
fnins-16-1010488 October 17, 2022 Time: 14:23 # 1

TYPE Original Research
PUBLISHED 21 October 2022
DOI 10.3389/fnins.2022.1010488

OPEN ACCESS

EDITED BY

Yuqi Cheng,
First Affiliated Hospital of Kunming
Medical University, China

REVIEWED BY

Xu Han,
Shanghai Jiao Tong University, China
Zhifen Liu,
First Hospital of Shanxi Medical
University, China

*CORRESPONDENCE

Shixiong Tang
Tangsx1990@csu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Brain Imaging Methods,
a section of the journal
Frontiers in Neuroscience

RECEIVED 03 August 2022
ACCEPTED 07 October 2022
PUBLISHED 21 October 2022

CITATION

Liu D, Liu X, Long Y, Xiang Z, Wu Z,
Liu Z, Bian D and Tang S (2022)
Problematic smartphone use is
associated with differences in static
and dynamic brain functional
connectivity in young adults.
Front. Neurosci. 16:1010488.
doi: 10.3389/fnins.2022.1010488

COPYRIGHT

© 2022 Liu, Liu, Long, Xiang, Wu, Liu,
Bian and Tang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Problematic smartphone use is
associated with differences in
static and dynamic brain
functional connectivity in young
adults
Dayi Liu1†, Xiaoxuan Liu2†, Yicheng Long1, Zhibiao Xiang1,
Zhipeng Wu1, Zhening Liu1, Dujun Bian3 and Shixiong Tang3*
1Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second
Xiangya Hospital, Central South University, Changsha, Hunan, China, 2Department of Neurology,
The Second Xiangya Hospital, Central South University, Changsha, China, 3Department of
Radiology, Clinical Research Center for Medical Imaging in Hunan Province, The Second Xiangya
Hospital, Central South University, Changsha, Hunan, China

Introduction: This study aimed to investigate the possible associations

between problematic smartphone use and brain functions in terms of both

static and dynamic functional connectivity patterns.

Materials and methods: Resting-state functional magnetic resonance

imaging data were scanned from 53 young healthy adults, all of whom

completed the Short Version of the Smartphone Addiction Scale (SAS-SV) to

assess their problematic smartphone use severity. Both static and dynamic

functional brain network measures were evaluated for each participant. The

brain network measures were correlated the SAS-SV scores, and compared

between participants with and without a problematic smartphone use after

adjusting for sex, age, education, and head motion.

Results: Two participants were excluded because of excessive head motion,

and 56.9% (29/51) of the final analyzed participants were found to have a

problematic smartphone use (SAS-SV scores ≥ 31 for males and ≥ 33 for

females, as proposed in prior research). At the global network level, the

SAS-SV score was found to be significantly positively correlated with the

global efficiency and local efficiency of static brain networks, and negatively

correlated with the temporal variability using the dynamic brain network

model. Large-scale subnetwork analyses indicated that a higher SAS-SV

score was significantly associated with higher strengths of static functional

connectivity within the frontoparietal and cinguloopercular subnetworks, as

well as a lower temporal variability of dynamic functional connectivity patterns

within the attention subnetwork. However, no significant differences were

found when directly comparing between the groups of participants with and

without a problematic smartphone use.

Conclusion: Our results suggested that problematic smartphone use is

associated with differences in both the static and dynamic brain network

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1010488
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1010488&domain=pdf&date_stamp=2022-10-21
https://doi.org/10.3389/fnins.2022.1010488
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1010488/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1010488 October 17, 2022 Time: 14:23 # 2

Liu et al. 10.3389/fnins.2022.1010488

organizations in young adults. These findings may help to identify at-risk

population for smartphone addiction and guide targeted interventions for

further research. Nevertheless, it might be necessary to confirm our findings

in a larger sample, and to investigate if a more applicable SAS-SV cutoff

point is required for defining problematic smartphone use in young Chinese

adults nowadays.

KEYWORDS

addiction, problematic smartphone use, mobile phone use, fMRI, dynamic functional
connectivity

Introduction

In the past years, the popularity and availability of
smartphones have been increasing worldwide, and such a trend
is accompanied by increased concerns regarding the potential
overuse of smartphones (Horvath et al., 2020; Ratan et al., 2021).
Recently, the term “problematic smartphone use” (or also called
“problematic mobile phone use” by some researchers) has been
introduced, which is defined as excessive use of smartphones
with features of craving, dependence, loss of control, and
potentially related physical and mental health problems (Long
et al., 2016; Harris et al., 2020; Zou et al., 2021). These problems
include, for instance, bodily pain (Ng et al., 2020), poor sleep
quality (Huang et al., 2020), reduced physical fitness (Wacks and
Weinstein, 2021), as well as mental problems such as depressive
symptoms (Elhai et al., 2017; Yang X. et al., 2021) and even major
depressive disorder (Alageel et al., 2021).

Identifying factors associated with problematic smartphone
use can help identify at-risk population and guide targeted
interventions for further research (Luk et al., 2018; Roh et al.,
2018). Resting-state functional magnetic resonance imaging
(rs-fMRI) offers a promising approach for characterizing
the intrinsic brain functional organizations (Canario et al.,
2021; Lin et al., 2021). Using rs-fMRI, a growing body
of neuroimaging studies has suggested that problematic
smartphone use is associated with brain dysfunction even in
non-clinical samples with no diagnosis of psychiatric disorders
(Chun et al., 2018; Paik et al., 2019; Horvath et al., 2020;
Ahn et al., 2021; Pyeon et al., 2021; Zou et al., 2022). For
example, the severity of problematic smartphone use has been
reported to be positively associated with functional connectivity
between the parahippocampal gyrus and middle temporal
gyrus (Zou et al., 2022), and negatively associated with the
fronto-limbic functional connectivity (Pyeon et al., 2021) in
general populations. In another study, problematic smartphone
use was suggested to be related to enhanced functional
connectivity within the salience network, as well as between
the salience and default-mode networks (Ahn et al., 2021).
Importantly, some of these alterations (e.g., parahippocampal

gyrus-middle temporal gyrus functional connectivity) have
been found to moderate the relationship between problematic
smartphone use and depressive symptoms in adolescents
(Zou et al., 2022). Appreciably, these findings have advanced
our understanding of the potential neurobiological factors
associated with problematic smartphone use, which may guide
further research on interventions for this problem.

The currently published rs-fMRI studies on problematic
smartphone use, however, are limited in several ways. Firstly,
most of these studies were focused on connectivity patterns
within predefined regions of interest (ROIs). Although there
have been some attempts (Ahn et al., 2021), investigations
on how problematic smartphone use would affect the large-
scale configurations of brain networks are relatively limited.
Especially, it has been suggested that graph-theoretical-based
features of the whole-brain network (e.g., global and local
efficiency) can provide a powerful and reliable framework
for understanding the alterations in brain function (Achard
and Bullmore, 2007; Cao et al., 2014; Yang H. et al., 2021),
but their possible relationships with problematic smartphone
use were seldom reported. Secondly and importantly, while
conventional rs-fMRI studies were generally performed under
the assumption that connectivity patterns between brain areas
are static, recent studies have proved that the brain connectivity
patterns are actually dynamically changed over time (Hutchison
et al., 2013a,b). The “dynamic functional connectivity (dFC)”
was suggested to reflect important information ignored by
conventional “static functional connectivity (sFC)” (Park et al.,
2018; Zhang W. et al., 2018), and has been widely used in
recent rs-fMRI studies in both psychiatric (Sheng et al., 2021;
Chen et al., 2022) and non-clinical (Long et al., 2019; Huang
D. et al., 2021) populations. Nonetheless, whether problematic
smartphone use would affect the brain dFC patterns have
been barely investigated to our knowledge, and needs further
investigation.

To overcome the above limitations, this study aimed
to investigate the possible associations between problematic
smartphone use and differences in large-scale brain network
organizations by combining both sFC and dFC analyzing

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.1010488
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1010488 October 17, 2022 Time: 14:23 # 3

Liu et al. 10.3389/fnins.2022.1010488

methods. We anticipate that the results would provide
meaningful information to previous studies focusing on only
specific ROIs and/or on only brain sFC patterns, and further
improve our understanding of the possible biological factors
associated with problematic smartphone use.

Materials and methods

Participants and measures

Fifty-three young healthy adults were recruited from the
Changsha city area, Hunan Province, China based on the
following inclusion criteria: (1) 18∼25 years of age; (2) native
Chinese speakers; (3) right-handed; (4) were never diagnosed
with any psychiatric diseases; and (5) had no contraindications
to rs-fMRI scanning. All participants had signed informed
consent, and the study was proved by the Ethics Committee of
Second Xiangya Hospital, Changsha, China.

The participants were asked to complete the Short Version
of the Smartphone Addiction Scale (SAS-SV) (Kwon et al., 2013)
to assess the problematic smartphone use severity. The SAS-
SV was a self-reported scale that contains 10 items, each rated
from 1 (“strongly disagree”) to 6 (“strongly agree”). Thus, the
total score of SAS-SV ranges from 10 to 60, and a higher score
indicates a higher level of current problematic smartphone use
(Kwon et al., 2013; Luk et al., 2018). The Chinese version of SAS-
SV has been proved to be valid (Luk et al., 2018) and was widely
applied in Chinese adults (Chen et al., 2017; Guo et al., 2020,
2021; Zhang et al., 2022).

All participants also completed the following scales to
estimate their current mental health situations during the past
two weeks: (1) the 9-item Patient Health Questionnaire (PHQ-
9), a screening instrument for depressive symptoms (Kroenke
et al., 2001; Wu et al., 2022); and (2) the seven-item Generalized
Anxiety Disorder Scale (GAD-7), a questionnaire to assess
anxiety levels (Spitzer et al., 2006; Wu et al., 2022). The
Cronbach’s α coefficients of the SAS-SV, PHQ-9, and GAD-
7 in this study were 0.869, 0.831, and 0.867 respectively,
which suggests a good internal consistency (Cronbach’s α

coefficient > 0.7) (Wu et al., 2022).

Imaging data acquisition and
preprocessing

The rs-fMRI data were acquired from each participant using
a 3.0 T Siemens scanner with the following key parameters:
matrix = 64 × 64, slices = 32, repetition time (TR) = 2,000 ms,
echo time (TE) = 30 ms, slice thickness = 5 mm, gap = 0 mm,
flip angle = 90◦, field of view (FOV) = 240 × 240 mm2,
and total volumes = 216. T1-weighted images were also
acquired for registration with the following key parameters:

matrix = 256 × 256, slices = 176, TR = 1,900 ms, TE = 2 ms,
slice thickness = 1 mm, gap = 0 mm, and FOV = 256 × 256
mm2. After data acquisition, the images of all participants were
preprocessed using the DPARSF software1 (Chao-Gan and Yu-
Feng, 2010; Yan et al., 2016) with the standard pipeline. Briefly,
the pipeline includes removing the first 10 time points, slice
timing, motion realignment, spatial normalization, temporal
filtering (0.01–0.10 Hz), and nuisance regression (including the
white matter and cerebrospinal fluid signals) (Yan et al., 2019;
Long et al., 2020a). The following procedures were performed to
ensure data quality: (1) all preprocessed images were manually
checked by trained researchers to rule out overt artifacts or poor
registration; (2) data were excluded from the analyses when
excessive head motion occurred during scanning, as defined by
mean framewise-displacement (FD) > 0.2 mm (Huang X. et al.,
2021); (3) the mean FD values were further used as a controlling
variable in all the following analyses. More details about the data
acquisition parameters and preprocessing steps can be found in
a previously published work (Huang D. et al., 2021).

Static and dynamic brain network
constructions

The Power functional atlas (Power et al., 2011), which
includes a total of 264 ROIs distributed across the brain (see
Figure 1A), was used to define the nodes in brain networks for
each participant. We chose the Power atlas here since it was
widely used and validated in both sFC and dFC studies (Cao
et al., 2014; Tan et al., 2020; Long et al., 2021). The mean time
series were firstly extracted from each of the 264 nodes (ROIs)
by averaging rs-fMRI signals within each node. The sFC strength
for any pair of two nodes was computed as the Fisher’s r-to-z
transformed Pearson’s correlation coefficients of the extracted
time series, yielding a 264∗264 sFC matrix which represents the
static brain network organization (Figure 1B).

To construct dynamic brain networks, the extracted time
series were further segmented into a number of continuous
time windows using a common sliding-window approach (Long
et al., 2020a; Zhao et al., 2021). A window width of 50 TRs
(100 s) and a step length of 3 TRs (6 s) were used based on
previous recommendations (Sun et al., 2019; Long et al., 2020a;
Tang et al., 2022), resulting in a total of 53 time windows.
Similar to the sFC matrixes, a 264∗264 dFC matrix was then
generated for each time window based on the Fisher’s r-to-z
transformed connection strengths between nodes. These dFC
matrices are time-ordered, and thus formed a dynamic brain
network G = (Gt)t= 1, 2, 3, ..., 53, in which the tth matrix (Gt)
represents the “snapshot” of brain dFC patterns within the tth
time window (Sun et al., 2019; Huang D. et al., 2021; Figure 1B).

1 http://rfmri.org/DPARSF

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.1010488
http://rfmri.org/DPARSF
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1010488 October 17, 2022 Time: 14:23 # 4

Liu et al. 10.3389/fnins.2022.1010488

FIGURE 1

(A) The regions of interests (ROIs) used to define the brain nodes and their subnetwork assignments. (B) A summary of procedures for static
functional connectivity (sFC) and dynamic functional connectivity (dFC) analyses (see details in the Methods section). ATT, attention
subnetwork; AUD, auditory subnetwork; CON, cinguloopercular subnetwork; DMN, default-mode subnetwork; FPN, frontoparietal subnetwork;
NaN, unassigned; SAL, salience subnetwork; SM, sensorimotor subnetwork; SUB, subcortical subnetwork; VIS, visual subnetwork.

Global and nodal brain network
metrics

Several common global and nodal network metrics
were calculated for both the static and dynamic (weighted,
undirected) brain networks for each participant. Static network
metrics included the global efficiency (Eglob) and local efficiency
(Eloc) at the global level, as well as the nodal degree of each node.
The Eglob and Eloc are two of the most intuitive and widely-used
metrics to measure the information transfer efficiency of a static
brain network (Tan et al., 2020; Yang H. et al., 2021; Liu D.
et al., 2022). The nodal degree is a basic measure of the overall
connectivity of a node to the rest of the brain (Li T. et al.,
2021; Yang H. et al., 2021). The Eglob and Eloc were calculated
in a range of density levels from 0.10 to 0.34 with an interval
of 0.01, to avoid possible bias caused by a single density level
(Achard and Bullmore, 2007; Lv et al., 2021; Yang H. et al.,
2021). This range was chosen because it guaranteed that the
network metrics were estimable and there were not too many
spurious edges (Achard and Bullmore, 2007; Zhang et al., 2011).
For each metric, the area under the curve (AUC) across such a
density range (0.10–0.34) was calculated and fed into statistical
analyses (Zhang et al., 2011; Yang H. et al., 2021). Referring
to the previous work, the characteristic path length (Lp) and
clustering coefficient (Cp) were also calculated for the latter
validation analyses (Yang H. et al., 2021). The above static brain
network metrics were calculated using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010).

The examined dynamic network metrics included the
temporal variability for the entire brain network and nodal
temporal variability of each node (Zhang et al., 2016; Dong et al.,
2019; Long et al., 2020b; Sun et al., 2022). These two metrics
quantify the temporal stability of brain dFC patterns at the
global and nodal levels, respectively; higher values of temporal

variability indicate more fluctuations of the dFC patterns (less
stable dFCs) over time. More details about the calculations of
these two metrics can be found in previous publications (Zhang
et al., 2016; Dong et al., 2019; Long et al., 2020b; Sun et al., 2022).

Large-scale subnetwork analyses

Besides the global and nodal network metrics, large-scale
subnetwork analyses were also performed on both the sFC
and dFC architectures strictly following the procedures in
previous publications (Dong et al., 2019; Long et al., 2020b;
Li L. et al., 2021; Sun et al., 2022). According to prior
work (Cole et al., 2013; Mohr et al., 2016; Long et al.,
2019, 2021), all ROIs in the Power atlas were firstly assigned
into nine large-scale subnetworks including the default-
mode, salience, visual, subcortical, auditory, frontoparietal,
cinguloopercular, sensorimotor and attention subnetworks
(Figure 1A). The strengths of within-and between-subnetwork
sFC were calculated by averaging the z-transformed sFC values
across all involved connections within a specific subnetwork,
or between a specific pair of subnetworks (Li L. et al., 2021).
Similarly, the temporal variabilities of within- and between-
subnetwork dFC were also obtained by calculating the average
variabilities of dFC across all involved connections (Dong et al.,
2019; Long et al., 2020b; Sun et al., 2022). This resulted in
nine within-subnetwork sFC/dFC measures and 36 between-
subnetwork sFC/dFC measures.

Statistics

The possible associations between problematic smartphone
use and all the sFC/dFC measures were investigated from two
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FIGURE 2

A summary of how to test the mediation effects of brain network measures in the relationship between problematic smartphone use severity
and psychological symptoms. A significant mediation occurred when the 95% confidence interval for the indirect effect did not include zero.

perspectives. Firstly, relationships between all brain network
measures and the SAS-SV score were assessed using the partial
Pearson correlations adjusted for age, sex, years of education,
and head motion (mean FD value). False discovery rate (FDR)
corrections were applied to correct for multiple correlation tests
(e.g., across the three global metrics, the 264 nodes, the nine
within-subnetwork and 36 between-subnetwork measures).
Significance was set at FDR-corrected p < 0.05. The results were
visualized partly using the BrainNet Viewer (Xia et al., 2013).

Secondly, all brain network measures were compared
between the groups of participants with and without a
problematic smartphone use, as defined by the commonly-
used SAS-SV cutoff points proposed in prior research (SAS-SV
scores ≥ 31 for males and ≥ 33 for females) (Kwon et al.,
2013; Luk et al., 2018; Saadeh et al., 2021; Liu H. et al., 2022).
All brain network measures were compared between the two
groups using the analysis of covariance (ANCOVA) covarying
for age, sex, years of education, and head motion. Similarly, FDR
corrections were applied to correct for multiple comparisons,
and significance was set at FDR-corrected p < 0.05.

Validation analyses

Several follow-up analyses were performed to validate the
results. Firstly, the associations between the SAS-SV score and
Lp/Cp, which have equivalent meanings to the Eglob and Eloc
(Yang H. et al., 2021), were estimated using the same methods.
Secondly, since the optimal window width and step length for
the sliding-windows method are still being debated (Leonardi

and Van De Ville, 2015; Zhang C. et al., 2018), the analyses on
all dFC measures were repeatedly with a set of different window
and step lengths for the sliding windows [window/step = (80,
100, 120)/(4, 6, 8) s] to see if the results were affected by such
analyzing strategies.

Exploratory analyses

In the present study, we performed two-step exploratory
analyses to see if those problematic smartphone use-related
differences in sFC/dFC would have mediation effects in
the relationship between problematic smartphone use and
psychological symptoms. Firstly, the linear regression analyses
(controlling for age, sex, and education) were used to determine
whether an association existed between the SAS-SV score
and the GAD-7/PHQ-9 score. Secondly, when significant
associations existed (p < 0.05), the analyses of mediation effects
were further conducted using the PROCESS software (Hayes,
2012) on the sFC/dFC measures. Model 4 in the PROCESS
software was used with 5,000 bootstrapping resamples; a
significant mediation occurred when the 95% confidence
interval (CI) for the indirect effect did not include zero
(Figure 2; Rhudy et al., 2020; Li J. et al., 2021; Wu et al., 2021).

Additionally, since no significant results were found in
group comparisons between the participants with and without
a problematic smartphone use (see later in Section “Group
comparisons”) based on the SAS-SV cutoff points proposed
in prior research (≥ 31 for males and ≥ 33 for females),
we explored whether the results would change when using
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TABLE 1 Characteristics of the final analyzed sample (n = 51).

Mean ± Standard deviation

Age 21.51± 1.55

Sex (males/females) 16/35

Year of education 15.65± 1.93

SAS-SV score 32.78± 9.21

SAS-SV score (in males) 34.69± 7.87

SAS-SV score (in females) 31.91± 9.74

GAD-7 score 3.12± 3.20

PHQ-9 score 4.18± 3.66

a different cutoff. Here, referring to some published studies
(Mullins et al., 2007; Asarnow et al., 2019; Quintero Garzón
et al., 2021), we used a cutoff score estimated based on one
standard deviation above the mean of SAS-SV score in the
surveyed sample; this resulted a new cutoff score of ≥ 43 for
males and ≥ 42 for females. Group comparisons were repeated
based on such new cutoff.

Results

Sample characteristics

During data preprocessing, two participants were excluded
because of excessive head motion. Thus, the final analyzed
sample consisted of 51 subjects and their demographic and
clinical characteristics are presented in Table 1.

Correlation analyses

At the global level, significant correlations were found
between the SAS-SV score and the Eglob of static brain networks
(r = 0.288, corrected p = 0.049), as well as between the SAS-
SV score and the Eloc of static brain networks (r = 0.335,
corrected p = 0.032) (Figure 3A). Furthermore, a significant
negative correlation was found between the SAS-SV score and
the temporal variability of dynamic brain networks (r =−0.354,
corrected p = 0.032) (Figure 3B). At the nodal level, however, no
significant correlations were found for any metric (all corrected
p > 0.05).

As shown in the Figure 4, significant positive correlations
were found between the SAS-SC score and sFC strength within
the frontoparietal subnetwork (r = 0.458, corrected p = 0.011), as
well as between the SAS-SC score and sFC strength within the
cinguloopercular subnetwork (r = 0.424, corrected p = 0.013);
moreover, a significant negative correlation was found between
the SAS-SC score and dFC temporal variability within the
attention subnetwork (r = −0.409, corrected p = 0.038). No
significant results were found on the between-subnetwork
sFC/dFC measures (all corrected-p > 0.05).

Group comparisons

Based on the cutoff of a SAS-SV score ≥ 31 for males
and ≥ 33 for females, 56.9% (29/51) of the participants
were found to have a problematic smartphone use. However,
no significant group differences were found on any brain
network measure between the participants with and without
a problematic smartphone use (all corrected p > 0.05), even
for those measures showing significant correlations with the
SAS-SV score (Figure 5A).

Validation analyses

Significant correlations were found between the SAS-SV
score and Lp (r = 0.363, corrected p = 0.023), as well as between
the SAS-SV score and Cp (r = −0.332, corrected p = 0.023)
(Figure 3C), which thus partly validate the findings on Eglob and
Eloc.

The relationships between the SAS-SV score and dFC
measures remained significant when repeating the analyses with
a set of different window and step lengths (see Supplementary
Tables 1, 2). Therefore, the results were unlikely to be largely
affected by the analyzing parameters.

Exploratory analyses

The linear regression analyses revealed a significant positive
relationship between the SAS-SV score and the PHQ-9 score
(β = 0.154, t = 2.787, p = 0.008), suggesting that problematic
smartphone use is associated with a higher level of depressive
symptoms. However, no significant mediation effects were
observed for any sFC/dFC measure in the relationship between
problematic smartphone use and depressive symptoms (no
significant indirect effects were observed, as shown in Table 2).

When defining problematic smartphone use with a new
cutoff (SAS-SV score ≥ 43 for males and ≥ 42 for females),
17.6% (9/51) of the participants were considered to have a
problematic smartphone use. When using such new cutoff
points, significant group differences were found between the
participants with and without a problematic smartphone use
on most brain network measures which showed significant
correlations with the SAS-SV score (corrected p < 0.05,
Figure 5B).

Discussion

In this study, we investigated the possible associations
between problematic smartphone use and brain functions
in young healthy adults combining both the sFC and
dFC analyzing methods. Overall, our results suggested
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FIGURE 3

Results of the partial correlations between the short version of the smartphone addiction scale (SAS-SC) score and each global brain network
metric. (A) Results on the Eglob and Eloc of static brain networks. (B) Results on the temporal variability of dynamic brain networks. (C) Results on
the Cp and Lp of static brain networks (as validation analyses). The partial Pearson correlation coefficients (r) and corrected p values are
presented.

FIGURE 4

Results of partial correlations between the short version of the smartphone addiction scale (SAS-SC) score and the within-or
between-subnetwork static functional connectivity (sFC) strength (A) and dynamic functional connectivity (dFC) temporal variability (B). The
scatter plots for the significant correlations were also presented on the right side. ATT, attention subnetwork; AUD, auditory subnetwork; CON,
cinguloopercular subnetwork; DMN, default-mode subnetwork; FPN, frontoparietal subnetwork; SAL, salience subnetwork; SM, sensorimotor
subnetwork; SUB, subcortical subnetwork; VIS, visual subnetwork. *Indicates a significant correlation with corrected p < 0.05.

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1010488
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1010488 October 17, 2022 Time: 14:23 # 8

Liu et al. 10.3389/fnins.2022.1010488

FIGURE 5

(A) Results of group comparisons when defining problematic smartphone use with the cutoff proposed in prior research [short version of the
smartphone addiction scale (SAS-SV) score ≥ 31 for males and ≥ 33 for females]. (B) Results of exploratory group comparisons when defining
problematic smartphone use with a new cutoff (SAS-SV score ≥ 43 for males and ≥ 42 for females, as estimated by one standard deviation
above the mean scores). The error bars represent the 95% confidence intervals, and the “*” indicates a significant difference with corrected
p < 0.05. ATT, attention subnetwork; CON, cinguloopercular subnetwork; PSU, problematic smartphone use.

that the severity of smartphone use is associated with
significant differences in both the static and dynamic brain
network organizations.

For static brain network properties, our results suggested
that higher smartphone use severity is significantly associated
with a higher Eglob as well as a higher Eloc at the global level
(Figure 3A). Such results were further validated by significant
results on the Cp and Lp, which were known to have equivalent
meanings to the Eglob and Eloc (Yang H. et al., 2021; Figure 3C).
While the neuroimaging studies on problematic smartphone use
are growing (Ahn et al., 2021; Pyeon et al., 2021; Zou et al.,
2022), the possible effects of problematic smartphone use on
these graph-theoretical-based brain network features are still
seldom reported. Nevertheless, similar alterations in the brain
networks (increased Eglob and/or Eloc) have been associated with
some common psychiatric diseases such as posttraumatic stress
disorder (Lei et al., 2015), as well as multiple substance/non-
substance addictions such as the nicotine dependence (Lin
et al., 2015) and Internet gaming addiction (Park et al., 2017).
Our results may thus provide preliminary evidence that higher

smartphone use severity could be related to changing trends in
topological functional brain organizations, which is similar to
changes in patients with these disorders. These findings may
help to identify at-risk population for smartphone addiction,
and guide targeted interventions for further research.

Using the dynamic network model, our results suggested
that problematic smartphone use is associated with a lower
temporal variability (Figure 3B), which indicates a decreased
dynamism of brain networks (Long et al., 2020b). Previous
studies have proved that there are unignorable dynamic
fluctuations in the human brain’s functional organizations
(Hutchison et al., 2013a,b), which is closely related to
the cognitive (Patil et al., 2021) and emotional (Tobia
et al., 2017) processes. Meanwhile, both excessively increased
(Long et al., 2020b; Sun et al., 2022) and decreased (Jin et al.,
2017; Luo L. et al., 2021; Luo Z. et al., 2021) dynamisms
were thought to be reflective of abnormal brain functions.
Specially, a decreased dynamism may indicate a disturbance
in the information processing across brain regions (Luo Z.
et al., 2021). Here, our results therefore provide one of the first
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TABLE 2 Results of the mediation effect analyses on each brain
network measures in the relationship between the short version of the
smartphone addiction scale (SAS-SV) score and patient health
questionnaire (PHQ-9) score.

Brain
network
measures

Direct effects (with
95% confidence

intervals)

Indirect effects (with
95% confidence

intervals)

Global network
metrics

Global efficiency 0.140 (0.022, 0.259)* 0.015 (−0.013, 0.065)

Local efficiency 0.141 (0.020, 0.261)* 0.015 (−0.021, 0.068)

Temporal
variability

0.152 (0.030, 0.275)* 0.003 (−0.040, 0.059)

Characteristic
path length

0.142 (0.022, 0.263)* 0.013 (−0.021, 0.066)

Clustering
coefficient

0.141 (0.019, 0.263)* 0.014 (−0.025, 0.065)

Subnetwork-
level
measures

Within-FPN sFC
strength

0.138 (0.010, 0.267)* 0.017 (−0.045, 0.087)

Within-CON
sFC strength

0.155 (0.029, 0.282)* 0.000 (−0.060, 0.058)

Within-ATT
dFC temporal
variability

0.150 (0.025, 0.275)* 0.006 (−0.043, 0.054)

The “*” indicates a significant direct or indirect effect (with a 95% confidence interval not
including zero). ATT, attention subnetwork; CON, cinguloopercular subnetwork; FPN,
frontoparietal subnetwork.

evidence that problematic smartphone use may decrease the
functional brain network dynamism.

At the subnetwork level, it was found that a higher
smartphone use severity is associated with increased sFC
strengths within the frontoparietal and cinguloopercular
subnetworks (Figure 4A), as well as decreased dFC temporal
variability within the attention subnetwork (Figure 4B). The
frontoparietal and cinguloopercular subnetworks are known to
be implicated in higher-level cognitive functions (Wallis et al.,
2015; Schmidt et al., 2016). The attention subnetwork is thought
to be responsible for the top-down attentional process, whose
abnormality is associated with attention deficits (Vossel et al.,
2014; Baldassarre et al., 2016). Therefore, it may be hypothesized
that these brain subsystems are prominently disrupted by
problematic smartphone use, which may be partially related
to the smartphone use-caused cognitive impairments (Wacks
and Weinstein, 2021) and attention deficits (Choi et al., 2021).
However, this assumption remains speculative and needs to be
tested in further studies, since no cognitive or attentional tests
were performed in this study. Additionally, it is noteworthy
that in the current study, the sFC and dFC analyses suggested
significant smartphone use-associated effects in difference brain
subnetworks, indicating that they may reflect different aspects
of brain function. This may partly support the opinion that dFC

can capture important information ignored by conventional
static methodology (Hutchison et al., 2013a), and further
highlight the value of integrating the sFC and dFC analyses in
research on problematic smartphone use.

While significant correlations were found between the brain
network metrics and SAS-SV score, no significant differences
were obtained when directly comparing between the groups
of participants with and without a problematic smartphone
use (Figure 5A). One possible reason is that our sample size
is relatively small, which may limit the statistical power of
this research; a larger sample might be needed to detect the
between-group differences. We also note that based on the
commonly-used SAS-SV cutoff points (≥ 31 for males and≥ 33
for females), a considerable proportion (56.9%) of participants
were found to have a problematic smartphone use. However,
such a proportion is much higher than most previous research
[e.g., 29.8% in Mainland China (Chen et al., 2017), 24.8% in
South Korea (Kwon et al., 2013), and 38.5% in Hong Kong
populations (Luk et al., 2018)]. Here, we thus propose that
such a cutoff may be not optimal for the current sample of
young Chinese adults. The previous SAS-SV threshold points
proposed by the scale developers (Kwon et al., 2013) may lead
to an over-estimated prevalence of problematic smartphone
use nowadays, considering that the use of smartphone has
been largely increased in recent years and is being frequently
engaged with everyday life and work. In fact, such an opinion
has also been expressed by other researchers (Saadeh et al.,
2021), and may be partly supported by the results of our
exploratory analyses using more strict cutoff points (Figure 5B).
Therefore, further studies may be warranted to investigate if a
more applicable SAS-SV cutoff point is required for defining
problematic smartphone use in young Chinese nowadays.

Previous studies have reported that alterations in brain
structures may act as a moderator of the relationship between
problematic smartphone use and depressive symptoms in young
adults (Zou et al., 2021). In the current study, on the contrary, no
similar mediation effects were found on any sFC/dFC measure
(Table 2). Nonetheless, it is noteworthy that the sample size is
relatively low; moreover, only healthy participants were included
whose depressive levels were relatively low. Further studies may
be warranted to detect possible mediation effects in a larger
sample and in clinical populations.

Some other limitations of this study should be noted. First,
because of the nature of cross-sectional research, we are unable
to determine the causality relationship between problematic
smartphone use and brain dysfunctions. Second, as the SAS-
SV is a self-reported scale, the results could be biased by
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potential over-or under-reports. Third, while only the sFC/dFC
patterns during rest were analyzed, further studies conducted
under specific tasks (Choi et al., 2021) may further improve
our knowledge. Fourth, in this study, we chose the sliding-
window approach to analyze dFC rather than other approaches
such as the temporal independent component analysis (tICA),
considering that the tICA requires a large number of scanning
time points (Li et al., 2020) and the sliding-window approach
might be more suitable for the current dataset. Nevertheless,
other approaches such as the tICA may provide further
important information and can be investigated in the future
studies.

In conclusion, this study showed that problematic
smartphone use is associated with differences in brain functions
in young healthy adults, as characterized by differences in both
static and dynamic brain network organizations. These findings
may help to improve our understanding of the biological
associates of problematic smartphone use. However, further
studies may be warranted to confirm our findings in a larger
sample, and to investigate if a more applicable SAS-SV cutoff
point is required for defining problematic smartphone use in
young Chinese nowadays.
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