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Lymphocytes continuously patrol the secondary lymphoid organs (SLOs) of mammals in
search for their cognate antigens. SLOs are composed of leucocytes (∼95%) and lymphoid
stromal cells (∼5%) that form the structural framework of these organs.These sessile cells
have been considered for decades as inert elements of the immune system.This simplistic
view has dramatically changed in recent years, when it was discovered that these architec-
tural cells are endowed with immuno-regulatory functions. Lymph nodes (LNs) are located
at the interface between the blood and lymphatic systems, thus allowing tissue-derived
antigen/antigen presenting cells (APCs) to gather with blood-derived lymphocytes. As a
typical LN contains ∼10 million of tightly packed cells, this accumulation of immune cells
and information is probably not sufficient to foster the rare cellular interactions mandatory
to the initiation of adaptative immune responses. Herein, I review some of the physico-
chemical elements of stromal cells that are used to transport and guide immune cells and
soluble molecules within LNs.
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TRANSPORTATION OF IMMUNE INFORMATIONS
Lymphatics continuously transport soluble and particulate Ags
from peripheral tissues to draining lymph nodes (LNs; Young,
1999; Willard-Mack, 2006). This lymphatic content reflects the
immunological status of peripheral tissues and is constantly deci-
phered by antigen presenting cells (APCs) and lymphocytes within
LNs. Afferent lymphatics discharge their content in the LN sub-
capsular sinus (SCS), a hollow tubular structure that surrounds
the LN, thus preventing free diffusion of the lymphatic con-
tent to the underlying parenchyma (Forkert et al., 1977; van
Ewijk et al., 1988; Willard-Mack, 2006). The vast majority of
APCs and lymphocytes reside in the enclosed LN parenchyma
from which free soluble particles are excluded. This struc-
tural confinement raises a critical question: how is soluble and
particulate material transported from the SCS throughout the
parenchyma?

SCS MACROPHAGES
The floor of the SCS is composed of a layer of sinus endothe-
lial cells and a layer of specialized fibroblasts (Forkert et al., 1977;
Farr et al., 1980). The integrity of the floor of the SCS is a sub-
ject of conflicting reports. Ultrastructural studies demonstrate
pores in the floor of the SCS by electron microscopy (Forkert
et al., 1977; van Ewijk et al., 1988) while others argue against
such evidences (Farr et al., 1980). Despite the putative existence
of pores in the floor of the SCS, there is evidence that pen-
etration of particulate material from lymph into LN cortex is
limited (Gretz et al., 1997). SCS is populated by a subpopula-
tion of SCS macrophages that extend cytoplasmic protrusions
to the underlying B cell follicle. Intravital imaging of the SCS
in live animals demonstrated macrophage capture of particulate

antigen and transfer to Ag-specific B cells via these protrusions
(Carrasco and Batista, 2007; Junt et al., 2007; Phan et al., 2007;
Figure 1, item 1). Further experiments demonstrated that com-
plement receptors 1 and 2 expression on B cells is important
for the capture and delivery of immune complexes from SCS
macrophages to germinal centers (GCs) and follicular dendritic
cells (FDCs; Phan et al., 2007, 2009). Therefore, SCS macrophages
act as Ag-bridging channels between the impermeant SCS and B
cell follicles.

THE CONDUIT SYSTEM
The SCS is a shielded unit that prevents the free diffusion of par-
ticulate Ags and soluble material >70 kDa to the parenchyma
(Gretz et al., 2000). Tissue-derived cells such as dendritic cells
(DCs) can actively cross the layer of SCS-lining cells (Braun
et al., 2011) whereas chemokines, interleukins (ILs), and small
Ags can diffuse to the parenchyma via a dedicated network of
pipes named conduits (Sainte-Marie and Peng, 1986). Conduits
originate between the SCS-lining cells (Gretz et al., 1997) and
are found throughout the paracortex, mainly within the T cell
zone. These reticular fibers are composed of several layers of
extracellular matrix molecules precisely assembled around a core
of collagen fibers (refer to Sixt et al., 2005; Roozendaal et al.,
2008 for an extensive description of the conduits composition).
Conduits are produced and ensheathed by Fibroblastic reticular
cells (FRCs; Gretz et al., 1997; Katakai et al., 2004b; Figure 1,
item 2a) and as a result, most of the conduit system is shielded
from lymphoid and myeloid cells within the T cell zone. Despite
its physical enclosure, many immune cell types capture soluble
material from the lymphatic content conveyed by the conduit
network.
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FIGURE 1 | Stromal cell guided transport of soluble material and immune cells within lymph nodes.

High endothelial venules
High endothelial venules (HEVs) are the gateways intravascular
lymphocytes use to immigrate into the LN parenchyma from
the blood circulation (Cho and De Bruyn, 1986; Girard and
Springer, 1995). Lymphocyte recognition of HEVs involves a mul-
tistep adhesion cascade in which primary adhesive interactions
(rolling) are followed by firm arrest (sticking) in response to

chemokines (Sasaki et al., 1996). The endothelial cells of HEVs
secrete and present chemokines such as CCL21 on their luminal
surface (Gunn et al., 1998). As most of the tubules of the conduit
system end in HEVs, the luminal surface of these structures is also
rapidly decorated by lymph borne chemokines transported via the
conduit system (Gretz et al., 2000; Baekkevold et al., 2001; Palfra-
man et al., 2001). Therefore, the conduit system acts as a remote
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messenger system able to modulate lymphocytes trafficking across
LN HEVs.

Resident dendritic cells
Lymph nodes contain an important population of resident DCs
that settle on the FRC network (Sixt et al., 2005; Bajenoff et al.,
2006) and are capable of taking up and processing soluble antigens
transported within the conduits (Sixt et al., 2005).

In steady state conditions, these Ag-loaded DCs present pep-
tide/MHC complexes to T cells in absence of co-stimulatory
molecules and should hence promote peripheral tolerance (Probst
et al., 2003, 2005). Upon infection, inflammatory stimuli, soluble
Ag, and tissue-derived DCs loaded with pathogen peptide/MHC
complexes are drained to the proximal LN (Itano et al., 2003).
In these conditions, resident DCs probably present tissue-derived
Ags in a pro-inflammatory environment susceptible to initiate
adaptive immune responses (Itano et al., 2003).

The important meshwork of resident DCs may represent a very
efficient way to “deploy” the antigenic repertoire conveyed by the
conduit system. Such widespread antigenic representation may
ensure an optimal scanning of lymphocytes during their journey
in the LNs, both in steady state and inflammatory conditions.

B cells and follicle dendritic cells
Although the conduit system is synthesized by T cell zone FRCs,
sparse conduits are present in B cell follicles. Like their T cell coun-
terparts, follicular conduits convey soluble (but not particulate)
material from the SCS throughout B cell follicles. Using two-
photon (2P) technology, Roozendaal et al. (2009) observed that
conduits deliver small antigens and chemokines such as CXCL13
to B cells that directly contact the conduits. Another study demon-
strated that the conduit system is also used to deliver soluble Ag to
FDCs (Bajenoff and Germain, 2009).

Efficiency of the transport
Subcutaneous injection of fluorescent tracers demonstrated that
the transportation of soluble material from the peripheral tissue
to the parenchyma of the draining LN occurs within minutes
(Itano et al., 2003; Roozendaal et al., 2009). The efficacy of the
conduit system is quite surprising given (i) the numerous resi-
dent DC processes supposedly stuck in narrow conduits, (ii) the
complex 3D branching pattern of the conduit system, and (iii)
the absence of identified lymph propelling system. Further exper-
iments will be required to understand the fine details that control
lymph propulsion within these micropipes.

TRANSPORTATION OF CELLS
CONTROL OF LYMPHOCYTE FLUX
Steady state
Millions of lymphocytes enter and exit LNs each day, accessing
the parenchyma via HEVs and egressing via efferent lymphatics.
Despite this high rate of cellular flux, the number of lympho-
cytes present in a resting LN is extraordinary stable over time. The
control of lymphocyte trafficking is mediated by the endothe-
lial cells of HEVs that harbor typical cobblestone shapes with
numerous embedded lymphocytes (Girard and Springer, 1995).
Recent evidences revealed that these T and B cells are frequently
packed together underneath the endothelial cell inside “pockets”

composed of 4–5 lymphocytes (Figure 1, item 3a). These pockets
function as waiting areas that hold and grant lymphocytes access
to LN parenchyma in proportion to the rate of lymphocyte egress
from the LN, enabling the LN to maintain a constant cellularity
while supporting the extensive cellular trafficking necessary for
repertoire scanning (Mionnet et al., 2011).

Inflammation
Lymph nodes are highly vascularized structures that, upon inflam-
mation, can remodel and expand their primary feed arterioles by
50%, leading to a four- to fivefold increase in the rate of naive
lymphocyte flow rate through the draining LNs (Figure 1, item 4;
Soderberg et al., 2005). At the same time, the pro-inflammatory
mediators released from the inflammatory site are transported via
the conduits to the HEVs of the draining LNs (Baekkevold et al.,
2001). IL-6 increases intercellular adhesion molecule-1 (ICAM-1)
expression on HEVs, thereby promoting lymphocyte adherence to
HEVs of the draining LN. This phenomenon may also apply to
IL-8 and tumor necrosis factor (TNF-α) that have been shown to
rapidly increase T cell entry into the draining LN (Larsen et al.,
1989; McLachlan et al., 2003). In addition, memory and effec-
tor T cells that lack CD62L expression rapidly gain entry into
inflamed LNs through expression of CXCR3 and its interactions
with CXCL9 deposited on the luminal surface of inflamed HEVs
(Wurtz et al., 2004). Finally, temperatures ranging from 38–40 ºC
act directly on lymphocytes to enhance CD62L-dependent hom-
ing across HEVs while also increasing the expression of CCL21
and ICAM-1 on the surface of HEVs (Figure 1, item 3b; Chen
et al., 2006).

Altogether, these results present HEVs as gatekeepers in charge
of modulating lymphocyte trafficking to LNs, both at steady state
and during inflammation.

CONTROL OF LYMPHOCYTES MOTILITY AND TERRITORIALITY
Within SLOs, T and B cells are highly mobile and segregate in
distinct geographical areas populated by different stromal cells
(Miller et al., 2002). FRCs reside in the T cell zone while FDCs
populate B cell follicles (Gretz et al., 1997; Allen and Cyster, 2008;
Mueller and Germain, 2009). Both stromal cell populations form
dense, intermingled 3D networks in their respective areas (Schnei-
der and Tschopp, 2003; Bajenoff et al., 2006; Munoz-Fernandez
et al., 2006; Link et al., 2007; Allen and Cyster, 2008).

Fibroblastic reticular cells
Fibroblastic reticular cells are fibroblast-like cells that reside in
the T cell area of LNs and spleen. FRCs produce and enwrap
the conduit system, forming a rigid cellular network embed-
ded amongst motile lymphocytes (Anderson and Anderson, 1976;
Gretz et al., 1997; Sixt et al., 2005). Intravital two-photon (2P)
imaging experiments have revealed that the FRC network sup-
ports and guides T and B cell motility in the T cell area (Bajenoff
et al., 2006), dictating the apparent characteristic random migra-
tory behavior of these cells. Lymphocytes follow the supporting
fibers of the FRC as they migrate in the T cell zone that is itself
defined by the extent of this network (Figure 1, item 2a).

The molecular cues that drive lymphocyte locomotion on FRCs
have partially been deciphered. FRCs secrete the homeostatic
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chemokine CCL21 that stick to collagen IV and glycosaminogly-
cans (GAGs) present on the surface of FRCs (Ansel et al., 2000;
Sixt et al., 2005; Link et al., 2007; Yang et al., 2007). CCR7, the
receptor for CCL21, is expressed by many cell types, includ-
ing DCs, T and B lymphocytes (Yanagihara et al., 1998; Forster
et al., 1999). Both molecules are critical for the proper delim-
itation of the T/B cell boundary within SLOs as evidenced by
the inability of T and B cell areas to properly segregate in
the SLOs of CCL21 and CCR7 deficient mice (Nakano et al.,
1998; Forster et al., 1999). Three recent dynamic imaging stud-
ies demonstrated that CCR7/CCR7-L signaling pathway is a key
modulator of T cell locomotion (Asperti-Boursin et al., 2007;
Okada and Cyster, 2007; Worbs et al., 2007). These studies
concluded that the effect of CCR7 or CCR7-ligand deficiency
could account for ∼40% of the Gi-dependent motility of T cells
in LNs.

Altogether, these results indicate that the random locomotion
of T cells in LNs is physically and chemically guided by FRCs while
CCR7/CCR7-ligands modulate the velocity of T cells. The exact set
of molecular/chemical cues that regulate T cell migration remains
to be determined.

Follicular dendritic cells and follicular stromal cells
Follicular dendritic cells present native antigens in the form of
immune complexes on their surface and are critical for the main-
tenance of B cell follicle integrity (Cyster et al., 2000; Allen and
Cyster, 2008; Wang et al., 2011). Recent evidence indicate that
FDCs arise from ubiquitous perivascular precursors (preFDC)
expressing platelet-derived growth factor receptor β (PDGFRβ;
Krautler et al., 2012). During immune responses, FDCs organize
the development of GCs in which mature B lymphocytes rapidly
proliferate, differentiate, mutate their antibodies through somatic
hypermutation, and class switch their antibodies (MacLennan,
1994; Allen et al., 2007a; Allen and Cyster, 2008; Wang et al., 2011).
Intravital 2P experiments have revealed that B cells migrate on the
thin and intermingled processes of radio-resistant stromal cells
populating B cell follicles, suggesting that FDCs are the counter-
parts of FRCs in the B cell follicles (Bajenoff et al., 2006; Figure 1,
item 2b).

Follicular dendritic cells are defined by their capacity to trap
and retain immune-complexes and their expression of various
markers such as CD21/35 (complement receptors 1 and 2) and C4
complement fraction (Cyster et al., 2000). FDCs also express BP3,
a glycosylphosphatidyl-anchored membrane protein (McNagny
et al., 1991) of unknown function. Surprisingly, BP3 staining in
B cell follicle highlights a non-FDC network, suggesting the exis-
tence of a second follicular stromal cell network (McNagny et al.,
1991; Allen and Cyster, 2008). Therefore, it is likely that both
FDCs and these radio-resistant follicular stromal cells support B
cell migration in primary B cell follicles. Further experiments will
be required to address this issue.

Follicular dendritic cells and follicular stromal cells are an
important source of CXCL13 in follicles and this chemokine is
known to promote B cell migration in vitro and organize B cell
follicle formation in vivo (Legler et al., 1998; Ansel et al., 2000;
Saez de Guinoa et al., 2011). Two-photon microscopy analysis of
GC B cell motility showed that it was reduced in the absence of

CXCL13 suggesting that this chemokine may also promote B cell
motility in primary follicles (Allen et al., 2007b).

OPEN QUESTIONS
Control of lymphocyte trafficking on FRC and FDC networks
T and B cells actively migrate on stromal cell networks, adapting
their paths to the 3D processes of these supporting cells. Such
stochastic behavior may ensure that a given lymphocyte will even-
tually visit its entire territory before leaving the LN. However, LNs
are densely packed organs in which extracellular space is limited, if
not absent. Therefore, wandering lymphocytes should constantly
“bump” to each other during their random migration. Interest-
ingly, we consistently observed that T cells never turned back in
the middle of a FRC fiber but always changed direction at FRCs
intersections (personal observation). It would then be interesting
to determine how lymphocytes move as a population and whether
they constantly bump and squeeze on each other or line up along
stromal cells during their migration.

Stromal cell behavior in inflamed LNs
Lymph nodes draining an inflamed tissue rapidly enlarge in
response to the massive influx of naive cells and the proliferation
of the activated ones, probably inducing a tremendous and rapid
remodeling of the various stromal cell subsets that should not
only continue to fulfill their steady state duties but also create new
microenvironments necessary for the development of the immune
response (e.g., GCs, medullary cords, etc.; Katakai et al., 2004a,b;
Allen et al., 2007a; Allen and Cyster, 2008). So far, we do not under-
stand how LN stromal cells manage these rapid structural changes
and cellular demands.

Are inflamed stromal cells able to stretch? Fibroblastic retic-
ular cells and FDCs form 3D substrata for lymphocytes. Upon
inflammation, these networks should accommodate the massive
influx of lymphocytes and continue to generate cellular roads for
them. FRCs and FDCs express contractile molecules normally
restricted to smooth muscles (desmin, smooth muscle actin, etc.)
and myofibroblasts, a subset of activated fibroblasts capable of
speeding wound repair by contracting the edges of the wound
(Sixt et al., 2005; McAnulty, 2007). FRCs are also endowed with
contractile properties as evidenced by their capacity to induce
wrinkles on deformable collagen-coated silicone substrate (Link
et al., 2007). As FRCs are attached to collagen-rich conduits, these
properties may allow them to stretch in order to increase their sur-
face and accommodate the massive influx of T cells consecutive
to inflammation. Their contractile properties may also be used to
shrink the conduits upon the completion of the immune response
in order to restore the original size of the LN. The calculation
of FRC and FDC densities as well as the precise measurement
of their dimensions in resting and inflamed LNs may test these
hypotheses.

Origin of additional stromal cells in inflamed LNs. Inflamed
LNs can triple their size in few days and undergo a tremen-
dous enlargement in chronically infected mice (Webster et al.,
2006; Ruddle and Akirav, 2009). It is thus likely that FRC
and FDC networks incorporate new stromal cells in order to
sustain this remodeling. The origin of lymphoid stromal cells
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remains elusive, though there are growing evidences that they are
of mesenchymal origin (Munoz-Fernandez et al., 2006; Mabbott
et al., 2011). In addition, the SLOs of irradiated hosts reconsti-
tuted with syngeneic bone marrow cells possess lymphoid stromal
cells of host origin (Humphrey et al., 1984; Bajenoff et al., 2006).
These observations led to the conclusion that adult lymphoid
stromal cells do not originate from bone marrow mesenchy-
mal cells at steady state. However, these conclusions should be
interpreted with caution. Bone marrow hematopoietic stem cells
only engraft when adoptively transferred in an irradiated host,
demonstrating that the destruction of pre-existing hematopoi-
etic cells/progenitors is a prerequisite for the engraftment of
hematopoietic progenitors. Stromal cells and their progenitors

are radio-resistant. Therefore, if grafted bone marrow cells con-
tain mesenchymal stromal cell progenitors, these cells will fail to
engraft, even when adoptively transferred in an irradiated host.
In absence of prior stromal cell destruction, any adoptive transfer
of stromal cell progenitor is probably destined to fail. The deter-
mination of the origin of stromal cells in resting and inflamed
LNs will probably require the creation of new animal models
that are currently critically lacking in the field of stromal cell
biology.
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