and 122 fps for 
the evaluated applications, without compromising detection accuracy. 

4.4.3.3. The multiplier-less approach. The multiplier-less approach to hardware design seeks to reduce complexity by omitting 
computationally intensive multipliers. Introduced in Ref. [124], a hardware-friendly kernel function provides acceptable classification 
performance without using traditional Gaussian kernels. In Ref. [125], a straightforward hardware architecture employing the 
hardware-friendly kernel for classification and regression tasks is presented. The system replaces multipliers with shifts and adds using 
parallel processing and the CORDIC iterative algorithm. The hardware simulation obtained a 4 % error rate for the 4-class classifier 
while operating at 30 MHz and utilizing 75 % of the device logic. Floating-point arithmetic and up to thirty to forty support vectors per 
binary classifier resulted in an error rate of zero percent. In Ref. [126], another hardware architecture employing the multiplier-less 
kernel is proposed, similar to the previous hardware-friendly kernel in Ref. [124]. The design employs straightforward shifters for 
multiplication and the CORDIC algorithm for the exponential function. Although no FPGA implementation is provided in channel 
equalization experiments, the proposed kernel obtains classification accuracy similar to the original radial kernel. In Ref. [127], a 
hardware implementation for rapid SVM based on an FPGA is proposed. The design consists of three subcircuits for performing kernel 

Table 5 
The difference among various FPGA-based implementations of RF/DT.  

Reference Part mapped Supported attribute weak learner used 

on FPGA class in hardware 

[92] Searching of optimal split numerical axes-parallel 
[103] Searching of optimal split categorical axes-parallel 
[104] Complete training numerical oblique/non-linear  

Fig. 10. Different types of hardware implementing for SVM classifiers.  
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calculations using an iterative algorithm with adders and shifters. The implemented scheme performs computations six times quicker 
than previous CORDIC circuit implementations [128] with minimal hardware resources. In Ref. [129], an embedded hardware SVM 
implementation utilizing the hardware-friendly kernel is presented. The system comprises six primary components, one of which is a 
Sum of Absolute Differences (SAD) Calculator. The implementation exhibits minimal resource utilization, occupying approximately 
167 slices in the target FPGA devices, and is, therefore, suitable for onboard image analysis and compression. Similarly, in Ref. [130], a 
SAD-based tree formation is utilized for 1-norm computation between vectors, thereby accelerating processing time. This research 
investigates the precision of support vector classification (SVC) input parameters using fixed-point arithmetic, obtaining acceptable 
regression performance with a mean square error of 0.004 or less. Using a parallel pipelined systolic array architecture [131], suggests 
a multiplier-free kernel implementation. Simple shift and add operations reduce complexity and energy consumption in hardware. 
Additionally, the study employs three distinct classifiers that consume less energy than the vector product kernel. These studies 
demonstrate the efficacy of multiplier-less approaches and hardware-friendly seeds in implementing SVM algorithms, resulting in 
enhanced performance, reduced complexity, and increased resource utilization in FPGA-based implementations. 

4.4.3.4. SVM architectures based on DPR technology. DPR is a feature offered by modern FPGA, resulting in more efficient hardware 
resource utilization [132]. DPR is used to design dynamically adaptable computing systems that can spontaneously reconfigure 
dynamically selected areas on the FPGA while other components continue to operate [13]. DPR allows the time-sharing of physical 
resources to execute multiple design modules called run-time reconfiguration (RTR) [133]. Fig. 11 illustrates the fundamental premise 
of partial reconfiguration (PR). 

The work [134] presents an SVM architecture comprised of four blocks, Memory, Kernel Computation, Accumulation, and Decision 
Making, in a modular structure employing DPR and a systolic array architecture. On the Xilinx ML 403 FPGA platform board, the 
implementation obtains a maximum speedup of 85 × over the equivalent GPP. This demonstrates the suitability of FPGAs for bio-
informatics applications employing SVM-based analysis. A similar work explores partial reconfiguration schemes for Xilinx to optimize 
power consumption [135]. The systolic array architecture efficiently manages memory, reduces complexity, and facilitates data 
transfer. After reconfiguration, the total power consumption is reduced by 3–5%, decreasing from 2.042 W to 2.021 W. Hussain et al. 
[136] continue their prior efforts [134] by designing two systolic array-based structures for various dataset sizes. In addition, they 
present two DPR architectures for the SVM classifier that achieve approximately 61 × and 49 × speedups over the corresponding GPP. 
DPR implementations reduce reconfiguration time considerably compared to non-DPR performances. In their extended work, Hussain 
et al. introduce a DPR implementation of an adaptive architecture for a multiclassifier based on SVM/KNN [88]. The design permits the 
dynamic swapping of SVM and KNN classifiers with distinct parameters. Compared to a non-DPR implementation, the multiclassifier 
DPR implementation reduces reconfiguration time by at least eightfold while requiring fewer hardware resources. As shown by these 
studies, extensive speedups, decreased power consumption, efficient memory management, and adaptable classifier configurations are 
just some of the benefits that DPR and systolic array architectures bring to FPGA-based SVM implementations. 

4.4.3.5. Structures based on a cascaded classification System. The cascaded classification architecture comprises multiple classification 
phases organized in a cascading structure, aiming to accelerate the classification process (Fig. 12). In Ref. [137], a hardware archi-
tecture for SVM cascade processing and a hardware reduction technique was proposed and implemented using a Virtex 5 FPGA. This 
method employs the multiplier-less approach, substituting shift operations for multiplication operations. The hybrid cascaded ar-
chitecture combines parallel and sequential processing, employing pipelined PEs for the primary early stages and an SVM classifier 
with a higher level of complexity. The cascade architecture is five times faster than a single parallel SVM implementation, processing 
640 × 480 images at an average rate of 70 fps. The suggested method for hardware reduction decreases custom logic resources by 43% 
and energy consumption by 20%, with a minimal loss of 0.7% in classification accuracy of 84%. 

In [138], a cascaded FPGA-based SVM classifier with a parallel structure of multipliers and a pipelined adder tree for kernel 
computations was proposed. The data path was divided into fixed-point and single-floating-point precision. A novel cascade classifier 
system was also created, leveraging the heterogeneous architecture characteristics and adopting a hardware-friendly design approach. 
The architecture featured two interconnected classifiers by integrating a primary, low-precision classifier with a higher-precision 
classifier that incurs a more significant area cost. This heterogeneous design exhibited a performance advantage of over seven 
times compared to CPU systems, surpassing the capabilities of other FPGA and GPU systems. In Ref. [139], the work was expanded to 

Fig. 11. Fundamental concept of Partial Reconfiguration [13].  
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include FPGA reconfigurability, allowing the cascade to transition between low- and high-precision classifiers. This enhancement 
helped performance even further. The proposed heterogeneous FPGA classifier optimized word lengths to accommodate the dynamic 
ranges of the dataset, thereby maximizing parallelization potential and facilitating custom circuitry. In Refs. [140,141], the previous 
work [137] is extended by incorporating a feature extraction mechanism to improve the accuracy of detection in the proposed ar-
chitecture. Focus is placed on the efficient hardware implementation of cascaded SVMs for intelligent embedded systems, specifically 
for real-time classification applications. Classifiers based on Neural Networks are incorporated into the response evaluation procedure, 
thereby reducing the number of samples evaluated before the final, highly complex classification stage and enhancing classification 
speed. Tested on a Spartan 6 FPGA platform, the system obtains an 80% detection rate while processing high-resolution images in 
real-time, with a 5 × speedup over a single parallel SVM classifier. The proposed method for reducing hardware requirements in FPGA 
effectively decreases custom-logic resources by 25% and peak power consumption by 20% compared to a standard implementation. 
This reduction is achieved with minimal impact on classification accuracy, which only decreases by a negligible 0.7%. In Ref. [142], a 
cascade SVM classifier for melanoma clinical image classification using a scalable multicore architecture on a hybrid Zynq SoC 
platform is presented. Compared to a single SVM implementation, the design utilizes 34% of the resources and consumes 2 W of power, 
resulting in lower resource utilization and energy consumption. The classifier’s high classification accuracy (97.9%) and rapid speed 
(1.8μs) make it suitable for integrating into a real-time, low-cost handheld medical scanning device to detect skin cancer. 

4.4.3.6. Developing SVMs utilizing design tools. Significantly, few researchers have utilized the most advanced software design tools, 
which facilitate the complex hardware design process and reduce development time in lieu of the conventional HDL approach. The 
most up-to-date software design and development tools that have been utilized in the reviewed papers in this section are Xilinx System 
Generator, Synopsys Signal Processing Workbench (SPW), and High-level Synthesis (HLS). In Ref. [143], the authors employ Xilinx 
System Generator, a utility provided by Xilinx, to create a parallel hardware architecture for Xilinx FPGAs. This tool enables efficient 
system modeling and automated code generation using MATLAB/Simulink, resulting in high-performance designs. Quantization is 
performed using serial and parallel schemes with fixed-point numbers. For linear classification, simulation results indicate a maximum 
frequency of 202.840 MHz, while nonlinear classification achieves an error rate of 1.33% and an accuracy of 98.67%. The processing 
time for linear SVM simulation is 1.4 ms and 0.27 ms for nonlinear SVM simulation. The FPGA-based system exhibits reduced 
computation time for both classifiers compared to the MATLAB implementation. 

A DSP slice-based processor is designed for ultrasound applications using the Xilinx System Generator, according to Ref. [143]. In 
comparison to software implementation, the results demonstrate high accuracy (93.6%) and a significant reduction in processing time. 
The results also showed reasonable hardware resource utilization (69.09% of DSP Slices, 26.37% of LUTs, and 75.71% of BRAMs were 
utilized). Table 6 demonstrates that the System Generator is also used in Ref. [144], where it is used to design a hardware architecture 
of linear SVM for three-class facial expression classification, with a confirmed accuracy of 97.87% at a frequency of 132.7 MHz (using a 
combination of parallel and series systems). Using Synopsys Signal Processing Workbench (SPW), as described in Ref. [145], is another 
method. This software utilizes a model-based design methodology and permits the description of highly parallel systems. The pro-
cessing speed of the hardware implementation was roughly 2.53 × that of the software implementation, despite a minor loss of ac-
curacy. In Ref. [142], a comparable approach for melanoma detection was presented, which involved the use of BRAM interfaces for 
data transfer instead of streaming data via the stream interface/bus with the Direct Memory Access (DMA) IP, as described in 
Ref. [146]. Although additional resources were utilized in comparison to Ref. [146] and the amount of power consumed increased 
slightly, the area and power values decreased in comparison to other applicable implementations. The most noteworthy aspect of this 
work is that a significant acceleration factor of 32 is achieved in comparison to related software implementations, with a 97.92% 
accuracy and a processing time of 11.46 μs (2865 clock cycles) at 250 MHz frequency, while the proposed system demonstrated 
efficient utilization of hardware resources, and consumed a total power of only 2 W in the Zynq implementation. 

On the other hand, HLS allows engineers to develop and implement FPGA applications using C, C++, SystemC, and MATLAB 
without prior hardware architecture expertise [147]. A systematic two-level strategy and prototype architecture are used to implement 
an HLS-based SVM IP for electrocardiogram (ECG) analysis and arrhythmia diagnosis [148]. The suggested method optimizes the code 
structure utilizing data and instruction-level parallelism then uses HLS directives to investigate various architectural choices. The 
findings showed a maximum 98.78% execution latency gain over the default Vivado-HLS optimization of the original SVM algorithm. 
According to the authors, the optimized SVM accelerator approach implemented on a Zynq programmable SoC outperforms pure 
software implementations on different single- or dual-core target platforms. The proposed method achieves speedups ranging from 10 
× to 78 × , as claimed by the authors. The Xilinx Vivado HLS tool implements a low-cost SVM IP [142,146,149][–][152] on a 
state-of-the-art FPGA platform, ”Zynq SoC,” with a hybrid architecture integrating a processor and FPGA in a single device (see 

Fig. 12. Cascaded classifier scheme from [137].  
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Table 6 
A summary of different architectures for SVMs.  

Reference Hardware implementation SVM type Kernel FPGA platform Application 

[110] Parallel pipelined Binary RBF Polynomial Sigmoid Xilinx Virtex-6 – 
[111] Parallel pipelined Binary Linear RBF Polynomial Xilinx ML505 Pedestrian detection 
[113] Parallel pipelined Binary RBF Polynomial Xilinx Virtex-7 UCI datasets 
[114] Parallel pipelined Multiclass Linear Xilinx ML510 (Virtex-5 FXT) Facial expression classification 
[115] Parallel pipelined Binary RBF – – 
[116,117] Parallel pipelined Multiclass Linear Altera Stratix-IV Colorectal cancer detection 
[119] Parallel pipelined Multiclass Linear Sigmoid Xilinx Virtex-5 Language Recognition 
[120,121] Parallel pipelined Binary Gaussian Xilinx Virtex-5/Xilinx Spartan 6 Skin classification 
[123] Systolic array Binary RBF Polynomial Xilinx ML505 Object detection 
[125] Multiplier-less Multiclass Hardware-friendly Cyclone II (EP2C20) Image recognition 
[126] Multiplier-less Multiclass Digital kernel – UCI datasets 
[127] Multiplier-less Binary Hardware-friendly – – 
[130] Multiplier-less Binary Hardware-friendly Xilinx Virtex-5/Spartan-3E Satellite onboard 
[131] Multiplier-less/Systolic array Binary/Multiclass Linear polynomial Xilinx Virtex-7 Fisher’s iris dataset 
[88,134,136] DPR Binary Linear Xilinx ML403 biomedical data classification 
[137,155] Cascaded classification Binary Linear polynomial Xilinx ML505 Face detection 
[138,139] Cascaded classification Binary Gaussian polynomial sigmoid Altera’s Stratix III MNIST dataset 
[140] Cascaded classification Binary Linear polynomial Xilinx Spartan-6 Face detection 
[141] Cascaded classification Binary Linear polynomial Xilinx Spartan-6 Face/pedestrian detection 
[142,152] Cascaded classification/Development tool-based Binary Linear Xilinx Zynq-7 Melanoma detection 
[143] Development tool-based Multiclass Linear Gaussian Xilinx Virtex-4 Persian handwritten digits dataset 
[156] Development tool-based Binary RBF Xilinx Zynq-7000 Ultrasonic flaw detection 
[144] Development tool-based Multiclass Linear Xilinx Virtex-5 Female facial expression classification 
[145] Development tool-based Multiclass RBF Xilinx Virtex-II Multispeaker phoneme recognition 
[146,149–151] Development tool-based Binary Linear Xilinx Zynq-7ZC702 Melanoma detection 
[148] Development tool-based Binary RBF Zedboard Zynq ECG-based arrhythmia detection 
[153] Development tool-based Binary RBF Zynq-7 ZC706 ECG-based arrhythmia detection 
[154] Development tool-based Multiclass Linear Xilinx ML605 MNIST and CIFAR-10 datasets  
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Table 6). The experimental results met embedded system limits while retaining classification accuracy rates. In another work, Vivado 
HLS [153] uses an optimized approximation SVM accelerator to identify arrhythmia from ECG signals, like [148]. The suggested SVM 
coordinates two approximation computing systems with HLS tool tweaking knobs to boost efficiency. The approximation HLS-SVM 
classifier detected arrhythmia from ECG signals with 15 × acceleration and 96.7% accuracy. HLS is used to design an 
energy-efficient embedded binarized SVM (eBSVM) architecture with binarized inputs and weights [154]. The results revealed 
reduced power consumption (3.6× greater energy efficiency) and execution time (45 × speed improvement) than CPU and GPU 
implementations, with a 1.6 × accuracy loss. A summary of all discussed SVM architectures is presented in Table 6 to have a 
comprehensive comparison. 

4.4.4. Clustering algorithms 
Using clustering algorithms, unlabeled data can be classified into multiple categories in polynomial time. Typical clustering al-

gorithm implementations in biomedical research [157] include gene expression data analysis, genomic sequence analysis, MRI image 
analysis, and document mining. FPGAs enable parallel processing, which permits the acceleration of clustering computations and the 
reduction of overall execution time. This parallelism is especially advantageous when working with large datasets or real-time clus-
tering applications. However, implementing clustering algorithms on FPGAs presents its own set of obstacles. Designing effective and 
scalable hardware architectures for sophisticated clustering algorithms requires both clustering algorithm and FPGA design expertise. 
In addition, it is essential to optimize hardware resources and memory usage while maintaining a great degree of accuracy. Processing 
of high-resolution medical images requires a great deal of memory and computation. FPGA parallel arrays can speed up image pro-
cessing. Thus, references [158,159] introduce a high-throughput data clustering algorithm with a two-dimensional organization, 
providing fast performance for general-purpose clustering tasks. The algorithm presented in Ref. [158] achieves linear processing time 
based on the number of pixels, ensuring image occupancy and size stability. The implementation on xc5vlx300 FPGAs showed scal-
ability of hardware size and clock speed with the grid size. The program achieved a processing time of 6 ns and utilized 1% logic for an 
8 × 8 grid and 20 ns and 21% logic for a 120 × 32 grid. The clock speed reached 550 MHz. A comparable approach to Ref. [158] is 
given for FPGA-implemented pixel detectors in Ref. [159]. The program clusters data and analyzes each cluster to extract information. 
One xc5vlx155 FPGA implements the algorithm. 60% of its logic processes one S-Link input. An xc5vlx330 uses 15% area, while an 
xc5vlx155 uses 30%. Using Xilinx Spartan 6 LX150T, a multi-core 2D-clustering technique for real-time image processing is reported in 
Ref. [160]. The algorithm reduces FPGA resource utilization by using a moving window strategy. It works with the ATLAS Fast Tracker 
Data Formatter in various clustering applications. Only 2% of FPGA Slice LUTs are used to reach over 80 MHz. 

The results indicated that the implementation would occupy approximately 20% of FPGA resources. In Ref. [161], a model-based 
clustering algorithm analysis and FPGA implementation of neural electrical signals are presented to address the problem of classifying 
neuronal action potentials. However, there are still numerous flaws due to interference and noise, among other constraints. For 
instance, the Wave-clus algorithm’s classification action potential increases the error source in the first phase. Although a novel FPGA 
implementation technique for the clustering algorithm has been proposed, neither parallelism nor the greedy method has been 
employed in this study. Incremental Clustering of Evolving Data (ICED) is an unsupervised clustering method [162] used for sensor 
data that changes over time. This technique runs 39 times faster on a Xilinx Virtex 5 than on a 3 GHz Intel Xeon processor in C. Table 7 
summarizes the implementations reviewed in this section. 

4.4.5. Mean-shift clustering 
Introduced by Fukunaga and Hostetler [163], the Mean-Shift Clustering algorithm provides a valuable method for clustering data 

based on their natural distribution, making it a significant unsupervised learning algorithm. Mean-shift clustering, unlike other 
methods, does not presume a particular shape for the issuance or limit the number of clusters, allowing for a flexible and adaptable 
approach. Due to its robustness and minimal parameterization requirements, this algorithm has found widespread use in real-time 
image processing applications. With the advent of FPGAs, it is possible to investigate hardware implementations of the Mean-Shift 
Clustering algorithm, utilizing the parallel processing capabilities of FPGAs to accomplish accelerated and efficient clustering tasks. 
This integration of Mean-Shift Clustering and FPGA technology can improve real-time performance and enable applications in domains 
such as object tracking, image segmentation, and anomaly detection. This section aims to review the implementation of the Mean-Shift 
Clustering algorithms on FPGAs and the possibility of leveraging hardware acceleration for faster and more efficient clustering in 
real-time image processing systems. The paper [164] proposes a multiprocessor architecture utilizing a parallel processing model of 
the mean shift clustering algorithm for real-time applications on an FPGA (Spartan 6 XC6SLX75T). Multiple homogeneous PEs are 

Table 7 
þþþ A summary of different architectures for Clustering Algorithms.  

Clustering 
Algorithm/Architecture 

Reference Proposed FPGA Application 

2-D fast general-purpose algorithm [158] Xilinx xc5vlx300/xv5vlx330 Real-Time Image Processing 
2-D fast general-purpose 

algorithm 
[159] Xilinx xc5vlx155/xv5vlx330 Pixel detectors 

multi-core 
2D-clustering 

[160] Xilinx Spartan 6 LX150T real-time image processing 

model-based clustering algorithm [161] – neural electrical signal classification 
clustering algorithm (Incremental Clustering of Evolving Data) [162] RTAX2000 (Xilinx Virtex 5) Pulse Deinterleaving  
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interconnected via a pipeline in this design. With 10.31% of total device slice registers and 33% of total slice LUTs utilized, the 
evaluation of the algorithm on 99 images revealed that only a tiny portion of FPGA resources were employed. With and without 
fractional bits, clustering rates ranged from 351 to 8772 ps in the experimental data. The proposed architecture obtained impressive 
speedup values, ranging from a minimum of 128,735 with seven fractional bits and a single PE to a maximum of 2,615,611 with no 
fractional bits and 16 PEs. The parallel architecture’s scalability permits efficient use of available resources and accommodates more 
PEs. This architecture outperformed other mean shift clustering implementations regarding area and resource consumption, optimum 
speedup, and throughput (in fps) [165,166]. In Ref. [165], a scalable architecture is assessed with 32-bit fixed-point pipelines on a 
PROCStar III board containing four Stratix III E260 FPGAs. The system requires additional FPGAs to accelerate the processing of a 464 
by 332 8-bit grayscale image. As an improvement, reference [166] implements the mean shift filter on an FPGA for color image 
segmentation. This system ran at 100 fps for 768 × 512 pixels photos with a 15 × 15 filter and 50 for 31 × 31. The Xilinx XC4VLX160 
on the RC20004 FPGA board implemented the design. The 31 × 31 filter consumed 376 BRAMs in the suggested implementation. 
Similar to Ref. [166], the paper [167] describes a color image segmentation technique on an FPGA using the mean shift algorithm. 

The paper highlights the feasibility of achieving real-time processing by adopting a relaxed data management approach and 
enabling pipeline data processing. The implementation requires approximately 400 BRAMs, and the efficacy of 768 × 512 pixel images 
was sufficient for real-time applications. Despite the satisfactory results of the mean-shift method in image segmentation, its 
computational challenges have hindered its widespread adoption in image processing. The method’s long runtimes have limited its 
applicability to real-time applications, particularly for high-resolution images exceeding VGA (640 × 480). Hence, Craciun et al. [168] 
introduce a scalable architecture that accelerates the Gaussian mean-shift algorithm by clustering multiple pixels in parallel using 
dedicated hardware pipelines. This system is ideal for embedded applications due to its accelerated performance and low power 
consumption. 

In comparison to the most recent GPU implementations, this scheme achieved comparable performance while consuming less 
energy. The segmentation results were compared to a floating-point C code baseline to ensure that the fixed-point approximations did 
not result in any errors. In Ref. [169], a generalized Laplacian of Gaussian (LoG) filter is utilized for real-time histopathology appli-
cations, specifically for detecting cell nuclei. The approach involves using local maxima as seed points for cell centers and employing a 
mean-shift clustering algorithm to combine multiple detections. The design is implemented on an FPGA development board, resulting 
in a modest acceleration compared to a software implementation on a high-end computer. The FPGA design achieves a 34.5% per-
formance boost over a standard CPU, mainly due to the lower clock rate of the FPGA board. Further improvements can be achieved by 
leveraging data and task parallelism in each sub-module. By employing parallelized pipeline design, reference [170] proposes a novel 
method that is more productive and less time-consuming. The proposed architecture includes eight pipelines and scales up to 128 on a 
single FPGA. One FPGA can accommodate a maximum of 128 pipelines, allowing the probability density function (PDF) gradient to be 
computed simultaneously at 128 separate locations. The performance of this fixed-point architecture is segmented into two grayscale 
images with varying resolutions and complexities, and the results are contrasted with the implementation of floating-point data. The 
misclassification errors for two images demonstrate that up to 10% of pixels in hardware converge to a distinct cluster. Xilinx is used to 
implement the hardware, and the FPGA provides satisfactory results compared to the previous results. 

A parallelized pipeline design is proposed in Ref. [170], which offers increased productivity and reduced processing time. The 
architecture contains multiple pipelines, which can scale to 128 pipelines on a single FPGA. This allows for the simultaneous 
computation of the probability density function (PDF) the gradient at multiple locations. The efficacy of the fixed-point architecture is 
analyzed using grayscale images of varying resolutions and complexities. Compared to implementations utilizing floating-point 
numbers, the results demonstrate that the hardware obtains satisfactory performance with up to 10% of pixels converging into 
distinct clusters. The commission is carried out with Xilinx tools, and the FPGA-based approach produces favorable results compared to 
earlier findings. A new mean-shift architecture for scalable multiprocessor implementation is proposed in Ref. [171]. The proposed 
model employs multiple processors operating in parallel on independent data to accelerate algorithm convergence. The design can be 
implemented with adequate error margins using fixed-point arithmetic. 

4.4.6. K-means clustering 
The simplicity and effectiveness of the K-means algorithm make it a popular choice in biomedical data analysis. Several techniques 

have been employed to improve its execution performance or reduce the computation required. However, the oldest FPGA imple-
mentations of K-means date back about two decades [172,173]. Since then, FPGAs have become increasingly capable, datasets have 
significantly improved, and unsupervised and supervised ML algorithms have become a popular domain to accelerate. In this section, 
we explore previous works achieved from 2000 to 2023 regarding the FPGA implementation of the K-means clustering algorithm, 
focusing on the parallel implementation of FPGAs. Estlick et al. [173] investigated two modifications to the mean-shift clustering 
algorithm for enhanced parallelism: alternative distance metrics and reduced input vector word breadth. Regarding the complexity of 
implementation, the experimental analysis revealed that the Manhattan distance is the optimal metric. It was discovered that the word 
breadth of input data could be reduced without affecting the quality of clustering when employing the Manhattan distance metric 
without word width reduction. The implementation utilized a pipeline architecture for distance computation, minimum distance 
determination, and cluster association. The FPGA-based performance deployed on the Xilinx Virtex platform with a clock rate of 50 
MHz was 200 times faster than software execution on a 500 MHz Pentium III computer. 

In [174], a k-means clustering system is presented for hyperspectral image segmentation implemented on the Altera Excalibur 
platform, comprised of an Altera Apex FPGA and an ARM CPU. The system was comprised of two implementations, one with an ARM 
CPU and the other with an NIOS soft-core CPU. The final implementation featured 32 PEs and direct memory access (DMA) for efficient 
data transmission in a hardware unit for distance computation. Compared to a Pentium III computer with a clock speed of 1 GHz, the 
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system operating at 33 MHz was 11.8 × faster. A real-time k-means clustering system for large-size color images and many clusters is 
presented in Ref. [175]. The system reduces computational overhead by utilizing dynamically generated kd-trees [176] on an FPGA. 
The system is structured as a three-stage pipeline with phases for kd-tree construction, square-of-distance computation, and cluster 
center determination. The system achieves real-time performance of over 30 fps for 512 × 512 and 640x480 images and 20 to 30 fps for 
768 × 512 images when implemented on the Xilinx Virtex-II platform with a clock rate of 66 MHz. Covington et al. [177] implemented 
k-means clustering using the Cosine Theta Distance Metric for document clustering. The system’s three modules are Distance 
computation, comparison, and cluster center computation. On the Xilinx Virtex-E platform, the system operates at a clock rate of 80 
MHz, obtaining a 26 × speed increase compared to a 3.6 GHz Xeon CPU. The Xilinx Virtex-4 platform enables the K-means algorithm to 
run at 250 MHz, achieving a 328 × speed increase. Cluster centers are stored in external memory connected to the FPGA. The system’s 
performance is evaluated by assigning input vectors to the closest cluster centers. 

The K-means clustering algorithm for image processing was implemented by Wang and Leeser [178] by adding a hardware 
floating-point division unit to the hardware implementation. Based on [173], they developed a cluster association structure, accu-
mulators for pixel summation, and counters for monitoring cluster sizes. Calculating the cluster centers by dividing the accumulator 
values by the corresponding counters The system was deployed on the Xilinx Virtex-II platform, and three implementations were 
evaluated: software-only, FPGA with CPU-based division, and FPGA with FPGA-based division. For 50 and 1000 iterations of the 
algorithm, respectively, speedups of 11 × and 174 × were attained compared to the fully software implementation. There were no 
substantial differences in execution time between FPGA implementations that utilized CPU or FPGA division. 

Some recent attempts at K-means implementation using FPGAs are discussed as follows: 
Hussain et al. [179] introduced an FPGA implementation of parameterized K-means clustering for microarray data analysis. They 

parallelized the accumulation kernel based on the number of clusters and dimensions and contrasted the performance of FPGA, CPU, 
and GPU implementations. The entire algorithm was implemented in hardware using data-range-specific fixed-point arithmetic. The 
system was implemented on the Xilinx Virtex-4 platform, obtaining speedups of 10.33 × and 51.73 × for single-core and five-core 
implementations, respectively, when compared to a Core 2 Duo computer operating at 3 GHz. In addition, they designed a highly 
parameterized FPGA core for K-means clustering [180], which outperformed GPP and GPU implementations in terms of energy ef-
ficiency and processing performance. Their implementation was 615 × and 31 × more energy efficient than GPP and GPU, 

Table 8 
A summary of FPGA-based implementation of the k-means clustering algorithm for biomedical applications in recent years.  

Reference Architecture Maximum speed-up compared to software 
implementation 

Target platform Application 

[173] Parallel pipelined 200 × Xilinx Virtex Processing multi-spectral 
images 

[174] PEs in parallel 11.8 × Altera Excalibur Segmenting hyperspectral 
images 

[175] Parallel pipelined using kd- 
trees 

(Not specified) Xilinx Virtex-II color image processing 

[177] Modular structure 26 ×
328 ×

Xilinx Virtex-E Xilinx Virtex-4 document clustering 

[178] Floating-Point Divide 174 × Xilinx Virtex-II Multispectral image 
processing 

[179] Multi-core/parallel 51.7 × Xilinx Virtex-4 Bioinformatics/Microarray 
data 

[180] Highly parameterized FPGA 8.4 × Xilinx ML403 Bioinformatics/Microarray 
data 

[181] Multi-core/Parallel 
pipelined 

3.2 × Xilinx Virtex-4 (not specified) 

[182] Parallel implementation 9 × Xilinx Virtex-II Data Clustering 
[183] Parallel pipelined 16.32 × Altera Stratix III E110 Object detection 
[184] Parallel pipelined (Not specified) Xilinx Virtex 6 real-time data mining 
[185] Parallel pipelined using kd- 

trees 
(Not specified) Xilinx Virtex 7 Image processing 

[186] Parallel using HW/SW co- 
design 

118 × Altera stratix III E110 Multimedia applications 

[187] Parallel pipelined 20.5 × Xilinx ZedBoard (not specified) 
[188] Heterogenous/pipelined 3.8 × Intel QuickAssist (not specified) 
[189] Parallel using 

Altera SDK for OpenCL 
21 × Stratix V A7 Multiple applications 

[190] Multi-core/Parallel 10 × Xilinx Zynq-7000 Big data analysis 
[191] PEs in parallel 368 × (not specified) Big data analysis 
[192] Parametrizable/parallel (Not specified) Xilinx Zynq7020 Data mining 
[193] Heterogeneous/parallel 4 × Xilinx VC707 evaluation boards 

(EVBs) 
Big data analysis 

[194] Parametrizable/parallel (Not specified) Xilinx Artix7 Data mining 
[195] Parallel pipelined/ 

Heterogeneous 
12.7 × /2.4 × Intel Xeon + Arria 10 Data mining 

[196] Parallel implementation (Not specified) Virtex-6 Big data analysis  
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respectively. However, their work requires further optimization to utilize FPGA resources more efficiently. Nagarajan et al. [181] 
designed hardware for PDF approximation but modified it to implement correlation computation and k-means clustering. The k-means 
clustering hardware consisted of three stages.  

• Calculation of the square of the distance  
• Calculation of the minimal distance  
• Update of the cluster center 

The second and third stages resemble Saegusa and Maruyama’s [175] implementation. The design was implemented on the Xilinx 
Virtex-4 platform, which resulted in a 3.2 × performance increase over a 3.2 GHz Xeon computer. The designers attributed the minor 
acceleration to the CPU’s and FPGA’s limited communication bandwidth. Singaraju and Chandy [182] designed an FPGA-based 
network switch architecture for k-means clustering implementation. Their system processed data as it traversed the network as 
Ethernet packets. All aspects of the algorithm were implemented on the FPGA using floating-point arithmetic for computations. They 
parallelized distance computation and minimum distance retrieval to enable cluster parallelism. Furthermore, the system supported 
data parallelism across multiple FPGAs, with each FPGA managing distinct data points. On the Xilinx Virtex-II platform, a single FPGA 
outperformed an Opteron 1.8 GHz computer by a maximum of 10 × . Comparing multiple FPGAs to a parallel software implementation 
with an equivalent number of nodes, the speedups reached up to 9 × . Several works have also been accomplished to implement 
k-means algorithms in the last decade, a summary of which is presented in Table 8. This section’s remainder provides a summary of 
these publications. 

In [183], a hardware solution for a K-means-based multi-prototype learning system’s high computational demand is proposed. 
Compared to software, GPU, previous FPGA, and analog circuit implementations, the system’s software-hardware collaboration results 
in a significantly quicker recognition rate. The co-processor design requires a portion of the FPGA’s resources to achieve a 97.91% 
accuracy rate with rapid learning and classification speeds. On an Altera Stratix III E110 FPGA device, 12.9% of logic elements and 
58% of block memory bits are utilized. Reference [184] describes a configurable FPGA architecture for high-speed K-means clustering 
algorithm implementation in real-time applications. The architecture uses pipelining and parallelism to achieve a maximal clock 
frequency of 400 MHz and a continuous throughput of 1 sample data per clock cycle, regardless of user inputs. Using tree-based data 
structures, reference [185] presents an FPGA implementation of a computationally efficient filtering algorithm for K-means clustering. 
The algorithm employs pipelining and parallelism with on-chip memory banks, boosting throughput, decreased resource consumption, 
and a 200 MHz clock frequency. In Ref. [186], a hardware/software co-designed method for K-means clustering that emphasizes 
nearest-neighbor searching is presented. The hardware architecture is optimized for low-dimensional feature vectors, increasing 
performance and adaptability. The implementation achieved 118 × speedup in comparison to software implementation. Work [192] 
proposes a highly parameterizable architecture for the Lloyds K-Means clustering algorithm, analyzing the effects of different pa-
rameters on cost, frequency, and performance. Similar research is conducted in Ref. [194], despite both papers presenting only 
simulated results without experimental validation. In Ref. [193], the K-means clustering algorithm is described for storing big datasets 
on a Hadoop cluster using FPGA-based hardware accelerators. The experimental results show that compared to a Hadoop cluster 
without FPGA-based hardware accelerators, this system can achieve a speedup of 4 × while clustering 125 million three-dimensional 
input datasets. 

A highly efficient implementation of the k-means algorithm using a multi-core HW/SW co-design architecture is presented in 
Ref. [195]. A two-layer filtering algorithm enables parallel processing of binary kd-tree structures on each processing core of the 
ZYNQ, which is used to reduce performance time. Using this multi-core FPGA-based architecture on a ZCU102 evaluation board 
outfitted with a Zynq-7000, experimental results demonstrate a significant speedup of 330 × in comparison to a conventional 
software-only solution. KPynq was recently introduced in Ref. [197] as an FPGA-based architecture of K-means clustering for man-
aging large-size, high-dimensional datasets. Compared to CPU-based implementations, it demonstrates superior performance, 
attaining speedups of up to 4.2 × and energy efficiency gains of up to 218 × . Another work [198] proposes an FPGA-based method for 
hardware acceleration of image processing with an 8 × speedup over software implementation. On the Intel Xeon + FPGA platform, 
software hardware acceleration of Kmeans clustering is attained [199], demonstrating significant performance enhancements over 
CPU threads or FPGA alone. In addition, a parallel implementation of the K-means algorithm on an FPGA is presented [196], 
demonstrating high throughput and achieving a speedup of about 15573 × compared to a partial serial implementation. These studies 
demonstrate the efficacy of FPGA-based solutions for accelerating K-means clustering and image processing operations. In Ref. [200], 
an FPGA-based High-Level Synthesis method is proposed for classifying cutaneous tumors using hyperspectral images (HSI). The 
algorithm includes preprocessing, K-means clustering, and SVM classification. Results show that the Virtex UltraScale + FPGA out-
performs GPU models regarding power consumption and energy efficiency. While the FPGA architecture is not yet real-time, it 
demonstrates rapid pixel classification with lower power consumption than GPU-based solutions. This research highlights the potential 
of FPGAs for efficient and low-power classification of hyperspectral images in skin tumor analysis [201]. 

The following characteristics are shared by most implementations and can be highlighted in this section: The design process for all 
implementations begins with algorithm analysis. The clock rate of an FPGA is typically one to two orders of magnitude slower than that 
of a CPU, and this difference is compensated for by utilizing available parallelism. FPGAs can simultaneously perform several thousand 
operations depending on the type of operation and its implementation. Typically, pipelined implementations result in a quicker clock 
rate and execution time. Fixed-point arithmetic is often used because it is less complicated and uses fewer FPGA resources than 
floating-point arithmetic. Only some implementations execute the entire algorithm on hardware. 

In general, implementations are divided into software and hardware components, and systems fully implemented in FPGA often 
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utilize a softcore CPU to run the main program. Earlier performances of FPGA rarely used multiplication due to high resource costs, 
whereas recent FPGA families utilized by DSP applications contain highspeed hardware multipliers. 

4.5. Mixture models 

The Gaussian mixture model, the multivariate Gaussian mixture model, and the categorical mixture model are all subsets of the 
broader category of mixture models. Among these algorithms, the Gaussian mixture model (GMM) is widely utilized for biomedical 
ends such as pattern recognition (for example, to classify various limb motions) [202] and fuzzy image segmentation [203]. Imple-
menting Gaussian Mixture Models on FPGA has the potential for high performance, real-time processing, and customizability. Utilizing 
parallelism and hardware acceleration can improve computational efficiency. However, implementing GMM on FPGAs presents 
additional obstacles. GMM algorithms involve complex computations, such as matrix operations and iterative optimization, neces-
sitating cautious resource management and design on FPGA platforms. Balancing the utilization of FPGA resources, including memory 
and computational units, is crucial to ensuring efficient and effective GMM implementation. 

In the following, this section overviews the related literature regarding FPGA-based hardware implementation of GMM algorithms. 
Reference [204] describes a gas identification method using class conditional density estimation via GMMs that can rapidly identify 

gases with an accuracy of greater than 96%. In another study, a hardware implementation of a pattern recognition system based on a 
GMM classifier is presented in Ref. [205]. To reduce hardware complexity, the implementation employs Distributed Arithmetic (DA) 
and a novel exponential calculation circuit. With acceptable complexity, the GMM classifier shows superior classification performance 
compared to the KNN and Multilayer Perceptron (MLP) algorithms. Using DA, the hardware implementation obtained remarkable 
speeds of 5.402 × 106 classifications/second at a maximum frequency of 27.010 MHz and 5.318 × 106 classifications/second at a 
maximum frequency of 26.590 MHz. In contrast, the software implementation on a 2.6 GHz Pentium computer achieved a maximal 
speed of 0.067 × 106 classifications per second. The findings demonstrate the significant speed improvements of the hardware-based 
GMM implementation, which outperforms software-based methods by roughly two orders of magnitude. 

In many applications, it is essential to estimate the parameters of a generalized linear model (GMM) from data before employing it. 
This computationally intensive operation for Gaussian Mixture Models can be accomplished by the Expectation-Maximization algo-
rithm (EM-GMM). In Ref. [206], a pipeline-friendly Expectation-Maximization algorithm for Gaussian Mixture Models (EM-GMM) is 
proposed, designed for conversion into a fully-pipelined hardware architecture. Guo et al. implemented a fixed-point arithmetic 
evaluation unit for the Gaussian probability density function on an FPGA, outperforming CPU and GPU-based solutions. The FPGA 
implementation achieved a 517 × speedup over the CPU-based solution and a 28 × speedup over the GPU-based system, with a steady 
throughput of around 1.5 × 108 instances per second. 

Similarly, in Ref. [207], a new design for the EM-GMM algorithm is introduced, tailored explicitly for reconfigurable platforms. The 
authors developed a fully pipelined EM-GMM algorithm and a customized Gaussian PDF evaluation unit. The FPGA-based solution 
demonstrated significant speedups, with a maximum 207 × speedup over a CPU solution and a 96 × speedup over a GPU-based so-
lution. The energy efficiency of their answers on the Virtex-6 and StratixV FPGA platforms surpassed the CPU-based platform by 301 
and 635 times, respectively. 

Reference [208] introduced a hardware/software scheme for face recognition and verification using GMM-parts-based topology 
modeling. Their FPGA-based system outperformed a software implementation on a 3.3 GHz Core i3 processor by a speedup of 
approximately 5.1 × . Using an LX15 Virtex-5 FPGA operating at a maximum frequency of 142.65 MHz, the system obtained an 
identification accuracy of approximately 96.8%. Incorporating an exponential calculation circuit design, the proposed method reduced 
complexity and provided a tradeoff between effectiveness and complexity. reference [209] provides a hardware implementation of the 
GMM algorithm for real-time video segmentation compatible with OpenCV. The circuit reaches processing speeds of at least 45 fps in 
1080p format on Virtex 6 and Stratix IV FPGAs by employing optimized equation formulation and ROM compression methods. The 
implemented circuit operates between 35.30 MHz and 98.12 MHz and utilizes less than 5% of FPGA resources while processing over 43 
HD fps. 

Similarly, Genovese and Napoli [210] created a hardware implementation of the GMM algorithm for real-time background 
detection in HD video sequences using OpenCV. Utilizing an innovative formulation of GMM equations, their circuit accomplished a 
processing speed of 91 HD frames per second on a Virtex 6 vlx75t FPGA while using only 3% of the FPGA’s logic resources. The 
implementation exhibited increased speed and logic utilization compared to previous circuits, and it demonstrated the potential for 
low-power implementation through voltage scaling techniques. Experimental demonstrations on online video systems utilizing the 
Cyclone II EP2C35 FPGA validated the efficacy of the proposed background identification circuit. The GMM-based algorithm for 
gamma/neutron pulse shape discrimination (PSD) was successfully implemented on a quad-core Mac Pro workstation and a Zynq 7010 
SoC in Ref. [211]. The performance of the algorithm on these platforms was compared to other standard techniques in PSD. Despite 
approximations and the use of FPGA parallelism, the implemented system did not experience a significant loss of accuracy. The design 
latency was 1.9 μs, which was faster than a CPU-based implementation. The system utilized 72% of DSP, 13% of FFs, 11% of BRAM, 
and 63% of LUTs. Recently, a GMM-MRCoHOG algorithm implementation utilizing an FPGA for image processing applications was 
proposed [212]. The computation of angles in 36 directions and a mixed two-dimensional Gaussian distribution slowed processing 
speeds and presented difficulties for hardware implementation. However, the authors effectively optimized the algorithm, resulting in 
a 0.122-ms processing time reduction compared to the conventional approach. Compared to the conventional software algorithm, the 
optimized FPGA implementation obtained a processing time reduction of 0.148 ms and In summaryedup. 

To sum up, employing the GMM algorithm on an FPGA provides numerous benefits for a variety of applications. Implementations of 
GMM based on FPGA have demonstrated significant enhancements in computational speed, energy efficiency, and hardware resource 
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utilization over software-based approaches. FPGA implementations have achieved considerable speedups and reduced processing 
times through optimizations such as pipeline-friendly designs, distributed arithmetic, and customized circuits, making them suitable 
for real-time and high-performance computing tasks. Overall, FPGA-based implementations of the GMM algorithm offer a promising 
solution for improving computational efficiency and enabling advanced applications in disciplines including image processing. 

4.6. Genetic algorithm 

A genetic algorithm (GA) is a search heuristic inspired by Charles Darwin’s theory of natural evolution that belongs to the 
evolutionary algorithm (EA) class. The algorithm resembles the process of natural selection, in which the most fit organisms are chosen 
for reproduction to produce the next generation. GAs are used to address numerous optimization problems in science and engineering, 
employing a heuristic approach that relies primarily on random numbers to determine an approximation of the optimal solution. 
Countless medical specialties stand to benefit from the application of the GA; a review of them is discussed in Ref. [213]. This section 
reviews the previous FPGA-based GA and PGA (parallel genetic algorithm) systems. It then analyses their limitations: low-level 
programmability and lack of architectural flexibility. 

Increasing demand for high-performance gas and high flexibility to adjust parameters caused researchers to investigate using 
hardware platforms such as microprocessors, FPGAs, and GPUs to accelerate the EAs. Microprocessors can provide a flexible platform 
for GA implementation. Goldberg introduced a Simple GA (SGA) system as a basic template for further researchers [214]. Multiple GA 
tools exist based on SGA, including GALOPPS, GALib [215], GA toolbox in Matlab, and Genetic Algorithm Utility Library (GAUL). On 
the other hand, FPGAs are one of the most promising platforms for enhancing the efficacy of GAs. Existing FPGA-based GA systems are 
efficient for a variety of applications [216–221]. In 1995, the first Genetic Algorithm (HGA) based on hardware was introduced. Scott 
et al. [220] designed the system based on a typical software GA using the VHDL programming language, and they separated the 
software GA’s process into several hardware modules. The proposed HGA system reads the parameters, including population size and 
operator rates, from a shared memory module through a memory interface. 

Furthermore, the procedure is controlled by the status data kept within the memory module. As these modules are not fully 
pipelined, they only read new inputs after the prior inputs’ operations have been completed. Only selection modules are parallel. 
However, this system reduced the execution time by 96% compared to a software-based GA before the advent of enhanced HGA with 
parallelism and pipeline approach [219,222]. Hardware-based Parallel GA Systems: There are parallel GA systems besides a significant 
number of conventional FPGA-based GA systems. FPGA-based master-slave GAs and distributed genetic algorithms (DGAs) are 
introduced in Refs. [[[222–226]]], while FPGA-based compact genetic algorithms (CGAs) are proposed in Refs. [227,228]. There seem 
to be more Master-slave GAs [224] and DGAs as they are more accessible for FPGA place and route due to fewer connections between 
their GA kernels. The popular topology architectures in hardware-based parallel GA include chain, ring, grid, and island, as illustrated 
in Fig. 13 [222–228]. Also, Table 9 represents some examples of different topology architectures of the genetic algorithm. As depicted 
in Fig. 13, there is no connection between parallel GAs in the Island architecture, and GA instances connect to their neighbors in the 
Chain structure. Chain connection added to the head GA instance and connected to the tail GA instance forms Ring architecture. A GA 
instance combines to its four neighbors to create a Grid topology. 

Ultimately, GA instances connect in a cube to form a Cube architecture. The specific choice of topology in FPGA-based hardware 

Fig. 13. Popular topology architectures in hardware-based parallel GA [222–228]: (a) Island, (b) Chain, (c) Ring, (d) Grid, and (e) Cube.  
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acceleration depends on problem characteristics, communication requirements, and resource constraints. FPGA’s parallel processing 
capabilities and capacity to manage large-scale data make it well-suited for implementing these similar GA topologies, enabling 
quicker and more efficient evolutionary optimization. 

Below, we will summarize the current tasks completed on implementing GA on FPGAs. 
Kamimura and Kanasugi [226] designed a DGA processor using VHDL. Fig. 14a depicts the system’s architecture, which consists of 

a single migration unit and four GA instances. Their scheme is implemented as three numeric functions with binary chromosomes. 
However, their paper did not present performance evaluation results; it merely provided simulation error rate results. A CGA hardware 
system with a scalable framework is proposed in Ref. [228]. As illustrated in Fig. 14b, the GA kernels contact other kernels through the 
shared memory. Every PE supports a tiny population with only four individuals, while two of them are shared with other PEs. The 
system divides the large memory into small pieces, resulting in a speedup of 22 × over a CPU and 2200 × faster than a software NIOS 
processor in FPGAs. Due to the limited resources of a single FPGA, the scope and degree of parallelism of the problems solved are 
insufficient. Hence, researchers adapt Parallel GA (PGAs) to multiple FPGAs [229]. Work [229] achieved a two-time speedup using five 
chips compared to one chip, although the system did not present an uncomplicated way to modify migration policy. 

The Random Number Generator (RNG) is vital for population generation and genetic operators for GA operations. FPGA-based 
methods utilize pre-generated random numbers from the CPU or hardware-based RNGs [220]. Other relevant sources include 
[[[230–235]]]. In Ref. [230], the hardware realization of FPGA-based GA is described, the outcomes of which can be used to 
implement evolvable hardware (EHW). reference [231] presents a parameterized GA IP core implemented at 92 MHz on FPGA. It is 
adaptable to various problem specifications, operates at a clock frequency five times higher than other GA implementations, and 
supports multiple customizable crossovers and mutation strategies. Using software simulations, Vizitiu et al. [232] developed a genetic 
approach implemented for optimal center selection and training of radial basis function (RBF) neural networks (GARBF system) as a 
pattern recognition system. Classification rates greater than 95% are guaranteed by the planned GARBF system. Yan-Cong et al. [234] 
proposed an FPGA-implemented Travel Salesman Problem (TSP) solution using GA. The findings from the experiments demonstrated 
that this method enhanced the running speed by two to three orders of magnitude and reduced resource consumption, allowing for the 

Table 9 
A number of literature examples of various topology architectures of the genetic algorithm.  

Reference Type of GA system GA Architecture 

[222,223,226] DGA Ring 
[225] DGA Chain 
[224] 

[228] 
DGA 
CGA 

Grid  

Fig. 14. (a) A DGA System adapted from Ref. [226], and (b) A CGA System adapted from Ref. [228].  
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algorithm’s practical application. The techniques discussed, such as pipelining, parallel mechanisms, and storage space optimization, 
can potentially be applied to various domains, including biomedical applications, to improve running speed and resource utilization. 

Similarly, the parallel implementation of GA on an FPGA demonstrated in Ref. [235] aims to reduce the system’s processing time. 
This paper investigates the impacts of various population sizes on the processing time and area utilization of FPGAs. The onboard GA 
occupies less than 20% of the testing-utilized Virtex 7 logic cells. For the hardware implementation, studies were also conducted on the 
accuracy of the GA response for the optimization of two variable functions. Reference [236] proposes an FPGA-based ECG signal 
classification system using a parallel genetic algorithm and block-based neural network. The system offers online learning and 
portability for long-term patient monitoring. A similar genetic algorithm, EC-CGA, optimizes the BBNN and achieves faster processing 
than software-based approaches. Despite some limitations, the proposed method enables complete hardware implementation of ECG 
signal classification, particularly when combined with wavelet transform-based feature selection. This work shows promise for 
personalized ECG signal classification with FPGAs. Some GA implementations offer high flexibility in addition to their high efficacy 
[237]. 

Nonetheless, these existing FPGA-based systems have at least one limitation. Low-level programmability restricts a user who needs 
a thorough understanding of hardware architectures. In contrast, most systems are not general-purpose and only support one type of 
chromosome. Consequently, the absence of architectural flexibility renders various GA systems inappropriate for multiple applica-
tions. Changing GA parameters is a time-consuming procedure requiring recompilation and verification, which can take several hours. 
Moreover, the pipeline and parallelism techniques are only partially used in the systems, resulting in low performance. Many modules 
in the designs need to be fully pipelined or parallel. 

5. Conclusion 

This paper examined methods for designing FPGA-based accelerators for various machine learning (ML) algorithms. Several 
criteria are used to classify the works to emphasize their similarities and differences. We highlighted the primary research directions 
and summarized the key concepts of various works. This paper concentrated on a literature review concerning implementing ML 
algorithms on FPGAs for biomedical applications. Researchers have also investigated modern algorithms that efficiently satisfy the 
stringent requirements of real-time applications or applications that utilize large datasets in recent years. This article attempts to 
provide an exhaustive survey of hardware architectures used for ML algorithms on FPGA from 2000 to 2023, including classifiers and 
regression algorithms. This paper also compares existing works about the limitations of various implementations. 

We can draw the following conclusions from all the papers examined in this review.  

– Different linear regression-based approaches were discussed, highlighting their advantages and applications. Using VHDL and 
fixed-point arithmetic optimized the execution time and energy consumption. The suitability of FPGAs for computational chal-
lenges in microarray analysis and functional genomics was demonstrated, showing significant speed improvements compared to 
serial implementations.  

– The accuracy and real-time performance of ridge regression-based optical flow algorithms implemented on FPGAs were enhanced. 
Logistic regression has been demonstrated to be effective in seizure detection and gene-gene interaction evaluation, with FPGA 
implementations offering low power consumption and fast computation. The combination of FPGA and GPU technologies 
significantly increased genome-wide logistic regression analyses’ speed.  

– Recent research has concentrated on FPGA-based implementations of KNN to improve performance and efficiency. To optimize 
execution time, these implementations have employed techniques such as HLS, parallelization, pipelining, and heterogeneous 
computing systems. Compared to GPPs, studies have revealed significantly higher acceleration ratios and energy efficiency. 
Memory constraints, design complexity, and algorithm scalability are still obstacles for precise and efficient FPGA-based KNN 
systems, necessitating additional research.  

– In biomedical applications, FPGA-based decision tree and Random Forest algorithm implementations provide enhanced speed, 
throughput, and resource utilization. Numerous architectures and techniques have been proposed to optimize these imple-
mentations, including pipelining, high-level synthesis, and parallel processing. Compared to software-based methods, the reviewed 
studies demonstrate significant improvements in performance and efficiency. FPGA-based training of decision tree ensembles using 
parallel processing and evolutionary algorithms has also been investigated.  

– FPGA-based implementations of SVMs for biomedical applications offer efficient solutions. Different architectures and techniques 
have been proposed, such as parallel pipelined structures, systolic arrays, multiplier-less approaches, DPR-based architectures, and 
cascaded classification systems. These FPGA implementations improve classification speed, resource utilization, power con-
sumption, and accuracy compared to software-based approaches. The choice of architecture depends on specific application re-
quirements. Overall, FPGA-based SVM implementations offer high-performance solutions for real-time and embedded biomedical 
applications.  

– FPGA implementations offer parallel processing capabilities that enable faster and more efficient clustering computations, making 
them suitable for real-time and large-scale data processing. For Mean-Shift Clustering, architectures utilizing parallel processing, 
such as multiprocessor designs and similar pipelined structures, have demonstrated significant speedups compared to software 
implementations. Using kd-trees and pipelining techniques further improved the performance and throughput of the algorithms. 
Various FPGA architectures have been proposed, including parallel pipelined structures, multi-core designs, and parallel processing 
models. These implementations have shown significant speedups compared to software-based execution, demonstrating the po-
tential of FPGAs for accelerating K-means clustering. Techniques such as fixed-point arithmetic, pipelining, and parallelization 
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have optimized the FPGA designs. The comparison of different implementations reveals that FPGA-based approaches consistently 
outperform software implementations in terms of processing speed. FPGA architectures exhibit scalability, allowing for the efficient 
utilization of available resources and accommodating a more significant number of processing elements. The FPGA implementa-
tions also often consume less power than alternative solutions like GPUs. On the other hand, optimization of hardware resources 
and memory usage while maintaining accuracy is essential. Recent works have explored using HLS and hardware/software co- 
design methodologies to facilitate the development and optimization of FPGA-based clustering algorithms.  

– FPGA-based implementations of GMMs offer significant improvements in computational speed and energy efficiency compared to 
software-based approaches. Optimizations such as pipeline-friendly designs and customized circuits have resulted in substantial 
speedups and reduced processing times. FPGA-based GMM implementations have found applications in real-time and high- 
performance computing. Careful resource management and design considerations are necessary due to the complexity of GMM 
algorithms. 

– Implementations of GAs based on FPGAs offer high performance and adaptability for optimization problems. While micropro-
cessors provide flexibility, FPGAs have the potential to improve GA performance. Existing FPGA-based GA systems are restricted 
regarding programmability, architectural flexibility, and pipeline and parallelism techniques. To maximize the potential of FPGA- 
based GA systems, additional enhancements are required. 

– While migrating designs to multi-FPGA systems, it is necessary to conduct additional research to comprehend the potential ad-
vancements that can be made and the constraints that may need to be addressed. Future work directions include investigating and 
developing design patterns for solving other problem sets with algorithmic similarities. This research indicates numerous archi-
tectures for distinct classifications of ML algorithms. 
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