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Background: The expression profile of lncRNAs in coronary artery disease (CAD) patients has not yet been fully 
explored. Therefore, the current study aimed to investigate lncRNA-based prognostic biomarkers for CAD.
Methods: The expression profiles of lncRNA and messenger RNA (mRNA) were downloaded from the 
Gene Expression Omnibus (GEO) database. Differentially expressed lncRNA (DElncRNAs) and DEmRNAs 
were identified from CAD and normal samples, and weighted gene co-expression network analysis (WGCNA) 
was conducted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed to investigate the principal functions of significantly dysregulated 
genes. The potential drugs of new CAD-specific genes were identified by network distance method. Receiver 
operating characteristic (ROC) was used to verify the classification performance of genes.
Results: A total of 512 differentially expressed genes (DEGs) and 308 DElncRNAs were identified from 
GSE113079 dataset to classify CAD samples. Through WGCNA co-expression analysis, 24 co-expression 
modules were obtained. A total of 187 DElncRNAs and 253 DEGs were determined from 7 modules correlated 
with CAD. Functional enrichment analysis showed that these DEGs were mainly related to inflammatory and 
immune-related pathways. Furthermore, 36 regulatory pairs of significantly shared micro RNAs (miRNAs) were 
identified as dysregulated lncRNA-mRNA (LRM-CAD), which contained 11 lncRNAs and 33 genes. Compared 
with a single lncRNA or gene, LRM-CAD showed stronger classification performance [average area under the 
curve (AUC) =0.958]. We screened 3 potential therapeutic drugs, DB09105, DB12371, and DB12612, a by 
binding drug-target gene interaction network. Molecular docking verified that the S1PR1 gene bound relatively 
closely to DB12371 and DB12612. The ROC analysis on external data sets showed that S1PR1, AC012640.4, and 
S1PR1-AC012640.4 could effectively distinguish CAD samples from control samples.
Conclusions: We provided a transcriptome overview of abnormally expressed lncRNAs in CAD patients 
and identified novel biomarkers for diagnosing CAD.
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Introduction 

Coronary artery disease (CAD) is a complex, multifactorial 
disease that remains 1 of the most common causes of  
death (1). Many environmental and genetic factors, including 
age, smoking behavior, hypertension, dyslipidemia, obesity, 
diabetes, and family history, contribute to CAD (2-4). 
However, the number of biomarkers used clinically to 
predict the incidence of CAD is limited at this stage (5). 
Currently, coronary angiography is a standard for diagnosing 
coronary artery diseases; however, these tests sometimes 
cause significant changes and severe complications, such as 
vagal reflex, vasospasm, puncture site-related complications 
and kidney dysfunction. The latency and non-specificity of 
traditional screening programs also limit their use in clinical 
practice.

Recent studies have shown that lncRNAs are functional 
RNA molecules with a length of more than 200 nucleotides, 
which are generally not translated into proteins, and their 
expression patterns are either high or low, but they can 
regulate the expression and function of protein-coding genes 
through different mechanisms, such as ceRNA model. Many 
lncRNAs are involved in cardiovascular pathophysiology and 
have been inferred as potential therapeutic targets. Long 
noncoding RNAs (lncRNAs) are transcriptional products 
containing 200 nucleotides and are involved in the etiology 
of many human diseases through epigenetic, transcriptional, 
and post-transcriptional regulation (6,7). Interestingly, 
lncRNAs also appear to participate in the development 
of cardiovascular disease, including heart failure, cardiac 
hypertrophy, cardiomyopathy, and myocardial infarction (8). 
The lncRNAs alter the expression of related proteins through 
RNA interference, gene silencing, chromatin remodeling, 
DNA methylation, and other pathways (9). In addition, the 
function of lncRNAs is usually mediated through regulating 
microRNAs (miRNAs), which regulate gene expression post-
transcriptionally by binding to the 3' untranslated region 
(UTR) of messenger RNA (mRNA) (10).

The gene S1PR1 is a member of the G protein-coupled 
receptors group, including S1PR1-5, which are widely 
expressed in endothelial cells and vascular smooth muscle 
cells, and is involved in the regulation of various vascular 
physiological activities. Especially in the cardiovascular 
system, the proportion of S1PR1 is the highest. The lumen 
S1PR1 can activate Pertussis toxin-sensitive G proteins, 
activate Rac1 signaling pathway, and eventually lead to 
endothelial cytoskeleton rearrangement, thereby promoting 
endothelial cell migration and proliferation (11). The anti-

atherosclerosis effect of high density lipoprotein (HDL) 
is well known, and HDL is the main carrier of S1P in  
plasma (12). Binding to HDL, S1P promotes the formation 
of S1P1-β -Arrestin 2 complex on cell surface and inhibits 
TNF-α production through S1PR1 signaling. Thus 
inhibiting the pro-inflammatory response of endothelial 
cells and vascular smooth muscle cells. In addition, an 
increasing number of studies have shown that S1PR1 
couples to Gi and activates downstream signaling pathways, 
including the PI3K/AKT, PI3K/Rac, Ras/ERK, NF-κB, 
and PLC signaling pathways (13,14). 

The aim of this study was to investigate the potential 
function of lncRNA, mRNA expressions in CAD using 
RNA expression profiles of CAD patients. We systematically 
analyzed lncRNA and mRNA expression profiles between 
CAD and healthy patients. Furthermore, a novel algorithm 
was proposed for the identification of dysregulated lncRNA-
mRNA (LRM-CAD) during CAD progression, so as to 
discover biomarkers as potentially effective therapeutic agents 
for CAD diagnosis and prognosis. We present the following 
article in accordance with the TRIPOD reporting checklist 
(available at https://dx.doi.org/10.21037/atm-21-3276).

Methods

This study consisted of data collection, variance analysis, 
co-expression module identification, enrichment analysis, 
feature selection, and classifier construction and validation. 
The workflow is shown in Figure 1.

RNA expression spectrum

The lncRNA expression profiles of CAD were downloaded 
from the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/) under the number 
GSE113079 (15) on the Agilent-067406 Human CBC 
lncRNA + mRNA microarray V4.0 (Agilent Tech., Santa 
Clara, CA, USA), which was a dataset of 141 samples 
with whole blood samples from 93 CAD patients and 48 
normal controls. In addition, we also downloaded the 
gene expression profile data sets GSE20681 (16) and 
GSE64566 (17) between CAD and control of 2 other 
platforms. The GSE20681 dataset was derived from 
Agilent-014850 Whole Human Genome Microarray 
4x44K G4112F (Agilent Tech. Feature Number version) 
platform and contained 99 CAD samples and 99 controls. 
The GSE64566 dataset was derived from Illumina 
HumanHT-12 V3.0 Expression BeadChip platform 

https://dx.doi.org/10.21037/atm-21-3276
http://www.ncbi.nlm.nih.gov/geo/
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(Illumina, San Diego, CA, USA) and contained 26 CAD 
samples and 20 control samples. 

Probe sequences from the 3 datasets were matched to 
the genome by microarray re-annotation (version GRCh38.
p13) to obtain transcript IDs for probe mapping, and each 
transcript cluster was assigned with an Ensembl gene ID. 
For transcript clusters with Ensembl gene IDs, we retained 
the annotation types “lincRNA”, “sense_intronic”, “sense_
overlapping”, “antisense”, “processed_transcript”, “3prime_
overlapping_ncRNA” clusters were considered as lncRNAs, 
and clusters with annotation type “protein_coding” were 
considered to be coding genes (18). Finally, for mRNA, 
lncRNA expression profiles, probes were mapped to genes/
lncRNAs, and when multiple probes were mapped to the 
same gene/lncRNA, the median expression value was taken 
as the expression value of the gene/lncRNA. 

Differential expression analysis and weighted co-expression 
network

The R software package Limma (19) was used to screen 
differentially expressed genes (DEGs) and lncRNAs 
between CAD and control samples. Firstly, the expression 
profile of the GSE113079 dataset was analyzed. To 
obtain biologically different genes, false discovery rate 
(FDR) <0.05 and double difference were the thresholds 
to identify DEGs and lncRNAs (DElncRNAs). At the 
same time, based on DEG and DElncRNAs expression 
profiles, the R software package ggfortify was used for 
principal component analysis (PCA) to determine the 
classification performance of DEG/DElncRNAs for CAD. 
In addition, for the purpose of better identifying disease-
related genes and lncRNAs, we combined the expression 
profiles of lncRNAs and genes to build a weighted co-

GSE113079
(CAD=93, Health=48)

R packages limma
(log2|FC|>1 and FDR <0.05)

Principal component analysis

Differentially expressed
(lncRNA:308 and Genes:512)

STRING+Drugbank association 
networks predict drug

LRM-CAD
(Number of pair 36)

ROC analysis Diagnostic 
performance evaluation

S1PR1 association Drugs
DB09105,DB12371,DB12612 

Molecular docking

GSE20681
(CAD=99, Health=99)

GSE64566
(CAD=20, Health=20)

Chip Re-annotation 
(lncRNA:3725 and Genes:20566)

Chip Re-annotation
(lncRNA:2307 and Genes:20145)

(GO and KEGG pathway)
Pathway Enrichment Analysis

Merge take intersection
(CAD disorders expression RNA)

(GO and KEGG pathway)
Pathway Enrichment Analysis

CAD-Related  modules
(Number of module:7)

Co-expression module
(Number of module:24)

R packages WGCNA
Weight co-expression analysis

Chip Re-annotation
(lncRNA:12826 and Genes:19586)
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Figure 1 Workflow. CAD, coronary artery disease; WGCNA, weighted gene co-expression network analysis; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; ROC, receiver operating characteristic.
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expression module. Specifically, RNA expression data 
profile of genes/lncRNAs was used to evaluate whether 
the samples and genes/lncRNAs were qualified subjects. 
Then, we used the weighted gene co-expression network 
analysis (WGCNA) (20) package in R to construct a scale-
free co-expression network for the genes/lncRNAs. The 
Pearson's correlation matrices and average linkage method 
were both performed for all pair-wise analyses. Then, a 
weighted adjacency matrix was constructed using power 
function Amn=|Cmn|

β (Cmn=Pearson’s correlation between 
gene/lncRNA m and gene/lncRNA n; Amn=adjacency 
between gene/lncRNA m and gene/lncRNA n). The β 
was a soft-thresholding parameter emphasizing strong 
correlations between gene/lncRNAs and to penalize weak 
correlations. After choosing the power of β, the adjacency 
was transformed into a topological overlap matrix (TOM) 
to measure the network connectivity of a gene/lncRNA 
that was defined as the sum of its adjacency with all other 
gene/lncRNA for network gene/lncRNA ratio. Then the 
corresponding dissimilarity (1-TOM) was calculated. To 
classify gene/lncRNA with similar expression profiles 
into gene/lncRNA modules, average linkage hierarchical 
c luster ing was  conducted for  the  gene/ lncRNAs 
dendrogram, according to the TOM-based dissimilarity 
measure with a minimum size (gene/lncRNA group) set 
at 30. The module was further analyzed by calculating the 
dissimilarity of module eigengene (ME)/lncRNAs, and 
a cut line was chosen for module dendrogram to merge 
some modules.

Identification of disease-related co-expression modules

We defined the module associated with the occurrence of 
CAD as Co-DGL Module, and the genes and lncRNAs 
in the Co-DGL Module were differentially co-expressed 
DEG/L. We used 3 methods to determine the correlation 
between disease and modules. We first calculated the 
Spearman correlation coefficient of each gene/lncRNA 
expression in each co-expression module of CAD, and 
selected the mean value of the correlation coefficient greater 
than the overall mean value of all modules. Furthermore, 
the correlation between CAD and each MEs was calculated, 
and the significantly correlated modules were selected. 
Finally, the distribution of each MEs in the CAD and 
control groups was analyzed to determine the modules with 
significant differences. The intersection sets were taken 
based on the above 3 methods to identify the key modules 
for the disease.

Functional enrichment analyses and gene set enrichment 
analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis was 
performed using the R packages clusterProfiler (21) on 
genes significantly associated with CAD-related modules. 
Then, over-represented GO terms in 3 categories 
(biological processes, molecular function and cellular 
component) and KEGG pathway were identified. For 
both analyses, a q-value of  <0.05 was considered to denote 
statistical significance.

The R software package GSVA (22) was used for 
enrichment analysis of single sample gene sets, and gene 
expression profiles were used to evaluate the enrichment 
scores of each sample in different KEGG pathways.

Regulatory interactions between miRNA-mRNA and 
miRNA-lncRNA

The miRNA-mRNA regulatory relationships were collected 
from miRanda (23), miRTarBase (24), TargetScan (25) 
and starBase (26) databases, and 416,312 non-redundant 
miRNA-mRNA interactions were obtained. The miRNA-
lncRNA interactions were retrieved from starBase (26) 
and miRcode (27) databases, and 295,601 non-redundant 
miRNA-lncRNA relationships were retained.

LRM-CAD

We speculated that there were LRM-CAD, and dysfunction 
of which would possibly lead to the occurrence and 
development of CAD. Based on the competing endogenous 
RNA (ceRNA) hypothesis (28,29), a candidate LRM-CAD 
is defined if it satisfies all the following conditions: (I) the 
miRNA shared by mRNA and lncRNA is significantly 
enriched (determined by the hypergeometric test, P<0.05); 
(II) mRNA-lncRNA is in the same disease-related co-
expression module. (III) Both mRNA and lncRNA are 
differentially expressed in CAD samples.

In addition, the R software package GSVA (22) was 
used for single-sample gene-set enrichment analysis. Gene 
expression profiles were used to evaluate the gene-set and 
lncRNAs enrichment scores of each sample in LRM-CAD, 
and to compare their differences in tumor and control 
samples and their relationship with the KEGG pathway. 
Next, the gene sets and lncRNAs in LRM-CAD were 
mapped to the genome and visualized using the R package 
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OmicCircos (30).

Identification of potential drugs targeting LRM-CAD

To observe potential drugs targeting LRM-CAD, 5,490 drug-
gene interaction data were obtained from Drugbank (31) 
using the method previously described by Peng et al. (32). 
These proteins and genes in LRM-CAD were mapped to the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (33) to construct drug-protein and 
protein-protein interaction network (DPPI) and used to define 
the degree of node of LRM-CAD-related gene set in PPI, T, 
and drug target gene set. Distance d (S,T) qA the shortest path 
between S node and T node (where s∈S, is LRM-CAD related 
gene; t∈T, is a drug target gene), and the calculation method 
was as follows: 

( ) ( )( )1, min ,s St T
d S T d s t

T
ω∈∈

= +∑
 

[1]

Where ω is the weight of the target gene, if the target 
gene is a gene in the LRM-CAD related gene set, the 
calculation method is ω=−ln (D+1), otherwise ω=0.

In addition, a simulated reference distance distribution 
corresponding to the drug was generated. In short, a group 
of protein nodes were randomly selected from the network 
as the simulated drug target, with the same number of nodes 
as the target size (denoted by R). Then, the distance d (S, 
R) between the simulated drug targets (representing the 
simulated drug) and LRM-CAD was calculated. After 10,000 
random repeats, the simulated reference distribution was 
generated. At the same time, the mean and standard deviation 
(SD) of the μD (S, R) and σ (S, R) reference distribution and 
the actual observation distance were used to convert to the 
standardized score, that was, the proximity degree z:
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The proximity distribution in the actual network and 
the random network were evaluated, and the significance P 
value of the proximity of each drug was calculated. Drugs 
with a global significance FDR <0.01 were regarded as the 
final potential drug candidates targeting LRM-CAD.

Evaluation of diagnostic performance and predictive ability 
of LRM-CAD

For the genes and lncRNAs in LRM-CAD of the training 

set, the R software package plotROC was used to analyze 
the expression of each lncRNA and gene, and the Receiver 
operating characteristic (ROC) analysis of CAD and 
control sample classification was visualized. For each LRM-
CAD, the expression profiles of corresponding genes 
and LRM-CAD were extracted, and linear discriminant 
analysis was used to establish a linear model. plotROC was 
used to analyze each LRM-CAD for ROC analysis and 
to visualize CAD and control sample classification. The 
predictive ability of each lncRNA, gene, and LRM-CAD 
was evaluated using the area under the ROC (AUC). In 
addition, GSE20681 and GSE124272 served as external 
validation sets.

Data availability

The discovered Gene Expression data were downloaded 
from the GEO, numbers GSE64566, GSE20681, and 
a standardized data set were downloaded. Genome 
annotation files were download from GENCODE 
(https://www.gencodegenes.org/human/). The regulatory 
relationships between miRNA-mRNA were downloaded 
from miRWalk (http://mirwalk.umm.uni-heidelberg.de/). 
Regulatory interactions between miRNA-lncRNA were 
downloaded from starBase (http://starbase.sysu.edu.cn/) 
and miRcode (http://www.mircode.org/). Drug and protein 
interaction data were downloaded from Drugbank (https://
go.drugbank.com/).

Code availability

We host all the codes involved in the manuscript on 
GitHub, codes are available at https://github.com/chenzq-
star/CADLncRNA.

Ethical statement

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Statistical analysis

The R package pROC is used for AUC analysis, and the R 
package ComplexHeatmap is used for heat map drawing. 
All analysis, except for special instructions, uses default 
parameters, and data visualization is performed using 
ggplot2 in version 3.4.3 of R software.

https://www.gencodegenes.org/human/
http://mirwalk.umm.uni-heidelberg.de/
http://starbase.sysu.edu.cn/
http://www.mircode.org/
https://go.drugbank.com/
https://go.drugbank.com/
https://github.com/chenzq-star/CADLncRNA
https://github.com/chenzq-star/CADLncRNA
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Results

Identification of DEGs/differentially expressed lncRNAs 
(DElncRNAs) between CAD samples and healthy controls 
samples

After data standardization and chip reannotation, the 
expression profiles of 12,826 lncRNAs and 19,586 genes 
were obtained from the GSE113079 dataset, the expression 
profiles of 2,307 lncRNAs and 20,045 genes were obtained 
from the GSE20681 dataset, and the expression profiles of 
3,725 lncRNAs and 20,566 genes were obtained from the 
GSE64566 dataset (Figure 2A,2B). The median expression 
level of lncRNAs in all samples was generally lower than 
that of protein-coding genes. In addition, we compared the 
intersection of lncRNAs in the 3 datasets, and observed 
that the coincidence degree of the identified lncRNAs 
was relatively low in the datasets from different platforms 

(Figure 2C). Therefore, in this study, GSE113079, which 
was a data set with high coincidence degree of lncRNA 
with other data sets, was selected as the training set, and 
GSE20681 and GSE124272 were the verification data sets. 
A total of 512 DEGs and 308 DElncRNAs were identified 
in the training set (Figure 2D,2E). The PCA using these 
differential genes and lncRNA expression profiles showed 
that the first and second principal components could 
clearly distinguish CAD samples from control samples 
(Figure 2F,2G), suggesting that these DEGs and DELs had 
certain diagnostic performance.

Construction of weighted co-expression network and 
identification of CAD-related modules

Gene/lncRNAs with similar expression patterns were 
grouped into modules by means of average linkage 
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hierarchical clustering using the “WGCNA” package 
in R. In this study, the clustering distance between each 
sample (Figure 3A) was firstly analyzed, and the distance 
was similar without outlier samples. A power of β=7 (scale-
free R^2=0.88) was the soft threshold to ensure a scale-free 
network (Figure 3B,3C). Here, a total of 24 modules were 
identified (Figure 3D). We used 3 methods to determine the 
correlation between diseases and modules. The Spearman 
correlation coefficient between gene/lncRNA and disease 
occurrence in each module as well as the correlation 
between modules and disease occurrence were calculated 
(Figure 3E). We selected modules with a mean value of 
correlation coefficient greater than the overall mean value 
of all modules. Furthermore, the correlation between CAD 
and each module was determined to select the module with 
significant correlation (Figure 3F). Finally, the distribution 
difference of the feature vectors of each module in CAD 
and the control group was analyzed (Figure 3G), and the 

module with significant difference was selected. Based on 
the above 3 methods, brown, darkgreen, grey60, lightgreen, 
lightsteelblue1, mediumpurple3, and orangered4 module 
were identified as the key modules of the disease.

Functional implications of CAD-related modules

To better understand the functional implications of the 
7 disease-related modules, GO and KEGG functional 
enrichment analysis was performed on the genes from the  
7 modules. We observed that these 7 modules were enriched 
in GO terms and KEGG pathways (Figure 4A). Specifically, 
the brown and orangered4 modules were mainly enriched 
in cell components; darkgreen was mainly enriched in 
biological processes and KEGG pathway; grey60 was mainly 
enriched in cell components and biological processes; 
lightgreen module was mainly enriched in biological 
processes and molecular functions; and mediumpurple3 
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Figure 3 Construction of weighted co-expression network and identification of CAD related modules. (A) Cluster tree of each sample. 
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was mainly enriched in biological processes. These results 
indicated that different modules may be involved in different 
biological pathways. Similarly, we statistically analyzed the 
intersection of genes and lncRNAs in these 7 modules with 
differential genes and lncRNAs (Figure 4B). It was observed 
that there were 157 up-regulated lncRNAs and 186 up-
regulated genes, 30 down-regulated lncRNAs and 67 down-
regulated genes in the co-expression module. Further 
enrichment analysis of these DEGs in KEGG pathways 
and GO terms showed that these genes were mainly 
enriched in cytokine and cytokine receptor, salmonella 
infection, NF-kappa B signaling pathway, interleukin-17 
(IL-17) signaling pathway, rheumatoid arthritis, cytokine-
cytokine receptor interaction, and tumor necrosis factor 
(TNF) signaling pathway, legionellosis, NOD-like receptor 
signaling pathway, and other inflammatory and immune-
related pathways (Figure 4C). In addition, they also enriched 
in G protein-coupled receptor binding, cytokine receptor 
binding, chemokine receptor binding, cytokine activity, 
and other immune-related molecular functions (Figure 4D).  
Inflammation also plays an important role in the occurrence 

of CAD, and both the innate immune system and adaptive 
immune system have critical functions in initiation 
and progression of atherosclerosis. Therefore, these 
differentially co-expressed genes may be the key genes  
in CAD.

Identification of LRM-CAD and its role in CAD

We employed a new computational method for identifying 
LRM-CAD of  CAD through integrat ing DEGs/
DElncRNA matched expression profiles from disease-
associated co-expression modules into a gene expression 
dataset based on regulatory interactions among mRNAs, 
lncRNAs, and miRNAs. Firstly, we compared the genomic 
distances between the DEGs and DElncRNAs in the 
same co-expression module, and mapped the genes 
and lncRNAs onto the genome. When lncRNAs were 
upstream of the genes, they were considered potential cis-
regulatory pairs, otherwise they were regarded as trans-
regulatory pairs. In this way, 235 cis-regulatory pairs and 
25,629 trans-regulatory pairs were obtained. We further 
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analyzed the miRNAs of targeted genes and lncRNAs 
in each regulation pair, counted the number of miRNAs 
shared by genes and lncRNAs, and used hypergeometry to 
evaluate the significance of miRNAs shared by genes and 
lncRNAs in each regulation pair. Finally, 36 regulatory pairs 
of significantly shared miRNAs as LRM-CAD (Figure 5A),  
including 11 lncRNAs and 33 genes, were acquired, 
and on the whole, trans-regulation was the mainstay. 
We verified the role of these LRM-CADs in CAD from 
multiple perspectives. We first calculated the enrichment 
score of 33 genes (LRM-CAD-GES) and 11 lncRNA 
enrichment scores (LRM-CAD- LES) (Figure 5B), which 

revealed significant differences between them in CAD 
and healthy control samples, especially, lncRNA showed 
a significant difference in CAD. Furthermore, the single-
sample gene set enrichment analysis method was used to 
calculate the enrichment score of each KEGG pathway, and 
the correlation between LRM-CAD-GES/LRM-CAD-
LES and the enrichment score of each KEGG pathway 
was evaluated. Here, a total of 13 KEGG pathways were 
obtained (FDR <0.05, Figure 5C). Specifically, 6 pathways 
were found to be significantly related to LRM-CAD-GES, 
including transforming growth factor (TGF)-beta signaling 
pathway and pathways related to amino acid metabolism, 
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and 7 pathways, including maturity-onset diabetes of the 
young and multiple pathways related to energy metabolism, 
were significantly associated with LRM-CAD-LES. 
These data suggested that the occurrence of CAD may be 
associated with some metabolic disorders.

LRM-CAD as a diagnostic biomarker for CAD

Considering the differences between LRM-CAD-
GES and LRM-CAD-LES in CAD, we evaluated the 
CAD classification performance of each LRM-CAD 
and single LRM-CAD gene and single LRM-CAD 
lncRNA, respectively. For each LRM-CAD lncRNA, their 
expression level showed a high diagnostic performance for 
CAD classification ROC (Figure 6A). Similarly, for each 
LRM-CAD gene, they also showed a strong diagnostic 
performance (Figure 6B). Furthermore, linear discriminant 
analysis was performed to classify and predict each LRM-
CAD and ROC analysis. It was observed that compared 
with a single lncRNA or gene, these LRM-CAD had higher 
classification performance (Figure 6C) with an average 
AUC of 0.958, suggesting that these LRM-CAD may be a 
potential diagnostic marker of CAD.

Identification of potential drugs targeting LRM-CAD

To further identify the therapeutic drugs for LRM-
CAD, we obtained 5,490 drug-protein interaction data 
from the Drugbank database, and constructed a drug-
protein interaction network using the protein interaction 
information in the STRING database. The genes in LRM-
CAD were mapped to the network to calculate the closeness 
of the drug to LRM-CAD, and a random network was 
constructed using stochastic simulation as a background. 
The proximity distribution of the final drug to LRM-CAD 
was smaller than that of the random background drug to 
LRM-CAD (Figure 7A). We selected drugs with a global 
FDR <0.05, which yielded 3 drugs (Table 1). These 3 drugs 
directly interact with the S1PR1 gene in LRM-CAD. We 
used molecular docking methods to verify the binding 
ability of S1PR1 with DB09105, DB12371, and DB12612. 
Considering that DB09105 was a protein molecule, we 
used the 2 small molecule compounds DB12371 and 
DB12612 for molecular docking. Both DB12371 and 
DB12612 showed high docking scores, the docking score 
of compound DB12612 and S1PR1 reached -9.4 kcal/mol 
(Figure 7B), and DB12371, which had a docking score of 
-11.1 kcal/mol (Figure 7C). To a certain extent, these data 

indicated that these 2 compounds and S1PR1 could be 
relatively tightly combined and had a potential biological 
activity.

Verification of diagnostic performance of S1PR1-
AC012640.4

The gene S1PR1 may be the direct target of DB09105, 
DB12371, and DB12612. Here, external data sets 
GSE20681 and GSE64566 were used as validation sets 
to evaluate the diagnostic performance of S1PR1 and 
AC012640.4. The expression profiles of S1PR1 and 
AC012640.4 were obtained from the GSE20681 data set. 
The expression level of S1PR1 was used to predict CAD, 
and the ROC analysis revealed an AUC of 0.773 (Figure 8A).  
The expression level of AC012640.4 was used to predict 
CAD, and ROC analysis showed that the AUC was 0.755 
(Figure 8B). Combining predictive CAD with S1PR1-
AC012640.4, ROC analysis showed an AUC of 0.79  
(Figure 8C). In addition, only S1PR1 was detected in the 
GSE64566 dataset, thus, we also analyzed the diagnostic 
performance of S1PR1 in the GSE64566 dataset. The ROC 
showed that S1PR1 expression still had a strong diagnostic 
performance (AUC =0.754, Figure 8D). These results 
indicated that S1PR1, AC012640.4 and S1PR1-AC012640.4 
could effectively distinguish CAD from control, and that 
these genes and lncRNAs may be reliable biomarkers for 
CAD specific diagnosis.

Discussion

In this study, we obtained a relatively large sample (93 CAD 
patients and 48 healthy controls) of whole-transcriptome 
lncRNA and mRNA expression data by high-throughput 
microarray screening. To determine the function of 
DElncRNAs, 7 CAD-related modules were identified by 
WGCNA and analyzed for GO and KEGG pathways. 
It was found that some differentially expressed mRNAs 
were involved in inflammatory cytokine and immune 
cell secretion pathways. Proinflammatory cytokines and 
chemokines have been reported to be involved in all 
stages of atherosclerotic lesion development. In addition,  
36 regulatory pairs of significantly shared by miRNAs 
were considered as LRM-CAD, including 11 lncRNAs 
and 33 genes. The ROC analysis demonstrated that LRM-
CAD had a higher classification performance. We screened 
3 potential therapeutic drugs DB09105, DB12371 and 
DB12612 by drug-target gene interaction network, and 
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there was a direct interaction with the S1PR1 gene in 
LRM-CAD. External data sets verified that S1PR1-lncRNA 
AC012640.4 could effectively distinguish CAD from 
control.

As a leading cause of death worldwide, and early 
prevention of CAD can reduce morbidity and mortality. 
Therefore, this study was designed to identify new 
biomarkers to improve the prediction and treatment of 
CAD. Many studies have confirmed that circulating miRNAs 

can be used as disease markers in blood of cardiovascular 
diseases such as acute myocardial infarction (AMI) and heart 
failure (34). Exosomal microRNAs have been reported to 
play an important role in the progress of CAD. For example, 
Exosomal microRNA-25-3p inhibits coronary vascular 
endothelial cell inflammation (35), Exosomal microRNA-21, 
microRNA-126, and PTEN are novel biomarkers for 
diagnosis of acute coronary syndrome (36). Similar to 
miRNAs and Exosomal microRNAs, lncRNAs can also be 

Figure 6 ROC analysis of LRM-CAD as diagnostic markers. (A) ROC analysis of 11 lncRNAs in LRM-CAD. (B) ROC analysis of 33 genes 
in LRM-CAD. (C) ROC analysis of 36 LRM-CAD. ROC, receiver operating characteristic; LRM-CAD, dysregulated lncRNA-mRNA.
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detected in blood and could also serve as biomarkers (37). 
In a study by Vausort et al., 5 lncRNAs, including AHIF, 
ANRIL, KCNQ1QT1, MIAT, and MALAT1, were detected 
in peripheral blood mononuclear cell (PBMC) of 414 
AMI patients and 86 control patients (38). The lncRNAs 
KCNQ1QT1, AHIF, and MALAT1 in AMI patients were 
found to be higher than those in the control group, and 
ANRIL was lower than control group. Meanwhile, ANRIL, 
KCNQ1OT1, MIAT, and MALAT1 were lower in patients 
with ST segment elevation MI than in those without. Finally, 
ANRIL and KCNQ1QT1 were considered capable of 
predicting left ventricular dysfunction after AMI. Yang et al. 
detected the expression of lncRNA in 20 patients with CAD 
and 20 controls (39). Serum lncRNA AC100865.1, monocyte 
LncPPARd (40), and OTTHUMT00000387022 were 
detected as markers for the diagnosis of CAD. In this study, 
bioinformatics study showed that S1PR1-AC012640.4 could 
effectively distinguish CAD from healthy groups and serve as 
a biomarker for CAD specific diagnosis.

Overexpression of fibroblast-specific S1PR1 in mouse 
hearts has been shown to increase cardiac tissue hypertrophy 
and fibrosis, accompanied by up-regulation of signal 

transduction and transcriptional activator 3 (STAT3) signal 
transduction and interleukin-6 (IL-6) production (41). The 
drug-protein interaction network showed that both DB12371 
and DB12612 could bind to S1PR1 well, suggesting that 
DB12371 and DB12612 might be potential drugs targeting 
S1PR1.

Although we analyzed and validated the abnormal 
expression and functional role of genes in CAD through 
bioinformatics with multiple data coalitions, some 
limitations of this study should be noted. Firstly, the sample 
lacked some clinical follow-up information, therefore we 
did not consider factors such as the presence of patient 
comorbidities in distinguishing the biomarkers. Secondly, 
the results were obtained only by bioinformatics analysis, 
which was insufficient, and experimental validation is 
needed to confirm these results. Therefore, further genetic 
and experimental studies with larger sample sizes and 
experimental validation are required.

Conclusions

In this study, we systematically analyzed gene expression 

Table 1 Informations of 3 drugs

Drug_id Distances P value FDR global_pvalue global_FDR

DB09105 −5.7301 2.53E-41 1.39E-37 3.52E-51 1.93E-47

DB12371 −2.36505 5.01E-19 2.75E-15 9.89E-18 5.43E-14

DB12612 −2.36505 5.01E-19 2.75E-15 9.89E-18 5.43E-14

FDR, false discovery rate.
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Figure 7 Potential drug analysis of LRM-CAD. (A) Proximity distribution between drugs and LRM-CAD. (B) Interaction between 
DB12612 and S1PR1. (C) The interaction between DB12371 and S1PR1; compound DB12371 is shown as yellow, DB12612 as orchid, and 
the protein surface as white. LRM-CAD, dysregulated lncRNA-mRNA.
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patterns in CAD and conducted a large-scale genome-wide 
study on RNA expression profiles to identify gene modules 
closely related to CAD. Through disease association 
network mining, we found 3 potential drugs in CAD, 
providing targets and reference for clinicians and biological 
experimentalists. 

Acknowledgments

Funding: None.
 

Footnote

Reporting Checklist: The authors have completed the 

TRIPOD reporting checklist. Available at https://dx.doi.
org/10.21037/atm-21-3276

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/atm-21-3276). The authors have no conflicts 
of interest to declare.
 
Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

1.00

0.90

0.75

0.50

0.25

0.10

0.00

1.00

0.90

0.75

0.50

0.25

0.10

0.00

1.00

0.90

0.75

0.50

0.25

0.10

0.00

1.00

0.90

0.75

0.50

0.25

0.10

0.00

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

False positive fraction

False positive fraction

False positive fraction

False positive fraction

Group

Group

Group

Group

AUC AUC=0.773

AUC AUC=0.79

AUC AUC=0.755

AUC AUC=0.754

0.00 0.10 0.25 0.50 0.75 0.90 1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00

A B

C D
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ROC analysis of S1PR1 gene in GSE64566 data set. ROC, receiver operating characteristic.
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