
RESEARCH ARTICLE

Low levels of the AhR in chronic obstructive

pulmonary disease (COPD)-derived lung cells

increases COX-2 protein by altering mRNA

stability

Michela Zago1, Jared A. Sheridan1, Hussein Traboulsi1, Emelia Hecht2, Yelu Zhang3,

Necola Guerrina4, Jason Matthews5, Parameswaran Nair6, David H. Eidelman1,4,

Qutayba Hamid1,3,4, Carolyn J. Baglole1,2,3,4*

1 Department of Medicine, McGill University, Montreal, Quebec, Canada, 2 Department of Pharmacology &

Therapeutics, McGill University, Montreal, Quebec, Canada, 3 Research Institute of the McGill University

Health Centre, McGill University, Montreal, Quebec, Canada, 4 Department of Pathology McGill University,

Montreal, Quebec, Canada, 5 Department of Nutrition, University of Oslo, Oslo, Norway, 6 Department of

Medicine, McMaster University, Hamilton, ON, Canada

* Carolyn.baglole@McGill.ca

Abstract

Heightened inflammation, including expression of COX-2, is associated with chronic

obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR)

is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts.

The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for

COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation

of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened

COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the

expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibro-

blasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD.

To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibro-

blasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of

COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibro-

blasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural

cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction

of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we

found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2

and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA sta-

bility by a mechanism independent of miR-146a. Low levels of the AhR may therefore con-

tribute to the heightened inflammation common in COPD patients.

Introduction

Cigarette smoke is the leading risk factor for chronic obstructive pulmonary disease (COPD), an

obstructive lung disease typified by the increased expression of inflammatory mediators such as
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interleukin-1 (IL-1) and cyclooxygenase-2 (COX-2) [1, 2]. COX-2 is an immediate/early gene

that catalyzes the transformation of arachidonic acid (AA) into thromboxanes and prostaglan-

dins (PG) such as PGE2. Inhibition of COX-2-derived PGE2 protects against the development of

emphysema [3] which supports a role for chronic COX-2/PGs in the pathobiology of COPD.

Cigarette smoke contains more than 5000 different chemicals, many of which are capable

of activating cellular signaling pathways such as the aryl hydrocarbon receptor (AhR). The

AhR is a ligand-activated receptor/transcription factor that belongs to the basic helix-loop-

helix Per-Arnt-Sim (bHLH/PAS) transcription factor family. The AhR is activated by polyha-

logenated aromatic hydrocarbons (PAH) such as 2,3,7,8-tetrachlorodibenzop- dioxin (TCDD;

dioxin) as well as polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P)- a

component of cigarette smoke [4, 5] After binding ligand, the AhR translocates from the cyto-

plasm to the nucleus, dissociates from cytosolic chaperone proteins and forms a heterodimer

with the AhR nuclear translocator (ARNT). This AhR:ARNT complex then binds to a dioxin

responsive element (DRE) to initiate the transcription of genes that comprise the AhR gene

battery such as the phase I cytochrome P450 (CYP) enzyme CYP1A1.

Despite its notoriety as a mediator of toxicological responses, the AhR has now emerged as

an important regulator of numerous physiological processes, including the suppression of

inflammation caused by cigarette smoke [6, 7]. We have published that the AhR attenuates cig-

arette smoke-induced COX-2 expression in vitro and in vivo by controlling stability of the

Cox-2 transcript [4]. The AhR also controls COX-2 by mechanisms that involve RelB [6, 8], a

component of the alternative NF-κB pathway. We have also shown that there is significantly

less AhR protein expression in COPD lung fibroblasts [9], an important lung structural cell

type and one of the main producers of PGs [10]. COPD-derived lung cells expresses higher

COX-2 protein due to alterations in mRNA stability caused by poor induction of the micro-

RNA (miRNA) miR-146a [11]. miRNA are single-stranded, non-coding, 22 nucleotide-long

RNA that act post-transcriptionally to inhibit protein expression either by translational repres-

sion or enhanced mRNA degradation [12, 13]. Cox-2 is a direct target of miR-146a, which has

homology with the Cox-2 3’-untranslated region (UTR), the instability region of target mRNA

that contributes to the rapid decay of the Cox-2 transcript [11]. Whether low AhR levels con-

tribute to heighted COX-2 expression in COPD due to regulation of miR-146a is not known.

To test this, we used primary lung fibroblasts from Normal, At Risk (Smoker) and COPD

subjects, together with additional lung structural cells devoid of AhR expression, to show that

the AhR controls COX-2 protein expression via alterations in Cox-2 mRNA stability. However,

the AhR did not control the induction of Cox-2 mRNA or miR-146a. Instead, RelB- a compo-

nent of the non-canonical NF-κB pathway- was required for transcriptional induction of both

Cox-2 mRNA and miR-146a in response to inflammatory stimuli. Our data continue to sup-

port that the AhR provides protection in the lung via pathways that are independent from its

well-known toxicological roles associated with dioxin. Improved insight into the mechanistic

relationship of pulmonary AhR may contribute to the development of novel, lung-targeted

anti-inflammatory treatments for diseases such as COPD.

Materials and methods

Materials

All chemicals were purchased from Sigma (St. Louis, MO) unless otherwise indicated. Recom-

binant human and mouse IL-1β (rhIL-1β and rmIL-1β, respectively) were purchased from

R&D Systems (Minneapolis, MN) at a concentration of 10 ng/ml. CH-223191 (1-methyl-N-

[2-methyl-4-[2-(2-methylphenyl) diazenyl] phenyl-1H-pyrazole-5-carboxamide) was

AhR in COPD cells
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purchased from Tocris Bioscience (Minneapolis, MN). Actinomycin D (ActD) was purchased

from Biomol (Plymouth Meeting, PA).

Cell culture

The clinical features of the subjects from which the lung tissue was derived are as previously

published [9, 14] but included lung tissue from individuals with COPD, subjects without

COPD but who were current or former smokers (At Risk) or non-smokers without COPD

(Normal). Derivation of primary human lung fibroblasts from these tissues is also as described

[14, 15]. This study was approved by the Research Ethics Board of St Joseph’s Healthcare Ham-

ilton and all patients gave written informed consent, Primary mouse lung fibroblasts were gen-

erated from AhR wild-type (Ahr+/+), AhR heterozygous (Ahr+/-) and AhR knock-out (Ahr-/-)

mice as described [15]. All animal procedures were approved by the McGill University Animal

Care Committee (Protocol Number: 5933) and were carried out in accordance with the Cana-

dian Council on Animal Care. Ahr+/+ and Ahr+/- fibroblasts show no significant difference in

response to cigarette smoke or classic AhR ligands and are therefore used interchangeably as

AhR-expressing cells [4, 6]. All fibroblasts (mouse, human) were used at the earliest possible

passage and cultured under standard conditions. MLE-12 cells (ATCC, Manassas,VA) [16]

were cultured in HITES medium (50:50, DMEM: Ham’s F-12) supplemented with 2% FBS, 2

mM L-glutamine, 10 mM HEPES, 1:100 insulin/transferrin/selenium supplement (Invitrogen)

and antibiotics/antimycotics. Generation and characterization of A549-AhR knockout

(A549-AhRko) cells was accomplished by zinc finger nucleases (ZFNs) as previously described

[17, 18].

Preparation of cigarette smoke extract (CSE)

Research grade cigarettes (3R4F) with a filter were obtained from the Kentucky Tobacco

Research Council (Lexington, KT) and CSE generated and standardized as previously

described [4, 8, 18, 19].

Analysis of gene expression

Total RNA was isolated using a Qiagen miRNeasy kit (Qiagen Inc., Valencia, CA) and purity

measured using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington,

DE). Real time (qPCR) was performed with 1 μl cDNA and 0.5 μM primers as described [9].

Primer sequences for human Cox-2 are TCACAGGCTTCCATTGACCAG (f) and CCGAGGCTT
TTCTACCAGA (r). Sequences for human RelB are TGTGGTGAGGATCTGCTTCCAG (f) and

GGCCCGCTTTCCTTGTTAATTC(r) and sequences for mousse RelB are CCTGTCTCCATA
TCCCTTCCTG (f) and CGCTGCAAAAGAGTCCAGTGA(r). Gene expression data were analyzed

using the ΔΔCt method normalized to housekeeping (β-actin).

Analysis of miR-146a expression

miRNA expression was assessed by two-step TaqMan1 RT-PCR (Applied Biosystems, Carls-

bad, CA) for miR-146a and U6 snRNA, a small nuclear RNA (snRNA) used as an internal con-

trol for miRNA analysis [20, 21]. miRNA expression was normalized to the U6 snRNA levels

and fold-change was determined using 2−ΔΔCt method as we have described [18, 22].

Determination of Cox-2 mRNA stability

Cells were cultured until near confluence and switched to serum-free media for 24 hours.

Then the cells were exposed to CSE for 3 hours followed by treatment with ActD (1 μg/ml), an

AhR in COPD cells
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inhibitor of RNA synthesis [23]. Total RNA was harvested and qPCR performed as described

above to determine the remaining levels of Cox-2 mRNA.

Western blot

Total cellular protein was prepared using 1% IGEPAL lysis buffer [24] and 5–10 μg of protein

were fractionated on SDS-PAGE gels and electro-blotted onto Immun-blot PVDF membrane

(Bio-Rad Laboratories, Hercules, CA). Antibodies against AhR (1:5000; Enzo Life), RelB

(1:1000; Santa Cruz) and COX-2 (1:1000) (Cayman Chemical, Ann Arbor, MI) were used to

assess changes in relative expression.

siRNA knock-down experiments

AhR knock-down was performed as recently described [19]. Briefly, cells were seeded at a den-

sity of 7.5 x 103 cells/cm2 and transiently transfected with 60 nM siRNA against AhR (Santa

Cruz, catalogue number sc-29655) or control siRNA (Santa Cruz, catalogue number sc 37007)

according to the manufacturer’s instructions. For RelB knock-down, normal fibroblasts (non-

smoker) were seeded at 1–2 x 104 cells/cm2 and transfected with 40 nM of siRNA against RelB

(Santa Cruz, Catalogue number sc-36402) or non-targeting control siRNA (Santa Cruz, Cata-

logue number sc-37007) as described [14]. Six hours after the transfection, the cells were

switched to serum-free MEM. On the next day, cells were treated with IL-1β and RNA or pro-

tein collected for further analysis as described above. Verification of target knockdown was

done by Western blot by 48 h after transfection.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 6 (v. 6.02; La Jolla, CA). A two-way

analysis of variance (ANOVA) followed by a Newmann-Keuls multiple comparisons test was

used to assess differences between treatment groups of more than two factors when grouped

by two variables unless otherwise indicated. Groups of two were analyzed by an unpaired t-

test.

Results

Increased basal COX-2 protein expression in COPD-derived lung

fibroblasts is not associated with a concurrent increase in Cox-2 mRNA

We examined Cox-2 mRNA and protein expression in quiescent lung fibroblasts derived from

never-smokers (Normal) as well as smokers with and without COPD. Cox-2 mRNA expression

was not statistically different between the three groups (Fig 1A). Despite no difference in Cox-
2 mRNA levels, COX-2 protein expression was significantly higher in cells derived from

COPD subjects (Fig 1B and 1C). These data suggest that features inherent to COPD (other

than chronic smoke exposure) contribute the heightened basal COX-2 expression. These data

further imply that transcriptional upregulation of the Cox-2 gene cannot solely account for the

heightened COX-2 protein expression in COPD-derived lung fibroblasts.

Reduced AhR levels augment COX-2 protein expression in lung

structural cells without alterations in mRNA levels

We have shown that COPD lung fibroblasts have less AhR protein compared to Normal and

At Risk fibroblasts [9], leading us to speculate that low AhR is why there is more COX-2 in

COPD. To test this, we first reduced AhR expression in normal human lung fibroblasts (which

AhR in COPD cells
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Fig 1. Basal Cox-2 mRNA and protein expression in Normal, At Risk and COPD lung fibroblasts. (A) Basal Cox-2 mRNA: There was no significant

difference in basal Cox-2 mRNA between Normal (fold change: 1 ± 0.04), At Risk (5.9 ± 2.2) and COPD fibroblasts (1.5 ± 0.69). (B) Basal COX-2 protein:

Basal COX-2 levels were low in Normal (non-smoker) lung fibroblasts. A detectable increase in COX-2 protein was observed in At Risk lung fibroblasts as

well as lung fibroblasts from COPD subjects. Dashed line denotes different gel. (C) Basal COX-2 protein- quantification: There was a significant increase in

basal COX-2 protein expression in lung fibroblasts from COPD subjects (fold change was 28.1 ± 6.1, ** p < 0.001 compared to At Risk and *** p < 0.01

compare Normal). Results are expressed as the mean ± SEM (fold-change) of COX-2 protein levels normalized to the Normal lung fibroblasts and each

symbol represents fibroblasts from a different individual.

https://doi.org/10.1371/journal.pone.0180881.g001

AhR in COPD cells
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expresses abundant AhR protein) [9], which resulted in an increase in COX-2 (Fig 2A). Next, we

used MLE-12 cells, a distal bronchiolar and alveolar epithelial cell line, and knocked-down AhR;

this also resulted in an increase COX-2 (Fig 2B). Finally, we used A549 cells, a human pulmonary

adenocarcinoma cell line that exhibits features typical of type II alveolar epithelial cells [25], in

which AhR was eliminated [18]. Elimination of the AhR in the A549 cells robustly increased

COX-2 protein (Fig 2C), but without a concomitant change in basal Cox-2 mRNA expression

(Fig 2D). These data support that higher COX-2 protein is due to low AhR in multiple lung cell

types, and that this is not due to a concomitant increase in Cox-2 mRNA expression.

Regulation of COX-2 in lung structural cells is due to AhR-dependent

destabilization of Cox-2 mRNA

We have previously shown that the AhR destabilizes Cox-2 mRNA [4]. Given that COPD lung

fibroblasts have enhanced Cox-2 mRNA stability [11] but lower AhR [9], we speculated that

enhanced Cox-2 mRNA stability in COPD lung cells was due to low AhR expression. Follow-

ing reduction in AhR levels by siRNA, Normal lung fibroblasts were exposed to IL-1β for 3

hours followed by treatment with ActD, an inhibitor of RNA synthesis [23]. In these experi-

ments we used IL-1β, a potent inducer of COX-2 in fibroblasts [22, 26] and a cytokine that

does not exhibit AhR agonist activities (data not shown) [27]. These results show that there

was a significant reduction in Cox-2 mRNA stability after treatment with ActD, the effect of

which was attenuated by AhR knockdown (Fig 3A). There was similarly a rapid reduction of

Cox-2 mRNA after administration of ActD in A549-AhRWT cells- but not A549-AhRKO cells-

exposed to IL-1β (Fig 3B). These data support that the AhR destabilizes the Cox-2 transcript,

such that low AhR in COPD-derived cells may stabilize Cox-2 mRNA, thereby leading to

increased COX-2 protein levels.

The AhR does not control the induction of miR-146a

The miRNA miR-146a targets Cox-2 mRNA for degradation and/or translation inhibition

[22], making it plausible that the AhR control over miR-146a levels is why there is enhanced

Cox-2 mRNA degradation. Following exposure to IL-1β for 6 hours, there was a significant

increase in miR-146a in fibroblasts derived from Normal and Smoker subjects. However, the

induction of miR-146a was significantly less in COPD-derived lung fibroblasts (Fig 4A). To

evaluate whether the AhR was responsible for the higher induction of miR-146a in Normal

and Smoker fibroblasts (which express comparable levels of the AhR) [9], we first used a phar-

macological approach to inhibit the AhR. The specific AhR antagonist CH-223191 [18, 28]

had a minimal effect on miR-146a expression levels (Fig 4B). IL-1β significantly increased

miR-146a, but co-exposure to CH-223191 and IL-1β did not significantly impact the ability of

IL-1β to increase miR-146a expression (Fig 4B). There was also no effect of AhR inhibition

with CH-223191 on the levels of miR-146a caused by CSE exposure (Fig 4B). To complement

these findings, we utilized fibroblasts from Ahr+/- and Ahr-/- mice exposed to IL-1β. The rela-

tive level of miR-146a induction by IL-1β was 4.2 ± 0.6 and 3.9 ± 0.9, respectively, for both

Ahr+/- and Ahr+/- cells, with there being no significant difference between the Ahr+/- and Ahr+/-

cells (Fig 4C). Thus, we conclude that the AhR does not regulate miR-146a expression in lung

fibroblasts, making it unlikely that the differences in Cox-2 mRNA stability are due to AhR-

dependent regulation of the miR-146a.

The AhR does not control RelB induction by inflammatory stimuli

The anti-inflammatory abilities of the AhR against cigarette smoke-induced COX-2 expression

require RelB expression [8], leading us to speculate that the AhR-dependent control over RelB

AhR in COPD cells
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Fig 2. Reduction in AhR protein expression is accompanied by increased basal COX-2 protein expression in lung structural cells. (A)

COX-2 protein- AhR siRNA: reduction in AhR expression in Normal human lung fibroblasts increased COX-2 protein expression. (B) COX-2 protein-

AhR in COPD cells
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expression is how the AhR attenuates excessive COX-2 levels. For these experiments, we uti-

lized IL-1β to induce COX-2- rather than CSE- to avoid cigarette smoke-induced proteolytic

degradation of RelB [14]. Lung fibroblasts from all three subject groups exposed to IL-1β sig-

nificantly increased RelB mRNA and protein expression, with there being a similar magnitude

of induction between the three groups (Fig 5A and 5B), suggesting that induction of RelB was

not impaired in COPD-derived lung cells. This also suggested that the AhR does not contrib-

ute to RelB induction by IL-1β. To confirm that the AhR is not involved, we utilized lung fibro-

blasts from Ahr+/+ and Ahr+/- mice. Exposure to either CSE or IL-1β increased RelB mRNA

levels (Fig 6A and 6B). However, there was no significant difference in the relative induction

of RelB mRNA or protein in response to either CSE or IL-1β between Ahr+/+ and Ahr+/- fibro-

blasts (Fig 6A and 6B). Thus, we conclude that the AhR does not appreciably control the

induction of RelB expression in response to inflammatory stimuli.

RelB expression is necessary for the transcriptional induction of Cox-2

mRNA and miR-146a in human lung fibroblasts

Our data show that the AhR does not control the transcription of Cox-2 in response to CSE or

IL-1β (Figs 2 and 3). Our previous data in mouse lung fibroblasts suggest that RelB is necessary

for optimum induction of Cox-2 mRNA [22]. Knock-down of RelB in Normal human lung

fibroblasts using siRNA (Fig 7A) significantly impaired the induction of Cox-2 mRNA expres-

sion when cells were exposed to IL-1β (Fig 7B, black bars). In cells which received control

MLE-12 cells: There was a significant reduction in AhR via siRNA; this was accompanied by an increase in both basal and CSE-induced COX-2

protein. (C) A549 cells: There was a robust increase in basal COX-2 protein in A549-AhRKO cells. (D) Cox-2 mRNA- A549 cells: There was no

change in basal Cox-2 mRNA levels due to deletion of the AhR in A549 cells. Results are expressed as mean ± SEM of 2–3 independent

experiments.

https://doi.org/10.1371/journal.pone.0180881.g002

Fig 3. Regulation of IL-1β induction of COX-2 protein in human lung fibroblasts by the AhR is at the level of mRNA stability. (A) HLFs- AhR siRNA:

There was significantly more Cox-2 mRNA remaining after induction with IL-1β in AhR knock-down cells. (B) A549-AhRKO: There was a significant decline

in the percentage (%) of Cox-2 mRNA remaining within one hour after addition of ActD in A549-AhRWT cells (* p < 0.05; ** p< 0.01) but not in A549-AhRKO

cells (ns). Results are expressed as mean ± SEM of 2 independent experiments.

https://doi.org/10.1371/journal.pone.0180881.g003

AhR in COPD cells
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siRNA (i.e. with RelB expression; siCtrl), there remained robust induction of Cox-2 mRNA

(Fig 7B, open bars). These data support that RelB controls the transcriptional regulation of

Cox-2 mRNA in human lung fibroblasts. We also evaluated whether the ability of IL-1β to

induce miR-146a depended on RelB expression. Our data show that knock-down of RelB sig-

nificantly attenuates the ability of IL-1β to increase miR-146a (Fig 7C). Thus, these data show

that RelB controls miR-146a expression in response to inflammatory cytokines, and when con-

sidered as a whole, supports that both the AhR and RelB contribute to the suppression of

COX-2 by two independent but complementary pathways.

Fig 4. The AhR does not control miR-146a expression in response to CSE or IL-1β. (A) COPD-derived lung fibroblasts have less miR-146a in

response to IL-1β- Human lung fibroblasts from Normal, At Risk or COPD subjects were exposed to IL-1β (10 ng/ml) for 6 hours and miR-146a evaluated by

qRT-PCR. IL-1β significantly increased miR-146a expression in Norma (fold-increase 33.4 ± 6.8; ***p < 0.0001) and At Risk (34.1 ± 3.9; ** p < 0.01) lung

fibroblasts. There was no significant induction in miR-146a in COPD fibroblasts (fold-increase 9.8 ± 5.9; $ p < 0.05, $$ p < 0.01 compared to At Risk or

Normal fibroblasts, respectively). Results are expressed as the mean ± SEM, n = 3 independent experiments of samples utilizing lung fibroblasts derived

from 3–6 different individuals. (B) There was a significant increase in miR-146a in human lung fibroblasts exposed to IL-1β for 6 hours (fold-increase

29 ± 8.5). There was a slight increase with CH-223191 for 6 hours but no effect when both CH-223191 and IL-1βwere combined (fold change 31 ± 9.6).

Results are expressed as the mean ± SEM, n = 3 separate experiments. (C) Ahr+/- and Ahr-/- cells were exposed to IL-1β and miR-146a levels assessed by

qRT-PCR. There was a significant induction of miR-146a upon stimulation with IL-1β (*** p < 0.001); there was no significant difference in the magnitude of

induction between Ahr+/- and Ahr-/- fibroblasts (ns). Results are expressed as the mean ± SEM, n = 12 separate experiments.

https://doi.org/10.1371/journal.pone.0180881.g004

AhR in COPD cells
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Discussion

COPD is an obstructive lung disease that is increasing in prevalence worldwide, affecting an

estimated 200 million people [29]. While the etiology of COPD is strongly linked to smoke

exposure, the underlying pathogenic mechanisms by which smoke causes chronic, aberrant

pulmonary inflammation remains poorly defined. The purpose of this study was to further

understand how the AhR suppresses COX-2 expression in association with COPD. We have

published that two signalling pathways involving the NF-κB protein RelB and the AhR dimin-

ish the expression of inflammatory mediators, including COX-2, caused by cigarette smoke

exposure [8, 30]. We had postulated that AhR-dependent induction of miR-146a serves as a

post-transcriptional regulatory mechanism for the attenuation of COX-2 protein expression.

A significant component of this was based on our intriguing observations that lung fibroblasts

from COPD subjects expressed significantly more basal COX-2 protein compared to fibro-

blasts derived from either At Risk or Normal subjects (Fig 1). This result is consistent with a

report by Togo and colleagues who demonstrated heightened COX-2 protein expression in

COPD lung fibroblasts compared to fibroblasts derived from smokers [31]. We extended this

finding by providing further evidence that this increase in COX-2 is an inherent feature not

due to smoke exposure alone, as there was no difference in COX-2 between cells from Normal

subjects compared to At Risk subjects. These data also highlight that the heightened COX-2

protein in COPD-derived lung fibroblasts was not the result of heightened Cox-2 mRNA

expression (Fig 1), implying that basal COX-2 protein levels in COPD lung cells are controlled

by mechanisms independent from direct transcriptional regulation. To understand the basis of

this, we turned our attention to the AhR, as we have recently shown there is less AhR protein

in COPD lung fibroblasts [9]. Using complementary techniques in lung structural cells, we

Fig 5. RelB expression in increased in lung fibroblasts in response to IL-1β. Human lung fibroblasts were cultured with 10 ng/ml of rhIL-1β for 6 or 24

hours and RelB mRNA assessed by qRT-PCR and cell lysate for detection of RelB protein by western blot. (A) RelB mRNA- There was a significant

increase in RelB mRNA in lung fibroblasts derived from Normal, At Risk and COPD subjects compared to respective unstimulated controls (*** p < 0.001).

Results are expressed as the mean ± SEM of three strains from each subject group. (B) RelB protein- There was a noticeable and significant increase in

RelB protein expression upon stimulation of lung fibroblasts with IL-1β for 24 hours (*p < 0.05 for each fibroblast group compared to their respective

unstimulated controls). There was no difference in RelB induction between the three groups. Results are expressed as the mean ± SEM of three

independent experiments.

https://doi.org/10.1371/journal.pone.0180881.g005
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confirmed that loss of AhR expression contributes to increased COX-2 protein without a con-

comitant increase in Cox-2 mRNA levels, supporting the notion that homeostatic control over

COX-2 protein- in the absence of exogenous inflammatory stimuli- is dependent on AhR

expression.

Our data also suggest that the extent to which the AhR controls basal versus induced (e.g.

CSE or IL-1β) COX-2 may be at least partially related to the absolute level of AhR. We have

previously shown that AhR protein levels are reduced by approximately 80% in COPD-derived

lung fibroblasts, a decrease that is sufficient enough to eliminate induction of the target gene

Cyp1b1 [9]. Likewise, our data show that elimination of AhR levels by zinc finger nuclease

technology (A549-AhRKO) prevents Cyp1a1 expression in A549 cells [18]. In both the COPD-

derived lung fibroblasts and A549-AhRKO cells, this decrease in AhR expression was sufficient

enough to increase basal COX-2 protein (Figs 1 and 2). The fact that there was no increase in

COX-2 in the A549 cells exposed to CSE may reflect their inherent insensitivity to cigarette

smoke [32]. In the Normal human lung fibroblasts, there was no increase in basal COX-2 after

knockdown with siAhR (Fig 1A), a finding we speculate may be due to sufficient remaining

AhR expression. The increase in COX-2 in the mouse lung epithelial cells (MLE-12 cells)- irre-

spective of AhR expression- differs from the primary lung fibroblasts (Fig 2A and 2B). This

may be due to inherent differences in cell type (epithelial versus fibroblast) or species (mouse

versus human). Despite some slight differences in expression patterns, our data highlight that

the AhR suppresses COX-2 levels in lung structural cells.

Typically the induction of COX-2 is transient and returns to baseline levels within 24–28

hours. Post-transcriptional regulation of protein expression is an adaptive mechanism that is

crucial in regulating the timing and the amount of inflammatory proteins including COX-2.

Fig 6. The AhR does not control RelB induction by CSE or IL-1β. Ahr+/- and Ahr-/- mouse lung fibroblasts were exposed to 1% CSE or rmIL-1β and RelB

mRNA (A) and protein (B) evaluated by qRT-PCR or western blot respectively. There was no significant difference in RelB mRNA induction between Ahr+/-

and Ahr-/- cells. Results are expressed as the mean ± SEM, n = 8–10 separate experiments.

https://doi.org/10.1371/journal.pone.0180881.g006
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Although the Cox-2 gene is transcriptionally-controlled (e.g. via NF-κB in response to IL-1β
[33] or CSE [26]), and mechanisms such as protein turnover contribute to COX-2 expression

[34], the level of COX-2 protein is determined in large part by changes in the half-life of the

mRNA Thus, there is often a poor correlation between Cox-2 mRNA and protein levels

because Cox-2 mRNA is rapidly degraded [4], raising the possibility that mRNA degradation

could be why there is discord between mRNA and protein levels in COPD lung fibroblasts.

Not only is COX-2 a target of miR-146a but there is significantly impaired induction of miR-

146a in COPD-derived cells in response to inflammatory stimuli (Fig 4). The AhR contributes

significantly to the regulation of miRNA [18, 35–37], which led us to postulate that a key com-

ponent to the regulation of COX-2 by the AhR would be induction of miR-146a. However, as

we were unable to detect differences in miR-146a levels using AhR-deficient cells or with the

AhR antagonist CH-223191, we ultimately concluded that the AhR does not appreciably con-

trol miR-146a expression.

We do show that down-regulation of RelB via siRNA decreases the magnitude of IL-1β-

inducd miR-146a expression (Fig 7) despite the fact the RelB was significantly increased in all

three subject groups. We therefore conclude that RelB-but not the AhR- contributes to the

induction of miR-146a. RelB is a part of the non-canonical NF-κB pathway that is involved in

thymic and secondary lymphoid organogenesis as well as B cell development [38]. RelB expres-

sion is increased by inflammatory stimuli, which may serve as negative feedback loop to

Fig 7. RelB regulates Cox-2 transcription in human lung fibroblasts. (A) RelB siRNA: knockdown of RelB in Normal (non-smoker) human lung

fibroblasts was approximately 50%. Representative western blot is shown. (B) RelB siRNA-Cox-2 mRNA: There was a significant reduction in the relative

level of Cox-2 mRNA induction by IL-1β in RelB knock-down cells (** p < 0.01 compared to media-only Ctrl siRNA; $$ p < 0.01 compared to IL-1β-treated

RelB siRNA). Results are expressed as the mean ± SEM of three independent experiments. (C) miR-146a- IL-1βRelB siRNA: Normal lung fibroblasts were

subjected to RelB knock-down as described above and exposed to IL-1β for 6 hours. Total RNA was collected for analysis of miR-146a by qPCR. There

was a significant induction in miR-146a in control lung fibroblasts exposed to IL-1β receiving the Ctrl siRNA (fold-induction: 41.6 ± 12.3; *p < 0.05). Knock-

down of RelB significantly attenuated miR-146a induction (fold induction: 6.4 ± 1.8; $p < 0.05 compared to Ctrl-siRNA). Results are expressed as the

mean ± SEM, n = 5 separate experiments.

https://doi.org/10.1371/journal.pone.0180881.g007
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attenuate the transcriptional abilities of the classic NF-κB pathway [39]. Importantly, RelB pre-

vents persistent non-infectious inflammation in the liver and lung, phenomena attributed to

the suppressive abilities of RelB in non-lymphoid tissue, possibly fibroblasts [40, 41]. Even

though there is transcriptional dependence by RelB on the induction of Cox-2 mRNA, our pre-

vious data show that RelB maintains profound control over the amount of COX-2 protein that

is ultimately expressed [22]. In this regard, RelB may have a dual role by both dictating Cox-2
mRNA induction in addition to transcribing for miR-146a, a feature that would post-tran-

scriptionally keep COX-2 protein levels in check.

We propose that both AhR and RelB are necessary to control an aberrant inflammatory

response. The true mechanism by which the AhR controls COX-2 protein remains unclear but

could involve other post-transcriptional mechanisms involving human antigen R (HuR), an

RNA binding protein recently shown by us to be regulated by the AhR as a means to down-

regulate COX-2 levels [4]. It is possible that the RelB-dependent induction of miR-146a

impairs the ability of HuR to stabilize target mRNA, including COX-2. This notion is support

by evidence showing that HuR is a direct target of miR-146 [42]. Whether HuR is decreased by

RelB-dependent induction of miR-146a or whether HuR is involved in the AhR-dependent

regulation of COX-2 mRNA versus protein in COPD lung cells are currently active areas of

investigation.

In conclusion, our data support that the AhR suppresses COX-2 expression and that both

AhR and RelB may work cooperatively to suppress COX-2 expression in response to inflam-

matory stimuli. This is not an unreasonable assumption given that in a model of immune tol-

erance, miR-146a enhances RelB binding to the promoter of inflammatory genes, resulting in

transcriptional silencing [43]. Our data further support the notion that dysregulated expres-

sion levels AhR and RelB play an important mechanistic role in the development and progres-

sion of smoke-induced pathologies such as COPD. We cannot yet conclude that low AhR

and RelB levels in COPD [9, 14] predisposes to the development of COPD or foresees rapid

declines in lung function. Further, we do not anticipate that RelB could be used as a general

blood-based biomarker of COPD, as systemic RelB expression is similar between Normal,

Smokers and COPD subjects [14]. However, RelB levels changed with exacerbations in COPD

subjects and predicted changes in arterial stiffness, a measure of cardiovascular risk [44].

While our investigations into systemic AhR levels in COPD are currently underway, it is inter-

esting to speculate that, together with FEV1/FVC, AhR and RelB may be a useful diagnostic

tool for COPD and associated co-morbidities. Finally, understanding if AhR and RelB levels in

the lung are inherently low (i.e. not due to disease progression) could also form the basis for

anti-inflammatory therapies targeting an AhR-RelB axis in COPD, a disease with few options

to treat the underlying inflammation that may drive disease progression.
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