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Utilizing genome-scale models to optimize nutrient supply
for sustained algal growth and lipid productivity
Chien-Ting Li1, Jacob Yelsky 1, Yiqun Chen 1, Cristal Zuñiga 2,3, Richard Eng1, Liqun Jiang1,4, Alison Shapiro 1, Kai-Wen Huang 1,
Karsten Zengler2,3,5 and Michael J. Betenbaugh1*

Nutrient availability is critical for growth of algae and other microbes used for generating valuable biochemical products.
Determining the optimal levels of nutrient supplies to cultures can eliminate feeding of excess nutrients, lowering production costs
and reducing nutrient pollution into the environment. With the advent of omics and bioinformatics methods, it is now possible to
construct genome-scale models that accurately describe the metabolism of microorganisms. In this study, a genome-scale model of
the green alga Chlorella vulgaris (iCZ946) was applied to predict feeding of multiple nutrients, including nitrate and glucose, under
both autotrophic and heterotrophic conditions. The objective function was changed from optimizing growth to instead minimizing
nitrate and glucose uptake rates, enabling predictions of feed rates for these nutrients. The metabolic model control (MMC)
algorithm was validated for autotrophic growth, saving 18% nitrate while sustaining algal growth. Additionally, we obtained similar
growth profiles by simultaneously controlling glucose and nitrate supplies under heterotrophic conditions for both high and low
levels of glucose and nitrate. Finally, the nitrate supply was controlled in order to retain protein and chlorophyll synthesis, albeit at a
lower rate, under nitrogen-limiting conditions. This model-driven cultivation strategy doubled the total volumetric yield of biomass,
increased fatty acid methyl ester (FAME) yield by 61%, and enhanced lutein yield nearly 3 fold compared to nitrogen starvation. This
study introduces a control methodology that integrates omics data and genome-scale models in order to optimize nutrient
supplies based on the metabolic state of algal cells in different nutrient environments. This approach could transform bioprocessing
control into a systems biology-based paradigm suitable for a wide range of species in order to limit nutrient inputs, reduce
processing costs, and optimize biomanufacturing for the next generation of desirable biotechnology products.
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INTRODUCTION
Microalgae offer significant opportunities to generate diverse
products across many different areas including health products
like lutein,1 pharmaceutical products like camelid heavy chain only
antibodies (VHH),

2 and energy precursors for biodiesel.3 Due to its
high growth rate and high lipid content, Chlorella vulgaris has
been recognized as a promising candidate for algal biofuel
production.4 Furthermore, studies have found higher lipid
productivity in C. vulgaris under heterotrophic growth conditions
or nitrogen starvation.4,5 However, the cost of inputs including the
source of nitrogen, often in the form of nitrate, as well as the
organic carbon source, typically glucose in heterotrophic condi-
tion, can have a significant impact on overall productions costs.6 In
addition, the reduction of growth rate under nitrogen starvation
can represent another bottleneck due to the loss of algal biomass.
One approach to overcome these limitations is to optimize the

natural cells growth and lipid production by controlling nutrient
feeding. For example, one approach is to control glucose
concentration within a defined range during algal culture using
measurements and simple feedback control algorithms. Previous
studies controlled glucose concentration in the range of 5 to 40 g/
L to reach a high cell density culture, increasing cell density from
6.25 to 117.18 gDW/L in 32 h.7

In order to more effectively control nonlinear biological
processes like cell culture, model predictive control (MPC), a

model-based control strategy, has been designed as one approach
to achieve more finely tuned bioreactor control.8 Mathematical
equations can be constructed to represent the bioreactor system
and nutrient supplies optimized based on the simulations. This
strategy has been validated in silico for penicillin fermentation
process, biohydrogen production in Cyanothece sp, and biofuel
production in algae.9–11 It was also tested in Chlorella in a CSTR
system for CO2 mitigation and in an open pond system under
different light intensities.12,13 These MPC approaches typically
incorporate empirical kinetic models based on experimental data
in order to predict optimal algal growth conditions. Researchers
obtain model parameters from experimental measurements of cell
growth rate and nutrient consumption rate and construct
equations in order to simulate algal growth in the models. Those
parameters are often associated with the bioreactor system
including volume and dilution rate or reflect external character-
istics of the cell including growth rate.
However, these previous efforts typically lack a detailed

description of the metabolic characteristics of the algal cells
themselves and therefore cannot account for nutrient require-
ments and accompanying cell compositions. These models, while
highly descriptive of growth at the macroscopic level, typically do
not include the mathematical framework to describe exactly how
specific nutrients such as nitrate and glucose are incorporated
within the cellular metabolic framework under different culture
conditions. Incorporating cellular metabolic details can enable
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biotechnologies to more effectively understand and potentially
optimize the utilization of nutrients within algal cells during
growth and lipid production, and be able to consider changes in
algal metabolism for different nutrient input scenarios.
Fortunately, the advent of genome-scale models has enabled

the biotechnology community to better understand the allocation
and distribution of nutrients to metabolites and biomass.14

Genome-scale metabolic models are a system biology tool that
represent the metabolism of a cell based on its genomic
sequence. In order to reconstruct biological networks into a
genome-scale model, metabolic reactions in the form of mass
balance equations that integrate nutrient transport, intracellular
metabolism, and biomass accumulation are included.15 Model
constraints are obtained by considering genomics, transcrip-
tomics, proteomics as well as cellular composition information.16

Thousands of metabolic reactions are composed as a large
stoichiometric matrix (m x n); followed by flux balance analysis
required that is solved in order to identify the flux rates of each
reaction. Furthermore, as the model is typically underdetermined,
linear programming is incorporated in order to identify an optimal
flux solution by maximizing an objective function, typically the
biomass production rate.17

Genome-scale models have been constructed for a wide variety
of industrial relevant species including E. coli,18 yeast19 and
mammalian cells.20 Indeed, previous research has applied
genome-scale models to a variety of applications including
microbial strain optimization,21 intracellular metabolite pool
prediction,16 and the discovery of new metabolic reactions.22

Recently, our group constructed a genome-scale model for C.
vulgaris (iCZ843), which provides the most comprehensive
representation of the physiology of this organism to date,
including 843 genes, 2,294 reactions, and 1,770 metabolites.23

This model contains five cellular compartments including the
cytoplasm, mitochondrion, chloroplast, thylakoid and glyoxysome,
in addition to the extracellular environment, allowing metabolic
exchange within and between the different compartments. In
addition, corresponding experiments successfully validated model
predictions, including the capacity to vary the growth rate of C.
vulgaris by altering nutrient inputs. Furthermore, the iCZ843
model was used to contextualize metabolomics data over the
course of growth, evaluating dynamic changes in the biomass
composition under different nutrient conditions, resulting in an
updated model of C. vulgaris model (iCZ946).16

In genome-scale model studies, biomass production is typically
set as the objective function in order to drive the optimization in
the model and predict cell growth rates.17 However, for our
metabolic model control (MMC) applications, the primary objec-
tive may be the capacity to control nutrient utilizations in order to
control inputs that can then be provided based on model
predictions. In the current study, growth of C. vulgaris was
estimated based on experimental optical density (OD) measure-
ments and then used to predict subsequent growth rates during
the exponential phase. Since the primary objective of this study
was to optimize the nutrient supply for algal culture, the objective
function was instead changed to optimize nutrient flux input,
including nitrate or glucose uptake into algal cells. We then
applied the genome-scale model in order to improve predictions
of the nutrients required for growth in response to different
culture conditions. As a result, we demonstrate the capacity to
utilize the metabolic model control in order to more effectively
and efficiently optimize bioprocessing for the generation of high
levels of algal biomass and biofuel precursors for potential
applications in biotechnology. More importantly, this framework
demonstrates a new avenue for applying genome-scale models as
a way to optimize bioprocessing across a wide range of cell lines
and potential applications in biotechnology.

RESULTS
Controlling nitrate addition under autotrophic condition for
optimized growth rates
In order to evaluate the MMC approach, model iCZ946-PAT1 was
used to control nitrate supply to autotrophic C. vulgaris cultures.
Model iCZ946-PAT1 was previously constructed based on the
biomass composition obtained under phototrophic and nitrogen
sufficient conditions (Fig. S1 and Table S1). In the current
approach, the growth rate (μ) was calculated based on the optical
density value (OD750) taken from experimental data at a previous
time point (ODt-1) and the current time point (ODt). Then, the
growth rate within the model was constrained to the calculated
growth value (μ) and the objective function was changed to the
nitrate uptake rate (FN). Specifically, the model was optimized to
calculate the minimum nitrate amount required to sustain this
calculated growth rate over a particular time interval (Fig. 1a).
One uncontrolled C. vulgaris culture was cultured with 250mg/L

nitrate, while three others were cultured with 25 mg/L nitrate and
fed with 80%, 100 and 120% of the optimal nitrate requirement
based on model predictions after 25mg/L nitrate was consumed
completely in the medium. For example, if the genome-scale
model predicted C. vulgaris cultures need 100 mg/L nitrate to
sustain the growth for the next 24 h, we would add 80mg/L,
100mg/L, and 120mg/L to MMC-80%, MMC-100%, and MMC-
120% cultures respectively. Based on the culture volume, a specific
amount of nitrate was fed to the culture to reach the
concentration predicted by the model. All cultures were bubbled
with 5% CO2 in order to make excess carbon source available in
culture and therefore make nitrate the main variable affecting the
growth rate. The controlled cultures fed with nitrate at 25mg/L
consumed all the nitrogen source by 46 h. Genome-scale
metabolic model control was then applied to calculate the
subsequent nitrate supply needed at 46, 70, 94, 118, 142, 150, and
166 h (see arrows) (Fig. 1a, b). Eventually, the uncontrolled
C. vulgaris cultures consumed all 250 mg/L nitrate by 182 h and
the model predictive feeding was stopped after that time point.
Measured nitrate concentration was nearly 0 mg/L in the medium
at all the time points after 46 h for all MMC conditions, indicating
that the total nitrate supplied to the medium was transported or
consumed completely into the cell.
Nitrate was added to all the three MMC cultures at 46, 70, 94,

118, 142, 150, and 166 h to reach a total amount available of
170mg/L, 220mg/L, and 250mg/L over the entire duration for the
80%, 100%, and 120% MMC conditions, respectively (Fig. 1C). Even
though significantly <250 mg/L nitrate was fed to the 80% and
100% MMC cultures (P ≤ 0.05), growth rates comparable to the
bulk-fed group were achieved in the 100% MMC cultures (Fig. 1d).
All four cultures reached OD750= 2.2 in 182 h, after which algae
entered a nitrogen starvation stage when the MMC feeding was
stopped. As displayed by the 120% MMC condition, even though
cells took up all of the nitrate supplied to the medium, feeding an
amount of nitrate higher than predicted by the genome-scale
model did not benefit algal growth in nitrogen replete or nitrogen
depleted conditions (Fig. 1d). This result was further supported by
the growth rate obtained for the bulk-fed 250mg/L, which was
similar to that obtained for 100% MMC culture. Even though the
bulk-fed and the MMC 120% group consumed 22% and 14.5%
more nitrate than the 100% MMC group respectively, all three
groups exhibited nearly comparable growth rates (Table S2,
Fig. 1c, d). However, supplying 80% of the nitrate amount
predicted by the model resulted in a slower growth rate especially
after 241 h (P ≤ 0.05) (Fig. 1d and Table S2). The slow growth rate
of the 80% MMC group and unimproved growth rate of 120%
MMC group indicate that the genome-scale model can predict the
optimal nitrate amount required for C. vulgaris growth.
In addition, we also performed an experiment to show that by

incorporating real-time measurements, this MMC approach help
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to enhance the performance of algal cultures and also control
nutrient supply more efficiently compared with standard
approaches based on biological approaches.
In this experiment, C. vulgaris culture was fed with nitrate using

3 different feeding strategies. The control case included an initial
loading of 285 mg/L nitrate with no subsequent feeding. A second
case was based on the biological knowledge of the growth rate
(0.0137 h−1) from the previous experiment (Fig. 1) to predict the
nitrate supply; this nitrate was fed every 12 h, which was actually
more often than the MMC case followed (Fig. S2a). For the third
MMC conditions, however, we measured the OD750 value every
24 h, and then input the growth rates into our genome-scale
model to determine the proper amount to feed every 24 h for
nitrate control in the MMC cultures (Fig. S2a).
The uncontrolled C. vulgaris culture was fed with 285mg/L

nitrate initially and the nitrate was consumed completely in the
media by around 147 h (Fig. S2b). For the biological based feeding
case, the OD750 reached a slightly lower value of 3.9 while also
utilizing approximately 285mg/L nitrate by experimental comple-
tion. However we added a total of only around 233mg/L nitrate to
the MMC cultures saving ~18% nitrate while reaching a similar
OD750 around 4.3 at 255 h as the uncontrolled batch experiment

(Fig. S2c, d). By using real-time OD750 measurements, we can
predict growth rate and supply nutrients more accurately.

The growth rates of C. vulgaris can be controlled under
heterotrophy
After successfully applying the genome-scale model iCZ946-PAT1
to control nitrate utilization under autotrophy, a new glucose
control feature was included in the model to simulate hetero-
trophic growth. In this experiment, we applied the iCZ946-HT1
model, which used biomass composition and omics data
experimentally determined under heterotrophic and nitrogen
sufficient conditions (Fig. S1 and Table S1). By using this growth
data, we evaluated the demand of glucose and nitrogen in order
to characterize growth conditions. First, the measured optical
density (ODt−1, ODt) was used to calculate the growth rate (μ) and
to constrain biomass accumulation rate in iCZ946-HT1. Next, the
glucose uptake rate (FG) was set as the objective function (Fig. 2a).
The model was then optimized to calculate the minimum amount
of glucose (FG,t->t+1) required to sustain algal growth. Then,
glucose uptake rate was constrained using the predicted value
and nitrate uptake rate (FN) was set as a new objective function in

Fig. 1 Metabolic model control under autotrophic conditions. Arrows indicate the feeding time points; a Algorithm of metabolic model
control (MMC); b Nitrate level in the medium (mg/L); c Total nitrate supply during the culture (mg/L); d Growth curve (OD750). The p-value at
time points 1–6 was provided in Table S2. The data represents the mean ± SD for n= 3. *P ≤ 0.05 **P ≤ 0.01
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a subsequent simulation (Fig. 2a). The optimization then yields the
amount of nitrate (FN,t->t+1) required to sustain algal growth.
This algorithm was performed at combinations of two different

levels of glucose (10 g/L [HG], 1 g/L [LG]) and two different levels
of nitrate (250 mg/L [HN], 25 mg/L [LN]). Experimental measure-
ments showed that the low glucose groups (LGHN and LGLN)
consumed all the initial glucose within 96 h (Fig. 2b). Based on the
experimental culture volume, specific amounts of glucose were
fed to the low glucose groups every 24 h based on experimental
culture volume and model predictions (see arrows in Fig. 2b). The
added glucose was nearly consumed between 96 and 120 h
(Fig. 2b). However, after 120 h, the glucose levels started to
increase in both LG groups, indicating the glucose was not
completely consumed in the culture medium. At 168 h, ~3800mg/
L and 3600mg/L of glucose was left in LGHN and LGLN groups,
respectively (Fig. 2b). A total of around 11,000 mg/L was fed to
both groups over 168 h (Fig. 2c), resulting in overfeeding after
120 h.
Experimental results indicated that C. vulgaris consumed 25mg/L

nitrate (HGLN and LGLN) and 250mg/L nitrate (HGHN and LGHN)
by 48 and 120 h. Specific amounts of nitrate were fed to the
cultures every 24 h based on cell growth rate and model
predictions for nitrogen uptake rate (Fig. 2d, e). Unlike the trends
observed for glucose supplementation under the heterotrophic
conditions, the algae consumed nearly all the nitrate added
during each time interval between 48 and 168 h (Fig. 2d). In this
way, the nitrate consumption pattern for C. vulgaris was different
from the glucose uptake rate over the same period, in which
glucose consumption rate did not match model predictions.
Biomass accumulation in all four C. vulgaris cultures was tracked

as OD750 increased from 0.08 to 7.7 between 0 and 168 h (Fig. 2f).
Initial low nitrate (25 mg/L) and low glucose (1 g/L) levels were
exhausted at 48 (time point 1) and 96 h (time point 2),
respectively, and the initial nitrate was exhausted at 120 h (time

point 3), for the high nitrate case (250 mg/L). The uncoupling of
glucose consumption and model predictions at 120 h suggests a
potential bottleneck to glucose consumption at high cell densities
of C. vulgaris (Fig. 2b), perhaps due to a limitation in oxygen
supply or a limitation in glucose uptake rate that can occur at
higher glucose levels.24–26 As a result, the current model for
heterotrophic growth did not account for these observed bottle-
necks to glucose consumption.
Therefore, the MMC algorithm was modified to reflect more

accurately the reduced glucose uptake rate in algal culture
occurring at higher biomass concentrations. Previously, glucose
uptake limitations into Chlorella have been observed and modeled
to account for substrate limitation.24,26 To account for such
limitation in our studies, we obtained an empirical equation
describing the relationship between glucose consumption rate
and biomass build up rate and this equation was incorporated
into the model. The relationship was determined using the
integrated value of total biomass produced and glucose uptake
rate (Fig. S3a, b). A polynomial regression line accurately fit the
trend of glucose uptake rate as a function of biomass accumula-
tion by using GraphPad software (R2= 0.947) (Fig. S3c). This
modification was incorporated into MMC to account for the
limitation in the cellular glucose uptake rate capability (Fig. 3a).
Consideration of both constraints restricts both the growth rate
prediction and the glucose uptake rate. By utilizing this new
equation to predict glucose uptake rate, we were able to estimate
effective growth rates. As a result, we achieved more representa-
tive glucose and nitrate uptake rates.
Experimental validation was performed again with four different

combinations (HGHN, LGHN, HGLN, and LGLN). C. vulgaris
consumed all the initially fed glucose in the LG group (1 g/L;
LGHN and LGLN) between 61 and 85 h (Fig. 3b). The MMC
algorithm, was used to supply glucose after 61 h. Applying this
new constraint on glucose uptake in the model dramatically

Fig. 2 Metabolic model control under heterotrophic conditions without constraints on glucose uptake rate. Arrows indicate the time points
for feeding nutrients. a Algorithm of metabolic model control; b Glucose level in the medium (mg/L); c Total glucose supply during the culture
(mg/L); d Nitrate level in the medium (mg/L); e Total nitrate supply during the culture (mg/L); f Growth curve (OD750). Point 1: 25mg/L nitrate
run out; Point 2: 1 g/L glucose run out; Point 3: 250mg/L nitrate run out. The data represents the mean ± SD for n= 3
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decreased the amount of surplus glucose in the medium to
0–900 mg/L in the LG group (1 g/L; LGHN and LGLN) during the
period of metabolic model control between 61 and 133 h. Around
5600–6000mg/L glucose was fed to the LG group (1 g/L) during
the same period of time (Fig. 3c). In the HG group (10 g/L; HGHN
and HGLN), C. vulgaris only consumed 4100–5800mg/L of the
initially provided 10,000 mg/L glucose during the experiment, and
left a significant amount of glucose in the medium (Fig. 3b).
Regarding the LN groups (25 mg/L; HGLN and LGLN), 25mg/L of

nitrate was consumed after 37 h and 250mg/L of nitrate was
consumed between 85 and 109 h for the HN groups (250 mg/L;
HGHN and LGHN) (Fig. 3d). Nitrate control was started in the low
nitrate group around 37 h and for the high nitrate group around
85 h. Between 640 mg/L and 740mg/L of nitrate was fed to all four
cultures (HGHN, HGLN, LGHN, LGLN) increasing OD750 from 0.08 to
the range of 8.8 and 9.7 in 133 h (Fig. 3e, f).

Modifying biomass composition in genome scale model to control
nitrate supply for sustaining algal growth with high lipid
productivity
Under nitrogen starvation, C. vulgaris has been found to
accumulate high intracellular lipid levels by altering its biomass
composition from low fatty acid content (~10%) to up to 60% fatty
acid.4 C. vulgaris is able to accomplish this shift in biomass
composition by recycling intracellular protein back into amino
acids, which contributes to lipid synthesis.27 However, algae suffer
two major drawbacks as a result of this adjustment which are the
loss of protein and chlorophyll.28 These sacrifices of critical cellular
components are likely to lead to an eventual cessation in growth.

Indeed, we observed that C. vulgaris ceases growth during
nitrogen starvation when protein content falls below ~10%
(Fig. S4). Our genome scale model was therefore applied to
control nitrate supply in order to sustain a protein level around
10% sufficient for continued algal growth even under stressed
conditions.
We previously explored the impact of different nutrient

condition changes on the biomass composition and the
metabolism of algal cells in a genome scale model.16 In the
current work, the two different models, iCZ946-PAT1 and iCZ946-
HT1, representing autotrophic and heterotrophic cultures, were
incorporated into our metabolic model control algorithm and
successfully validated the feasibility of nutrient optimization, as
shown in Figs. 1 and 3. To account for these changes in algal
biomass composition under nitrogen starvation, amino acid
content was modified from the previously published autotrophic
genome-scale model iCZ946-PAT5 (Table S1), which assumed 16%
of amino acid content in the biomass composition and was
constructed using omics data under nitrogen starvation condi-
tions. Our modified models were constructed to include instead
10% amino acid content (iCZ946-PAT5-10%AA) and 2% amino
acid content for the biomass composition (iCZ946-PAT5-2%AA), as
shown in Fig. 4a. The nitrate amount calculated for iCZ946-PAT5-
10%AA model should permit algae to synthesize enough protein
and preserve sufficient chlorophyll in order to maintain steady
algal growth while also potentially yielding a high lipid content
under nitrogen starvation metabolism. In contrast, C. vulgaris was
expected to cease growing when the nitrate supply was restricted
to 2% as predicted by the iCZ946-PAT5-2%AA model.

Fig. 3 Metabolic model control in heterotrophic conditions with a constraint on glucose uptake rate. Arrows indicate the time points for
feeding nutrients. a Algorithm of metabolic model control (MMC); b Glucose level in the medium (mg/L); c Total glucose supply during the
culture (mg/L); d Nitrate level in the medium (mg/L); e Total nitrate supply during the culture (mg/L); f Growth curve (OD750). Point 1: 25 mg/L
nitrate run out; Point 2: 1 g/L glucose run out; Point 3: 250mg/L nitrate run out. The data represents the mean ± SD for n= 3

C.-T. Li et al.
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To validate this concept, we again performed an autotrophic
experiment in which nitrate was supplemented to cultures every
20–24 h based on our model prediction (Fig. 4b). One set of two
flasks were subjected to nitrogen starvation and two other sets
were supplied with a small amount of nitrate based on model
predictions using either the iCZ946-PAT5-10% AA model or
iCZ946-PAT5-2%AA model. For the first 165 h of growth, all C.
vulgaris cultures grew similarly and reached OD750= 1.0 (Fig. 4b).
However, after 165 h, MMC cultures supplemented with nitrate
started to grow faster than the nitrogen starvation cultures (P ≤
0.05). At 261 h, C. vulgaris reached OD750= 1.1 for the nitrogen
starvation culture, while OD750 increased to 1.3 in both MMC-2%
AA and MMC-10%AA cultures. At the end of the experiment,
around 549 h, OD750 only increased slightly to 1.3 for the nitrogen
starvation culture. In the MMC-2%AA case, algal growth progres-
sively slowed relative to the 10%AA around 309 h (P ≤ 0.01), while
still greater than the complete nitrogen starvation case. In
contrast, the MMC-10%AA culture continued to expand over the
complete duration of the culture period and reached a final OD750

of 2.3 at 549 h (P ≤ 0.01). These results indicated that an average of
0.06 mg/L/h nitrate could support algal growth while targeting a
protein content at or near 10%.
Dry biomass was examined at three different time points: 261 h,

429 h, and 549 h, representing periods at which growth slowed
significantly for the reduced and depleted nitrate cases (Fig. 4c).
Indeed, the nitrogen starvation group, which stopped growing
after around 237 h, showed similar biomass yields at its last two
time points, ranging from 290mg/L to 300mg/L. The MMC-2%AA
group showed an increase in biomass between all time points,
growing from 390mg/L at 261 h to ~430mg/L at 429 h and
520mg/L at 549 h. C. vulgaris maintained steady growth under
stressed conditions for the MMC-10%AA condition. The biomass
yield steadily increased from 340mg/L at 261 h, to 470 mg/L at
429 h, finally reaching 610 mg/L at 549 h. The addition of nitrate
using the iCZ946-PAT5-10%AA model facilitated a biomass
increase of 30% at 261 h, 61% at 429 h, and 105% at 549 h

compared to the complete nitrogen-starvation case (P ≤ 0.01).
Compared with MMC-2%AA cultures, the biomass increased 17%
at 549 h (P ≤ 0.05) with no significant difference at 261 h and 429 h
(Fig. 4c). In total, around 36mg/L and 21mg/L nitrate were added
to the MMC-10%AA and MMC-2%AA cultures respectively over the
549 h cell culture period (Fig. 4d). The reduction in growth rate
after 309 h and biomass at 549 h in the MMC-2%AA cultures
suggested that the supplied nitrate in MMC-2%AA condition was
insufficient to maintain growth in the late stages of cultivation,
confirming the need for a higher amino acid content in the model
in order to maintain sufficient algal growth.
FAME content and total FAME yield were measured to evaluate

the role of using MMC on lipid productivity. As expected, at 261,
429 and 549 h, algae in the nitrogen starvation group accumu-
lated the highest FAME content among the three different
conditions: 35% at 261 h, 44% at 429 h and 52% at 549 h
(Fig. 5a–c). Alternatively, at 549 h, the MMC-2%AA group
accumulated 48% FAME content and the MMC-10%AA group
accumulated 45% FAME content, which were 4% and 7%, below
the nitrogen starvation case. This slightly decreased FAME content
is to be expected, as a greater fraction of algae metabolism was
dedicated to maintaining chlorophyll and protein content in the
MMC cultures.
Importantly, the overall FAME yield, which incorporates both

FAME content and biomass production, exhibited a different
accumulation pattern. While the nitrogen starvation group yielded
175mg/L at 549 h, the MMC-2%AA and MMC-10%AA group
provided 275 mg/L and 281 mg/L total FAME yield respectively.
Compared with MMC-10%AA conditions, the slower growth rate
at 549 h did not affect the FAME yield in MMC-2% AA cultures.
Over the three sampling periods, the MMC-10%AA group
displayed an increasingly higher total FAME yield 28% and 61%
when compared to the nitrogen starvation group at 429 h and
549 h (P ≤ 0.01), respectively.

Fig. 4 Metabolic model control under nitrogen limitation. a Biomass compositions in the models (normalized to 100%); b Growth curve
(OD750); c Biomass concentration (mg/L); d Total nitrate supply during the culture (mg/L). The data represents the mean ± SD for n= 3. *P ≤
0.05 **P ≤ 0.01
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Change in biomass constituents under nitrogen starvation and
metabolic model control conditions
After successfully controlling C. vulgaris growth with high FAME
productivity under nitrogen starvation using our genome-scale
metabolic model control approach, dry biomass was analyzed to
compare the effect of MMC on other biomass constituents. Total
chlorophyll yield decreased from 0.99mg/L at 261 h to 0.43mg/L
at 549 h for the nitrogen deprivation case (Fig. 6a). Indeed,
C. vulgaris is known to degrade the chlorophyll during nitrogen
starvation conditions.29 Supplying insufficient levels of nitrate to
the MMC-2%AA group also resulted in degradation of chlorophyll
from 1.48 mg/L at 261 h to 1.31 mg/L at 549 h. Alternatively, total
chlorophyll was maintained between 1.61 to 1.79 mg/L from 261
to 549 h in the MMC-10%AA group. Since overall biomass steadily
increased for both MMC groups, the chlorophyll content
decreased across all the cultures (Fig. 6b). However, the
chlorophyll content was around 0.29% in MMC-10%AA cultures,
higher than 0.25% in MMC-2%AA and 0.14% in nitrogen starvation
(P ≤ 0.05). These results suggested that the iCZ946-PAT5-10%AA
model can predict the level of nitrate necessary to maintain
substantial chlorophyll content in C. vulgaris for longer periods,
sustaining the energy capture capability from sunlight and
building up biomass with an elevated fatty acid content in a
limiting nitrogen environment.
Since nitrate is a major source of nitrogen for protein synthesis

in algae, the protein contents were also measured for all three
conditions. At 261 h, protein content for the nitrogen starvation,
MMC-2%AA and MMC-10%AA cases were around 11–16% (Fig.
6c). By 549 h, protein content decreased to 6.7%, 8.2% and 12%
under complete nitrogen starvation, MMC-2%AA and the MMC-
10%AA conditions, respectively. We hypothesized that 10%
protein may be the approximate lower threshold at which algae
can maintain metabolic functions and continue growth under
nitrogen limitations (See Fig. S4). Indeed, our experiment
confirmed this lower threshold, as nitrogen starvation ceased
growing around 165 h and MMC-2%AA groups growth progres-
sively slowed around 309 h (Fig. 4b). Meanwhile, the protein
content for the MMC-10%AA group was sustained around 10%
even at 549 h. Previously, protein content has been found to
decrease during nitrogen starvation,30 but this is the first study to
show that continual supplementation of nitrate can maintain the
protein content at a reduced level.

In addition to lipids, algae also use starch to store the energy
captured from sunlight. Since more chlorophyll was present in the
two MMC groups, more energy should be captured in the algal
cells, therefore we also determined the starch yield and starch
content in this work. We found that under nitrogen starvation
conditions, total starch yield was constant between 14 and 15mg/
L between the three time points (Fig. 6d). In the two MMC groups,
the total starch yield increased stably to a higher level than
complete nitrate starvation at 261–549 h (P ≤ 0.01) with 42mg/L
and 49mg/L for the MMC-2%AA and MMC-10%AA group.
Previous studies with C. zofingiensis found that starch synthesis
was more active during the initial stages of nitrogen starvation,
but decreased gradually as nitrogen starvation continued.31 Our
results indicated that without MMC, cells suppressed starch
synthesis from 261 to 529 h. For both MMC groups, our results
indicated that starch synthesis driven by sunlight was faster than
the degradation due to limitations in the nitrogen levels. The
starch content in both MMC groups was also higher than in
nitrogen starvation case at most of the time points (Fig. 6e). Total
lutein yield was also measured; using the iCZ946-PAT5–10%AA
model resulted in enhanced lutein yields of 195% and 38%, when
compared to the nitrogen starvation group (P ≤ 0.01) and the
MMC-2%AA group at 549 h (P ≤ 0.05), respectively (Fig. 6f).

DISCUSSION
In this work, we demonstrate the application of a genome-scale
model for metabolic model control for three different algal culture
conditions. Under autotrophic conditions, we validated that this
approach could provide an accurate prediction of the amount of
nitrate needed without affecting cell growth, saving 18% of
nitrate. Under heterotrophic conditions, we showed that this
algorithm could also be applied to calculate multiple nutrient
demands including glucose and nitrate while maintaining efficient
growth. We also confirmed that this methodology could be
applied to cultures under restricted nitrogen conditions. The
model was used to predict a sufficient amount of nitrate needed
to maintain algal growth rate while targeting a reduced protein
content, enabling the cells to maintain fatty acid and lutein
productivity. This MMC strategy led to a 61% increase in total
FAME yield and 195% increase in total lutein yield at 549 h
compared to the nitrate deprivation case.

Fig. 5 Fatty acid production at different time points. FAME content (% DW) at a 261 h, b 429 h, c 549 h. Total FAME yield (mg/L) at d 261 h,
e 429 h, f 549 h. The data represents the mean ± SD for n= 3. *P ≤ 0.05 **P ≤ 0.01
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Interestingly, we observed that even though a theoretical
surplus of nitrate was fed for the 120% MMC condition according
to model predictions, the cells still took up all the supplied nitrate
experimentally under autotrophic conditions. Comparing the
results with the 100% MMC condition suggested that this
nitrate was not used to build more biomass. The phenomena of
nitrate uptake rate exceeding nitrogen build up rate in biomass
has been indicated previously with our genome-scale model.16

Also, Droop and coauthors previously described a phenomena of
nitrogen source storage in order to account for algal growth after
nitrate is exhausted in the medium.10,32 In our metabolic model
control approach, nutrient control prediction is driven by growth
rate and therefore this method reflects directly the proper nitrate
amount needed to build up biomass. It is possible that some of
the surplus nitrogen may be secreted out as peptides, proteins or
metabolites into the supernatant. In E. coli and mammalian cells,
previous studies found that glucose overflow metabolism resulted
in acetate and lactate secretion into the medium.33,34 Algae can
naturally secrete proteins like exozyme as well as fatty acid
derivative compounds like diacylglyceryl-N,N,N-trimethylhomoser-
ines (DGTS).35,36

Under nitrogen restricted conditions, biomass composition
analysis indicated that the iCZ946-PAT5-10%AA genome-scale
model could be applied to successfully limit the nitrate uptake
rate while channeling the limiting element into synthesis of
chlorophyll and other proteins. The goal was to retain sufficient
chlorophyll and other protein content needed to maintain
energetic and physiological processes critical to fatty acid
production. Indeed, previous researchers found that degradation
of chlorophyll decreases light energy conversion efficiency in red
algae Porphyridium cruerntum.37 Further, in Chlorella, higher

amounts of NADPH are required for lipid synthesis under nitrogen
deprivation, but somewhat contradictory, photosynthesis from
chlorophyll is the major source for NAPDH production.38–40 Using
MMC to control the nitrate feed supply at reduced levels allowed
the cells to continue to grow and accumulate biomass, including
chlorophyll, while also synthesizing lipids, resulting in higher
overall lipid and starch production rates as compared to the
complete nitrogen deprivation case. Consequently, algal growth
continued as a result of MMC, even under nitrogen restricted
conditions from 261 to 549 h, which was the major fatty acid
production stage, leading to higher yields of the fatty acid
products compared to complete deprivation. Thus, maintaining
sufficient chlorophyll level through limited nitrate feeding in the
MMC-10%AA case allows the algae to support the energy
demands needed for robust lipid synthesis in C. vulgaris. In
addition, previous studies also found a correlation between lutein
content and chlorophyll content in microalgae.41 The increase of
lutein content in MMC-10%AA cultures also indicated the
importance of optimizing nitrogen supply to sustain chlorophyll
and lutein yield under nitrogen-limited conditions. To our
knowledge, this is the first time researchers have applied a
genome model to increase yields of both bioenergy precursors in
the form of fatty acids and health products such as lutein in algal
cultures systems under nitrogen-limited conditions.
Similar fatty acid profiles were observed for nitrogen restricted

and nitrogen depleted conditions with C18:1 fatty acid as the
dominant peak, as shown in Fig. 5a–c. Interestingly, this C18:1
fatty acid content dramatically decreased from ~15 to 18% DW for
these nitrogen restricted conditions to approximately 0.65% DW
under nitrogen replete conditions (Fig. S5). Previous studies found
the same trend of increasing C18:1 content in C. vulgaris during a

Fig. 6 Biomass compositions during nitrogen limitation with metabolic model control. a Total chlorophyll yield (mg/L); b Chlorophyll content
(% DW); c Protein content (% DW); d Total starch yield (mg/L); e Starch content (% DW); f Total lutein yield (mg/L) at 549 h. The data represents
the mean ± SD for n= 3. *P ≤ 0.05 **P ≤ 0.01
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shift from nitrogen replete to nitrogen starvation conditions.4,42

The presence of a predominance of C18:1 fatty acid in all three
cultures of this study (nitrogen depletion and nitrogen restriction)
indicates that some levels of cellular response to nitrogen
starvation were evident even for the two MMC groups in which
the cells were fed with limited amounts of nitrate.
Previously, a study connected a kinetic model with a C.

reinhardtii genome-scale model to optimize nitrate supply and
light intensity for D. salina cultures.43 In this study, we expanded
the capability of our multi-compartment C. vulgaris genome-scale
models to control multiple nutrients, in this case glucose and
nitrate, concurrently for C. vulgaris microalgal cultivation studies,
including different biomass compositions that can vary as a result
of the nutrient inputs. Previously, control has been implemented
for algal fed-batch heterotrophic cultures using conventional
methods to control glucose concentration within a certain range44

or kinetic models to optimize feeding rate.25 However, the
previous model predictive methods used simple correlations to
describe the kinetic interaction between substrate uptake rate and
biomass build up rate. In this study, we have demonstrated how
genomic information, metabolic networks and biomass composi-
tions can be incorporated to build metabolic model control in
order to provide a more precise understanding and control of
heterotrophic algal cell cultures. In addition, previous studies
observed that a high amount of glucose in the medium can
negatively inhibit cell growth in two different Chlorella species.44

Our strategy successfully controlled glucose and nitrate at low
concentration, which may be particularly useful for scaling up
bioreactors in order to limit nutrient input costs and remediate
glucose inhibition challenges.
Overall, this study demonstrates the power of building genome-

scale metabolic models control for nutrient optimization with
microbial algal cultures. As data collecting processes evolve,
genome-scale models can be implemented into biomanufacturing
in order to predict the specific amount of nutrients needed to
support algal growth for different conditions and final process
objectives as illustrated in supplemental Fig. S6. This systematic
control strategy represents a potentially promising method for
enhancing biofuel precursor production rates from microalgal
cultures while controlling inputs in order to lower overall
production costs of algal bioprocessing. A similar genome-based
control approach involving restricted nutrient feeding could also
be considered for optimizing productivities for other cell factories
that generate valuable products during non-growth phases such
as yeast production of organic acids45 and mammalian cell
generation of recombinant proteins.46

METHODS
Algal strain and cultivation conditions
Green microalgae Chlorella vulgaris UTEX 395 was obtained from the
Culture Collection of Algae at the University of Texas at Austin and
maintained on sterile agar plates (1.5% w-v) containing Bold’s Basal
Medium (BBM). Liquid cultures were inoculated with a single colony in
12.5 mL of sterile BBM. Cells were transferred to 100mL or 250mL glass
Fernbach flasks (New Jersey, USA) at 25 °C using BBM. Autotrophic cultures
were grown with different nitrate concentration under fluorescence
illumination (30 μEm−2 s−1). Heterotrophic cultures were grown with
different glucose and nitrate concentration with 24 h dark. Nitrogen
starvation cultures were grown under BBM without nitrate as nitrogen
source. The growth of the cultures was monitored by measuring optical
density (OD) at 750 nm. During the metabolic model control, specific
amounts of 25 g/L nitrate or 20 g/L glucose were added manually into the
cultures based on model prediction every 20–28 h. All the cultures were
done in biological triplicate in this study.

Measurement of algal biomass dry weight and FAME content
Liquid cultures were harvested using a high-speed centrifuge (Beckman
J2–21, Baltimore, USA) at 4000 x g for 10minutes. The pellets were stored
at −80 °C and lyophilized for 24 h at −40 °C under freeze-dried machine.
FAME production followed the procedure provided by.47 FAMEs were

analyzed using a Agilent’s Gas Chromatography (GC) system with
discharge ionization detection equipped with a capillary column
(Stabilwax-DA, 30m 0.25mm ID, film thickness 0.25mm). GC inlet was
set at 250 °C and the injections were in a volume of 1 μL. The temperature
program started at 50 °C and then increased to 170 °C at a rate of 20 °C
min−1, with a plateau for 1 min. After this plateau, the temperature
increased from 170 °C to 220 °C at a rate of 4 °C min−1 and then kept
constant for 14minutes. The total analysis time was 35minutes. Helium
was used as carrier gas.

Measurement of lutein yield, starch content, chlorophyll content
and protein content
Lutein extraction followed the procedure provided by.48 The dried algae
pellets (5–10mg) were homogenized using a mortar and pestle with 4 mL
extraction solvent, the mixture of dichloromethane (25%) and methanol
(75%), for 2 min and 2 times. The extraction solution was centrifuged at
10000 x g for 10min and kept in dark in −20 °C. The solution was filtered
before HPLC analysis. The mobile phases are eluent A (dichloromethane:
methanol: acetonitrile: water, 5.0:85.0:5.5:4.5, v/v) and eluent B (dichlor-
omethane: methanol: acetonitrile: water, 25.0:28.0:42.5:4.5, v/v).
Starch content in dry biomass was analyzed using an assay kit (K-TSHK,

Megazyme). Starch in dried algae pellets were hydrolyzed into glucose by
α-amylase and amyloglucosidase. Then glucose was digested by enzyme
hexokinase and glucose-6-phosphate dehydrogenase. After the reaction,
the absorbance at 340 nm was measured.
Chlorophyll content followed procedure provided by.49 Chlorophyll in

the dry algae pellets was extracted by DMSO and absorbance at 665 nm
and 649 nm were measured.
Protein content followed procedure provided by.4 Dry Biomass was

sonicated on ice for 4 °C for 30 s × 6 cycles. Lysates were centrifuged at
16,000 x g for 2 min and the supernatant were analyzed by bicinchoninic
acid assay (BCA assay).

Genome scale model simulation for nutrient control
The iCZ946 model was obtained from.16 Biomass composition, RNA-seq
and proteomics data were collected previously under photoautotrophic
(PA) conditions and heterotrophic (H) conditions.4,50 Six sample points
were collected to build six different photoautotrophic models (PAT1-PAT6)
and five samples were used to construct five different heterotrophic
models respectively (HT1-HT5) as described in our previous publication.16

Data collected for all models, except PAT1 and HT1, were undertaken
during nitrogen depletion conditions (Fig. S1). iCZ946-PAT1 model was
applied for nutrient optimization in autotrophic conditions and iCZ946-HT1
model was used for nutrient optimization in heterotrophic conditions. The
iCZ946-PAT5-10%AA and iCZ946-PAT5-2%AA models were built by
changing amino acid composition in iCZ946-PAT5 model. The growth
rate (μ) was constrained in the model and the objective function was
changed to minimize nitrate uptake rate (FN) or glucose uptake rate (FG).
Genome-scale model simulations were performed using the Gurobi
Optimizer Version 5.6.3 (Gurobi Optimization Inc., Houston, Texas) solver
in MATLAB (The MathWorks Inc., Natick, MA) with the COBRA Toolbox.51
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