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Natural antibodies (NAb) are defined as germline encoded immunoglobulins found

in individuals without (known) prior antigenic experience. NAb bind exogenous (e.g.,

bacterial) and self-components and have been found in every vertebrate species tested.

NAb likely act as a first-line immune defense against infections. A large part of NAb, so

called natural autoantibodies (NAAb) bind to and clear (self) neo-epitopes, apoptotic,

and necrotic cells. Such self-binding antibodies cannot, however, be considered as

pathogenic autoantibodies in the classical sense. IgM and IgG NAb and NAAb and

their implications in health and disease are relatively well-described in humans and mice.

NAb are present in veterinary (and wildlife) species, but their relation with diseases and

disorders in veterinary species are much less known. Also, there is little known of IgA

NAb. IgA is the most abundant immunoglobulin with essential pro-inflammatory and

homeostatic properties urging for more research on the importance of IgA NAb. Since

NAb in humans were indicated to fulfill important functions in health and disease, their

role in health of veterinary species should be investigated more often. Furthermore,

it is unknown whether levels of NAb-isotypes and/or idiotypes can and should be

modulated. Veterinary species as models of choice fill in a niche between mice and

(non-human) primates, and the study of NAb in veterinary species may provide valuable

new insights that will likely improve health management. Below, examples of the

involvement of NAb in several diseases in mostly humans are shown. Possibilities

of intravenous immunoglobulin administration, targeted immunotherapy, immunization,

diet, and genetic modulation are discussed, all of which could be well-studied using

animal models. Arguments are given why veterinary immunology should obtain inspiration

from human studies and why human immunology would benefit from veterinary models.

Within the One Health concept, findings from veterinary (and wildlife) studies can be

related to human studies and vice versa so that both fields will mutually benefit. This

will lead to a better understanding of NAb: their origin, activation mechanisms, and their

implications in health and disease, and will lead to novel health management strategies

for both human and veterinary species.
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INTRODUCTION

Natural antibodies (NAb) are defined as immunoglobulins found
in individuals without (known) prior antigenic experience (1).
Albeit a heterogeneous group, NAb are generally characterized
as oligo-specific low affinity binding immunoglobulins which
recognize exogenous and self-antigens (2). The majority of
reported NAb are IgM and IgG, whereas IgA is much less studied
and described. NAb have germline encoded VH and VL regions
that restrict their binding capacity to phylogenetically conserved
epitopes (3), in contrast to adaptive immunoglobulins that could
theoretically recognize any epitope of an antigen. NAb have
minimal N-nucleotide insertions and few or no somatic hyper-
mutations and therefore are of low affinity (4). In comparison,
low affinity NAb have a dissociation constant (Kd) ranging
between 10−4 and 10−6 M, whereas high affinity conventional
antibodies range between 10−6 and 10−10 M (5). With respect
to their functions, NAb were reported to initiate apoptosis
(6), enhance T cell proliferation (7), activate complement (8–
10), opsonize antigen (11), enhance antigenicity (12), target
antigen to lymph nodes (13), and are involved in FcR-mediated
phagocytosis (10). They also act as broad neutralizing agents
(6) and endogenous adjuvants for CD8+ T-cell responses (14),
and they sustain differentiation and maturation of dendritic cells
(15, 16) (Table 1). For extensive reviews of NAb functions see also
references 4 and 17.

A substantial part of NAb can react with intracellular
and membrane expressed autoantigens and circulating
macromolecules and haptens that are conserved during
evolution. Such antibodies are called natural autoantibodies
(NAAb) (23, 24). NAAb can react with many autoantigens,
and damaged and senescent cells. Damage or senescence of
cells might be due to oxidative mechanisms resulting in the
generation of neo-epitopes on or within the cell. Thereby,
NAAb facilitate antigen-mediated removal of apoptotic cells
by phagocytosis and display anti-inflammatory activity. This
decreased exposure to intracellular autoantigens from apoptotic

TABLE 1 | Involvement of natural antibodies in immune responses and immune

status.

References

Initiation of apoptosis (6, 17)

Complement activation (8–10, 18)

FcR-mediated phagocytosis (10, 19)

Neutralization of infective agents (6, 18, 20, 21)

Adjuvanting properties (14, 22)

Maturation of dendritic cells (15, 16)

Clearance of senescent/necrotic cells (23, 24)

Prevention of autoimmunity (17, 25–28)

Opsonization of antigens (11)

Enhancement of antigenicity (12)

Antigen targeting to lymph nodes (13, 18)

T cell proliferation (29)

Allograft rejection (30)

cells might also mitigate the development of autoimmune
diseases (17, 25). On the other hand, NAb are indicated in the
pathogenesis of autoimmunity, inflammatory bowel diseases,
contact hypersensitivity, and sepsis (31), but only a minority
of NAb and NAAb have pathogenic features (29). Moreover,
many individuals possess antibodies directed against common
epitopes in highly mutating viral infections, like influenza
and HIV. These, so-called “broadly neutralizing antibodies”
share some characteristics with NAb (20, 21). Antibodies
binding previous versions of the viral strain consist of about
0.01% of the antibodies raised after infection or vaccination
and react with all variants of the virus and thus appear to be
multi-specific. Such antibodies might constitute passive vaccines
against non-mutable common structures in otherwise highly
mutating viruses.

Since their initial discovery early 1960s, NAb were found
in every vertebrate species investigated: mammals (2), birds
(32, 33), fish (34, 35), and reptiles (36). Nevertheless,
NAb have been regarded as contradictive with established
immunological dogmas, but gradually receive more attention in
main stream immunology.

B1-CELLS ARE THE PREDOMINANT
SOURCE OF NATURAL ANTIBODIES

The origin of NAb has mostly been studied in mice, where they
predominantly originate from B1-cells (B220low, CD19high,
IgMhigh, CD23–, CD43+), which are further delineated in
B1a-cells (CD5+) and B1b-cells (CD5–). B1-cells are present
within peritoneal and pleural cavities and lymphoid tissues like
spleen and lymph nodes (37). Such B1-cells were found to be
long-lived and retain their self-renewing capacity and hence
their suggested innate-like properties. Besides their reduced
junctional diversity and their low somatic hypermutation, their
IgH VH gene rearrangements favor usage of the VH12 segment
generating antibodies able to react with phosphatidylcholine.
Phosphatidylcholine is a major lipid in general the protective
mucus layer of the gastrointestinal tract and membranes of
various bacterial species. These B1-cells maintain an active first
line of defense against bacteria (37). The typical VH12 containing
B1 receptor is able to reprogram B2-cells into becoming B1-
cells and thereby adopting the B1 receptor and other B1-cell
surface markers and start to spontaneously produce antibodies.
Therefore, apparently no distinct progenitor cells for B1-cells
required. This shows that driving the generation of B1-cells is
because of their special B-cell receptors (38).

Approximately 90% of NAb in mice are secreted by B1a-
cells whereas B1b-cells and marginal zone (MZ) B-cells do so
to a lesser extent (2). Approximately 80% of total murine serum
IgM is derived from B1-cells under steady state conditions (17).
Therefore, B1-cells were regarded as the main source of NAb
whereas B2-cells (B220+, CD19+, IgMlow, CD23+, CD43–) are
considered as the main source of conventional antibodies. In
humans B1-cells were defined as CD20+CD27+CD43+CD70–
(39), and CD19+CD20+CD27+CD38low/intCD43+. The latter
cells were found to decrease with aging, probably because of

Frontiers in Immunology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 2139

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Reyneveld et al. Exploration of Natural Antibodies

poor bone marrow production which might have an impact
on the ability to fight infections and the development of
age-related diseases (40). In all other species, B1-cells require
identification and characterization, and their role in the release
of NAb is unknown. For instance, B1-cells in cattle were defined
by the originally used murine markers CD5 and CD11b and
subdivided in CD5+CD11b- B1a-cells, CD5-CD11b+ B1b-cells
and CD5-CD11b- conventional B2-cells (41). Flow cytometry
analysis showed a distinct cell population of IgM+, pSYK+ cells,
indicating B1-cells in dairy cattle (42). Phenotypical properties of
NAb-secreting B-cells in other species remain enigmatic.

Although NAb B-cells are regarded as pre-defined, it is
suggested that a NAb B-cell still requires antigenic selection
and even T-cell help, remarkably by yδ T-cells (29), but the
exact mechanisms are not known (2). One theory suggests that
B1-cells are educated at mucosal (intestinal) sites under the
influence of the microbiome. This is supported by the finding
that NAb binding the carbohydrate Galα1-3Galβ1-4GlcNAc (α-
Gal) in GALT−/− mice were influenced by the Clostridiales,
Bacteriodales, Lactobacillales, and Deferribacterales orders (43).
Anti-Gal NAb can block the entry and transmission of
membrane-binding viruses as these cannot produce glycosylated
proteins themselves (44).

Fetal and neonatal self-reactive B1-cells do not show clonal
expansion upon B-cell receptor (BCR)-signaling because of the
expression of the inhibitor CD5 and a lack of fully functional
CD19. Consequently, these B1-cells are silenced and thereby
prevented to induce autoimmunity. Nevertheless, B1-cells can
respond rapidly to different infections by firstly migrate to
secondary lymphoid tissues and subsequently differentiate into
IgM-secreting cells (45). Thus, stimulation of murine B1-cells
in peritoneal cavities does not directly lead to the secretion
of NAb as these activated B1-cells migrate toward the spleen
and lymph nodes before the secretion of natural IgM takes
place (46, 47). However, by Toll like receptor (TLR)-mediated
activation these B1-cells can respond and circumvent the BCR-
induced signaling block (45). The restricted fetal preimmune
repertoire in humans may contain potentially beneficial self-
reactive innate-like B cell specificities that are involved in the
removal of apoptotic cells and shaping of the gut microbiota
after birth (48). Another hypothesis is that IgM NAb B-
cells are educated by maternal IgG, which in humans is the
only antibody isotype that passes the placental wall. This IgG
pool represents the unique environment experienced by the
mother and is passed into the neonate as a single passive
immunization. This idea is supported by observations that
human neonates share a similar IgM profile with each other,
whereas the IgG profiles of neonates are similar with their
respective mothers (49). During aging, the IgM and IgG
profiles merge suggesting that the IgM repertoire is shaped
by maternal IgG. Therefore, maternal IgG may act as the
immunological homunculus (50) shaping or educating the
neonatal immune system. Whether this is true for all species is
currently unknown. Bovine calves that do not receive maternal
antibodies prior to intake of colostrum showed both IgM and IgG
self-binding antibodies (51), which are, however, dramatically
increased after colostrum intake. Nevertheless, the exact origin

of germline encoded NAb remains unknown and requires
further investigation.

THE MECHANISMS LEADING TO
NATURAL ANTIBODY SECRETION ARE
NOT FULLY UNDERSTOOD

Little is known about the mechanisms that underlie the secretion
of NAb, but Holodick et al. (2) propose some interesting models
that may explain the activation routes of NAb B-cells. The first
model states that a NAb B-cell is pre-existing, but in order to
secrete NAb it must undergo classical maturation, activation
and differentiation into plasma cells and memory B-cells. The
existence of homeostatic self-binding NAb B-cells in this model
could then be explained by the fact that IgM-BCRs have similar
low affinity binding like IgM NAb and would therefore be able to
escape negative selection. However, the model does not explain
the necessity of structurally and functionally unique pre-existing
immunoglobulins if editing and selection procedures will take
place eventually.

The second model embraces the idea that a NAb B-cell
is pre-existing and generates NAb at a constant rate without
the need for antigenic activation. This is supported by the
observation that NAb are universally present in many species
without (known) antigenic stimulation and that IgM levels seem
constant throughout life (52), suggesting that NAb are a tightly
regulated pool of immunoglobulins. However, the model fails to
explain the presence of IgG and IgA NAb (53, 54) as it does not
allow hypermutation and class switching to occur. Instead, an
antigenic overload would require compensation by adaptive IgG’s
that could lead to an excessive or irrelevant immune response.

The third model suggests that a NAb B-cell is pre-existing
but that a slight antigenic push is required in order to secrete
NAb. While the secretion of NAb has been implicated to
be T-cell and antigen independent, there is a possibility that
exogenous antigens are indeed involved in B-cell activation, but
in a B-cell Receptor (BCR) independent manner instead of an
antigen independent manner. Besides BCR, B-cells also express
innate receptors (e.g., TLRs), and it was demonstrated that they
are important mediators of B-cell activation, proliferation, and
class-switching (45, 55). One example is the BCR independent
secretion of natural and self-reactive immunoglobulins binding
LPS (55), suggesting the involvement of the LPS recognizing
TLR4. Moreover, B1-cells from naïve mice stimulated with IL-
5 and TLR-agonists secreted IgM against oxidized lipids ex
vivo (3, 56), further suggesting that the secretion of NAb is
BCR independent and rather regulated by innate pathways.
Recently, it was also demonstrated that TLRs are critical
for regulating antibody production by B1a-cells (45, 57).
Microbial-sensing TLR (e.g., TLR2 and TLR4) are required
for anti-microbiota B1a-cell responses, whereas nucleic-acid
binding TLR7 and TLR9 control B1a-cell responses to self-
antigens like phosphorylcholine (the headgroup of oxidated
phosphatedylcholine) and microbiota-derived antigens (57).
Unfortunately, this model is not able to explain the constant
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secretion of IgM as it will only provide IgM when there is an
antigenic demand.

The fourth model tries to create a middle ground by stating
that a NAb B-cell is pre-existing and secretes IgM NAb in steady
state conditions. However, it is able to differentiate into IgG
or IgA secreting plasma cells after antigenic stimulation that
allows somatic hypermutation and class switching. This view is
supported by the finding that IgG NAb against citrate synthase
(CS) in the pericardial fluid (PF) correlated with antibody
titers against pathogens associated with cardiovascular diseases,
whereas anti-CS IgM NAb were not (58, 59). This also implies
that only IgM antibodies could be defined as NAb according to
the classical definition. As opposite to classical antigen-induced
B-cell responses which are helped by αβ T-cells, NAb producing
B cells were indicated not to require cognate T-cell help but
depend on soluble mediators produced by γδ T-cells which
should play a prominent role in their regulation through the fine-
tuning of IL-4-levels (29). The earlier arising γδ T-cells during
ontogeny should be better positioned than αβ T-cells to shape
the developing repertoire of NAb. Since ligand specificities of
NAb and γδ T-cell receptors appear to overlap, this may allow
γδ T-cell help for certain NAb specificities (29). Lastly, since
vertebrates share many macromolecules with the microbiome,
“cross reactivity,” and the role of the microbiome in shaping
and maintaining the NAb-repertoires cannot be excluded. Many
“classical” NAb may be initiated by the intestinal and oral cavity
microflora (44, 60). In conclusion, further research regardless of
species is required to fully understand the origin, induction and
activation pathways of NAb B-cells and NAb.

NATURAL ANTIBODY REACTIVITY

Since their discovery in the early 1960s, NAb were neglected
or denied within the immunological society because of
their apparent contradiction with established immunological
dogma’s. Germline encoded immunoglobulins do not fit in the
fundamentals of random VDJ-rearrangement, and the existence
of self-binding NAb is incompatible with Burnet’s clonal selection
theory (61), stating that self-binding B-cells are selectively
removed from the circulation. Furthermore, the properties of
NAb could also be perceived as redundant because high-affinity
binding and mono-specificity are regarded as key characteristics
of relevant and effective immunoglobulins.

NATURAL ANTIBODIES BINDING TO
SELF-ANTIGENS ACT AS HOMEOSTATIC
AGENTS

On average, humans possess around 5 l of blood containing 4 x
109 white blood cells per liter of blood of which 5% is comprised
of B-cells. In turn, ∼5% of the B-cell population are considered
to be B1-cells, amounting to 5 x 107 B1-cells in an average human
which suggests that NAb are amajor part of the systemic antibody
pool (5, 62).

Autoantibodies have a bad reputation in immunology as
they are the primary mediators in many autoimmune diseases.

The majority of these disorders are hallmarked by the presence
of autoantibodies against specific target antigens (63). For
example, Graves’ disease is characterized by antibodies targeting
the Thyroid Stimulating Hormone (TSH) receptor, which
results in an unregulated secretion of thyroid hormones (63).
Autoantibodies against Ro/SSa and La/SSb are hallmarks of
Sjögrens Syndrome, which is an autoimmune disorder that
mainly affects mucous membranes and moisture-secreting
glands in the eyes and mouth (64). More than 180 unique
autoantibodies were identified in Systemic Lupus Erythematosus
(SLE), a systemic autoimmune disease that affects multiple
organs (65). Despite these negative associations, self-binding
immunoglobulins can already be detected in future patients with
autoimmune diseases years before the onset of autoimmunity
without showing any signs of pathology (66, 67). A large
portion of B-cells are self-binding under steady state conditions
and murine B1a-cells are positively selected for self-reactivity
(37). Moreover, 75% of early immature naïve murine B-
cells and 20% of mature naïve B-cells are self-binding and
somatic hypermutation even restores self-reactivity back to
approximately 45% (68, 69). Despite the immense pool of diverse
antigens available, “only” 100 immune diseases are known, of
which half of them have signature antigens for autoantibodies,
which is a very small part of the total proteome (63) as already
indicated above (29). This raises questions about the nature of
these hallmark antigens and why the rest of the proteome is not a
trigger for autoimmunity.

In all “normal” healthy individuals, in human cord blood
and in “antigen-free” mice (1), self-binding antibodies are
found of the IgM, IgG, and IgA classes, binding a variety of
structurally different serum proteins, surface molecules, and
intracellular structures like ubiquitin, collagen, hemoglobin-α,
ss- and dsDNA, fibrin, the carbohydrate α-Gal, extracellular
cytokines (54), nuclear membrane antigens (70) and cell
membrane components such as oxidized lipoproteins (24,
71). Exposure of these kind of self-antigens in the wrong
context, for example due to necrosis or aberrant apoptosis
could lead to unwanted presentation to adaptive immunity
and subsequent autoimmunity with severe consequences for
the affected individual. Therefore, it can be hypothesized that
NAb neutralize these antigens before an adaptive immune
response or inflammation is initiated against them. For
instance, protective natural IgM’s binding phosphorylcholine
were negatively correlated with IL-6 and TH17 responses in SLE
patients and could be related to the intestinal microbiota (72).

The antigens that are targeted by self-binding NAb may
in fact function as Damage/Danger Associated Molecular
Patterns (DAMPs), which are endogenous compounds that are
constitutively expressed in all tissues. When released into the
periphery during degranulation, cell injury or necrosis, they
induce chemotaxis and various forms of immune activation (73).
Heat shock proteins (HSP), annexin, S100 proteins and galectins
are considered as signature DAMPS (74), but were also found
to be targets for NAb (54). It was demonstrated that a pool of
IgM’s inhibited TLR mediated cytokine expression and mitogen
activated protein (MAP) kinase activation in vitro and specifically
induced inhibitory signaling pathways in innate immune cells
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(17). While this shows that NAb can have a direct inhibitory
function on immune cells, it can be hypothesized that this is
mediated by the formation of immune complexes, presumably
with DAMPs. This would be an essential mechanism as decreased
NAb-levels would leave DAMPs in the circulation and susceptible
to be intercepted by adaptive immune cells, leading to a pro-
inflammatory immune response. While this is beneficial in some
cases, it could have severe consequences if inflammation occurred
in the wrong context. Natural antibodies that are part of immune
complexes can essentially be eliminated without the induction of
inflammation, tissue repair and controlled catabolism.

Another mechanism that is suggested to be used by NAb
against self-antigens is the regulation of B-cell development and
selection by IgM’s, as it was found that selective IgM deficient
mice developed pathological autoimmunity (26). B cells, which
express BCRs specific to hen egg lysozyme (HEL) were found
to display diminished responsiveness to HEL stimulation in
presence of soluble anti-HEL IgM antibodies suggesting IgM
as negative regulator of BCR signaling. Soluble IgM antibodies
may than act as decoy receptors for self-antigens that are
recognized by membrane bound BCRs (75). Together with
other data from FcµR−/− mice, it was demonstrated that IgM
NAb most likely facilitate the healthy development of B-cells
in an FcµR-dependent manner (76, 77). As IgM is not able to
pass the placental wall, an IgM-dependent IgM secreting B1-
cell subset must pre-exist to facilitate this process (26). Natural
IgM deficiency does affect B-cell development and selection and
induces tolerance that prevents development of primary auto-
immune diseases (26).

It is most likely that NAb also bind self-antigens that are not
considered as typical DAMPs. For instance, antibodies binding
many self-antigen fragments were found in liver from mice (78),
liver, brain, kidney, and muscle from humans (79–83), and liver
from cows (84) and poultry (85), but the functions of NAb
binding such to be defined self-tissue antigens is still unknown.
Hartman et al. (86) found that hybridomas from unmanipulated
adult murine spleen cells revealed a pattern of a diverse VH usage
reflecting the germline repertoire. The majority of murine organ
reactive IgM NAb were polyreactive, expressing a broad range of
unique and not indiscriminate reactivity patterns for both self
and foreign antigens, suggesting that many naturally activated
adult B-cells are highly polyreactive and that autoreactivity
is a consequence of polyreactivity. The population of NAb
exhibiting organ reactivity overlaps the populations of other IgM
autoantibodies, and all these derive from a pool of polyreactive
IgM antibodies which are polyclonally activated in the early
immune response. These polyreactive natural antibodies may
then represent a first line of defense and offer protection for the
host against a variety of foreign agents (86).

In summary, it is very likely that self-bindingNAb are systemic
surveillance molecules that maintain immune homeostasis by
aiding in the clearance of dying cells and apoptotic debris, thereby
preventing activation of the immune system against the self and
the subsequent development of self-immunity (3, 27, 28). In
this light, it is fitting to regard pathological autoimmunity as a
dysregulated state of initial homeostatic autoimmunity, rather
than onset of previously absent self-recognition (87).

NATURAL ANTIBODIES BINDING TO
FOREIGN ANTIGENS ACT AS A FIRST LINE
OF DEFENSE

Immunoglobulins in the absence of known immunization or
vaccination against foreign antigens are persistently found in
many species and have been isolated from various sources,
including serum, milk, saliva, mucus, eggs, and feces. For
an extensive review on NAb binding fungi, viruses and
bacteria see also reference 17. NAb bind to foreign (microbial)
antigens like lipopolysaccharide (LPS), lipoteichoic acid and
peptidoglycans (88), which are present on many different types
of bacteria. NAb were found to react with phosphorylcholine,
which is present in the cell wall of Streptococcus pneumoniae
(89), but also occurs on mammalian cell-membranes when
phosphatidylcholine is oxidized. NAb are reactive with viruses
and showed to bind to lymphocytic choriomeningitis virus
(LCMV), vesicular stomatitis virus (VMV) (90), and various
strains of Influenza (91). In addition, NAb also bind foreign (non-
self) antigens that are not considered as pathological. Humans,
rats, mice and alligators without previous immunization showed
antibodies binding chicken red blood cells (92), whereas poultry
(32), pigs (93), and cattle (94) all demonstrated to have NAb
against Keyhole Limpet Hemocyanin (KLH). KLH is a large
390 kDa glycosylated protein from the gastropod Megathura
crenulata which is found within the waters near California (95)
and therefore an antigen that is highly unlikely to be experienced
by non-marine individuals. To our knowledge, there is little
evidence of cross reactivity with known infectious agents albeit
the largeness of KLH does not completely exclude cross reactive
antibodies. KLH is a potent immunogenic protein, but it does
not cause adverse immune effects in humans and it is therefore
a widely used vaccine carrier protein. Thus, KLH-binding NAb
and likely NAb to other non-self-antigens appear to act as
a vanguard of the immune system by protecting the host in
an innate fashion during the relatively slow development of a
specific antibody response.

IgM AND IgG NATURAL ANTIBODIES IN
HEALTH AND DISEASE

IgM and IgG are the most extensively described classes of
NAb in literature and were found to be implicated in many
human infectious diseases and disorders, including neurological
disorders, cancer, diabetes, and cardiovascular diseases. For an
extensive review of the involvement of NAbs in health and
various infectious-, tumor-, neurological-, andmetabolic diseases
see reference 94. Interestingly, lower levels of self-binding NAb
are usually negatively correlated with disease onset and progress
whereas high levels often correlate with protection or the absence
of disease. In humans, profiles of NAb binding self-antigens
were proposed as biomarkers or fingerprints for the physiological
and health status of individuals (78, 96), including parasite
infections such as malaria and schistosomiasis (97). The observed
decline in the amount, or efficacy of homeostatic natural antibody
levels were associated with a relative loss of protection against
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molecules involved in diseases whose incidence rises in the
older age population, and that those individuals experiencing
the greatest loss are at the highest risk. Natural antibodies were
thus proposed as rheostats for susceptibility to several age-related
diseases (98).

In veterinary species, clear relations betweenNAb and diseases
were hardly expected, and thus much less studied, and are
therefore much less known. In pigs, significant associations
with osteochondrosis (OC) were found for IgM levels binding
chondroitin sulfate A at 6 weeks of age (odds ratio (OR) 1.4
and 1.5), actin at 6 weeks of age (OR 1.4 and 1.3), thyroglobulin
at 24 weeks of age (OR 1.5 and 1.3), and levels of IgG binding
at 6 weeks of age (OR 1.7 and 1.4). Additionally, significant
associations with OC were also found with IgM levels binding
albumin or KLH at 6 weeks of age (OR 2.3 and 1.4), and with
IgM levels binding actin at 24 weeks of age (OR 1.3) suggesting
associations between the presence and levels of NAb-idiotypes at
a young age and development of OC at later age (99).

NATURAL ANTIBODIES AGAINST BRAIN
EPITOPES AND THEIR RELATIONSHIP
WITH NEURODEGENERATION

For decades, the central nervous system (CNS) has been
considered as an immune privileged site with relatively low
to no detectable immune activity. Microglia and astrocytes
can present antigen, but Major Histocompatibility Complex
(MHC) -I and MHC-II expression is low and classical lymphatic
drainage is apparently absent (100). However, the concept of
an immune privileged brain has been moved aside in favor of
“an immunologically unique environment” as it becomes more
apparent that the CNS is more accessible to the immune system
than has previously been thought. This access probably also
applies for NAb as self-bindingNAb targeting brain epitopes were
found in healthy subjects or in the context of neurodegenerative
disorders as exemplified below.

Multiple sclerosis (MS) is a neurodegenerative disorder
in which an immune-mediated degeneration of myelin and
subsequent loss of cognition is observed in about 50% of
the patients. A human natural IgM (hIgM22) bound to
oligodendrocytes in fresh brain slices (101). hIgM22 is thought
to bind sulphated molecules, especially the myelin essential
component sulfatide (102). Sulfatide acts as a negative feedback
regulator for oligodendrocyte survival (103–105), which is the
major cell type to produce myelin. A decrease in hIgM22 could
lead toward neurodegeneration due to an increased availability
of inhibitory sulfatide whereas binding of hIgM22 to sulfatide
retains oligodendrocyte survival and subsequentmyelin synthesis
(102, 104). Indeed, hIgM22 induced remyelination in Theiler’s
Murine Encephalomyelitis Virus (TMEV), which is commonly
used as a murine model of human MS. Lastly, hIgM22 was also
able to bind to gangliosides and was therapeutic in a murine
model of human Amyotrophic Lateral Sclerosis (ALS) (106).

Alzheimer’s Disease (AD) is a neurodegenerative disorder
characterized by deposition of Amyloid βeta (Aβ) plaques and
Tau rich neurofibrillary tangles (NFT) (107). Aβ originates from

the cleavage of the Amyloid Precursor Protein (APP), which is
thought to play a role in synapse formation although its function
is not fully understood (108). Neuroprotective NAb binding to
assemblies of amyloidogenic peptides were reported to decrease
with normal aging and advancing AD (109), and AD patients
had decreased amounts of natural IgM and IgG against Aβ

compared to age matched healthy individuals (110). This proved
to be a therapeutic target of interest as APP-transgenic mice
maintained their initial cognition level while having decreased
cerebral Aβ depositions after intravenous administration of anti-
Aβ antibodies (19). An observed side effect in mice, however,
was the occurrence of cerebral microhaemorrhages. This was
explained by a lower specificity of IgG for Aβ compared to IgM
and the ability of IgG to pass the blood-brain barrier (111),
demonstrating a more protective role of natural IgM in contrast
to natural IgG. The second major AD associated protein is tau
which, in its native form acts as a mediator in the generation
and stabilization of microtubules. In NFT however, it is present
in a hyper phosphorylated form (112) making it an excellent
target for homeostatic immunity due to its modifications.
Indeed, anti-tau IgG was found in healthy controls and pooled
commercial IgG, although no clear differences in concentrations
were found between these groups and AD patients (113). Of
note, the therapeutic efficacy of anti-Tau antibodies was epitope
dependent (114).

Many mouse strains suffer from an age-related progressive
clustering of Periodic acid-Schiff granules within the
hippocampus, which are characterized by the expression of
a not fully defined carbohydrate neo-epitope. It was found that
ICR-CD1, BALB/c and SAMP8 mouse strains have natural
IgM’s against these carbohydrate structures at all ages and even
under germfree conditions (115). Strikingly, the same study also
found that serum of rats, rabbits, goats and even commercially
available antibodies also reacted with pathological granules
in hippocampal tissue of ICR-CD1 mice, suggesting that they
are conserved and widespread across species. In summary,
literature (Table 2) demonstrates that brain epitopes are targets
for NAb and that decreased levels can be negatively associated
(or correlated) with neurodegeneration, whereas protection to
behavioral disorders such as schizophrenia were correlated with
for instance protective platelet associated autoantibodies (117).

NAb could also influence behavior, depression or anxiety,
as these mental states were demonstrated to show immune
alterations in general (134). Decreased levels of IgM NAb against
oxidative stress epitopes like malondialdehyde and azelaic acid
were found in deficit schizophrenia (118).

Veterinary models on the relations between NAb and
neurological disorders are scarce. Pigs that were housed for 9
weeks in a straw embedded environment showed higher levels
of IgM NAb binding myelin basic protein (MBP) compared
to pigs kept in a barren environment (119), suggesting that
the straw embedded environment has an enriching effect on
the brain and either results in higher NAb-levels or prevents
a decrease of these antibodies in barren environment kept
pigs. Interestingly, in the barren kept pigs increasing levels of
IgM binding MBP positively correlated with a decrease in viral
PPRSV RNA levels (135) suggesting that high NAb-levels to
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TABLE 2 | Involvement of natural antibodies in disorders.

Species Antigen(s) Isotype Disorder Protection References

Human, mice Various self-antigens and

neo-epitopes

IgM and IgG Various: anti-inflammation, OxLDL, tumors, neurologic

diseases, infections, clearance senescent cells and cytokines,

passive protection to autoimmunity and tissue injury

Yes (116)

Pig Chondroitin sulfate, IgM, IgG Osteochondrosis Yes? (99)

Actin, KLH

Thyroglobulin

Mice Myelin sulfatide IgM Multiple sclerosis Yes (101)

Human Amyloid IgM Alzheimer Yes (109–111)

mice Amyloid beta-peptide Polyclonal Alzheimer Yes (19)

Human Platelets IgG Schizophrenia Yes (117)

Human Malondialdehyde IgM Schizophrenia Yes (118)

Pig Myelin basic protein IgM unknown (119)

Chicken PC-BSA IgM Non-aggressive behavior (120)

Chicken PC-BSA IgG Aggressive behavior (120)

Human oxLDL IgM Carotid atherosclerosis Yes (121)

Human PC-KLH, PC-BSA IgG Cardiovascular diseases Yes (122, 123)

Human Phosphorylcholine, IgM Atherosclerosis, Yes (27, 124)

Cardiolipin Stroke,

Myocardial infections

Mice Malondialdehyde IgM Hepatic inflammation Yes (125)

Mice Phosphoryl-enriched- Not specified Non-alcoholic Yes (126)

Pneumococci Steatohepatitis

Mice Oxidized phospholipids IgM Atherosclerosis Yes (127)

Mice Phosphorylcholine,

T15-idiotype

IgM Vein graft atherosclerosis Yes (128)

Chicken KLH IgM longevity (129, 130)

Cow KLH IgM, IgG Mastitis Unknown (131)

Human Low density lipoprotein IgM Atherosclerosis Yes (132)

IgG Pro-atherosclerosis

Mice CNS-cells IgM Remyelination (101)

Mice Gangliosides IgM Amyotrophic (108)

Lateral sclerosis

Human Galα1-3Galβ1-GlcNAc IgM, IgG, Henoch-Schönlein purpura (43, 44, 54, 133)

IgA IgA nephropathy

Crohn’s disease

a self-antigen enhanced resistance to PRRSV. The underlying
mechanism remained unknown. Also recently, higher levels of
IgG NAb were found in poultry strains bred for aggressive
behavior, whereas the non-aggressive strain showed higher levels
of IgM NAb (120). Further research is required to understand
the relationship between NAb (isotypes) and behavior, but the
current data suggest that self-binding antibodies protect against
autoimmunity, chronic inflammation and necrosis which may
underlie neurological disorders and misbehavior.

NATURAL ANTIBODIES AGAINST
TUMOR-ASSOCIATED EPITOPES AND
THEIR ANTI-TUMOR EFFECTS

Cellular transformation occurs in all types of cells and may lead
to the development of tumors, albeit this is a relatively rare

phenomenon compared to the high frequency of spontaneous
mutations that occur in an individual (136). Immune processes
are likely involved in clearing corrupted cells or components
out of circulation. NAb may play an important part in this as
nearly all monoclonal tumor targeting antibodies isolated from
cancer patients so far were oligo-specific low affinity binding
pentameric IgM’s (137). Furthermore, natural IgM’s to cancer
associated autoantigens were detected up to 5 years before onset
of breast cancer (138), suggesting their pre-existence but also
providing diagnostic value as early biomarkers.

Carbohydrate structures are highly expressed on tumor cells
and can be recognized by NAb (139). SC-1 is an isolated
monoclonal IgM from a signet-ring cell carcinoma patient
(140) and binds to a carbohydrate modified version of decay
acceleration factor B (DAF/CD55), which is highly expressed on
tumor cells and aids in immune evasion (140). SC-1 mediated
crosslinking of DAF resulted in tumor-regression and apoptosis
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of stomach cancers without showing cross-reactivity with healthy
tissue (121). PAM-1, a natural IgM isolated from a gastric
carcinoma patient, binds to a carbohydrate modified isoform of
cysteine rich fibroblast growth factor receptor (CFR-1), which
is expressed on malignant cells but not on healthy tissue (141).
PAT-SM6 is a natural IgM isolated from a gastric cancer patient
(142) and binds to a glycosylated form of glucose-regulated
protein 78 (GRP78), which is found on malignant cells but not
on healthy tissue (143). PAT-SM6 was also found to induce
apoptosis in multiple myeloma cells binding to the glycosylated
form of GRP78 while leaving healthy tissue unharmed (144).
Another study found that activation of peritoneal B1-cells with
the C-type lectin agonist monophosphoryl lipid A (MPL) and
the TLR agonist trehalose-6,6’-dicorynomicolate (TDCM) lead
to increased production of IgM NAb in mice. These IgM’s
were targeted at carbohydrate antigens and suppressed tumor
growth of peritoneal metastasis via the classical complement
pathway (145). In summary, NAb are able to challenge tumors
by recognizing tumor specific antigens, specifically those with
carbohydrate modifications. Circulating autoantibodies in cancer
patients had high specificity for glycoxidation modified histone
H2A suggesting that glycoxidation of proteins and related
autoantibodies could act as early biomarkers of cancer (146).

NATURAL ANTIBODIES AGAINST
OXIDIZED LIPIDS AND THEIR ROLE IN
CARDIOVASCULAR DISEASE

Atherosclerosis is a chronic inflammatory disease that is
characterized by the accumulation of apoptotic cells and oxidized
lipids, specifically oxidized Low Density Lipoprotein (oxLDL)
(147). It was demonstrated that oxLDL is an important target
for NAb. In mice, around 30% of the IgM NAb bound to
oxidized lipids, atherosclerotic lesions or apoptotic cells (71).
Autoantibodies to oxLDL derived from “naïve” atherosclerotic
mice shared complete genetic and structural identity with
antibodies from the classic anti-phosphorylcholine B-cell clone,
T15, which protects against common infectious pathogens,
including pneumococci. S. pneumoniae immunizedmice showed
high circulating levels of oxLDL-specific IgM and persistent
expansion of oxLDL-specific T15 IgM-secreting B cells, a
decreased the extent of atherosclerosis (148) and blocked uptake
of OxLDL by macrophages (127). High levels of IgM NAb
against oxLDL were associated with protection against carotid
atherosclerosis in hypertensive humans (149), but high levels
of IgG binding LDL could be pro-artherosclerosis (132). NAb
binding phosphorylcholine conjugated to BSA or KLH were
decreased in patients with cardiovascular diseases and SLE
and therefore proposed as potential protective factors (122,
123). NAb against other oxidation-specific epitopes have also
been described, including those against malondialdehyde and
4-hydroxynonenal which were found in mice under pathogen
free and germfree conditions (150). Immunoglobulins against
phosphatidylserine and cardiolipin are generally associated with
thrombosis, whereas immunoglobulins against their oxidized
forms are associated with protection against atherosclerosis (27,
124). Natural IgM and IgG against citrate synthase (CS) were

found in serum of healthy individuals and pericardial fluid (PF)
of patients that went through open heart surgery (58, 59). CS
is a highly conserved mitochondrial inner membrane enzyme
involved in the citric acid cycle which occurs in nearly every
cell, and especially in mitochondria-rich heart muscle cells. A
relatively high number of B1-cells were present within PF and
the prevalence of IgM NAb in PF was only half the amount of
serum anti-CS IgM NAb in comparison to the total Ig levels that
were four to eight times higher in serum (58). Together, the data
suggests that NAb play an important role in the regulation or
prevention of cardiovascular diseases (Table 2).

NATURAL ANTIBODIES AND THEIR ROLE
IN TRANSPLANTATION IMMUNOLOGY

NAb play an important role in transplantation immunology
and allograft rejection (30). NAb against the oligosaccharide
moieties of the ABO blood group system have been well-
described and a mismatched blood transfusion leads to hyper
acute transplantation rejection with severe clinical consequences.
Graft B-cells infiltrate coronary arteries resulting in cardiac
allograft vasculopathy (CAV), an accelerated form of coronary
artery disease (CAD) limiting the long-term survival after cardiac
transplantation (151). It was found that half of 100 B-cell
clones isolated from three CAV cases showed oligo-reactivity
toward apoptotic cells, dsDNA, cardiolipin, LPS and insulin
(152). Renal proximal tubular epithelial cells are considered
relatively susceptible to ischemia reperfusion injury, and this was
mediated by IgM NAb via the classical complement pathway
(153). Higher levels of IgG NAb binding apoptotic cells prior
to kidney transplantation negatively correlated with graft loss,
which was mediated by C4b complement deposition (154). A
subsequent study also found that polyreactive IgG clones from
two kidney transplant recipients were able to bind to Human
Leukocyte Antigen (HLA) class I, albeit non-native denatured
HLA (155). It can be postulated that an incorrect collection and
transplantation of the organ would induce stress and subsequent
antigen modification, therefore allowing homeostatic NAb to
attack the neo-epitopes within the graft. Together, these studies
demonstrate that graft-rejection should not strictly be attributed
to monospecific immunoglobulins but probably rather to NAb,
although the threshold for initiating this antibody-mediated
rejection is unknown.

Apart from studies on pig tissues for human transplantation,
transplantation studies are not a main topic in veterinary species
and therefore knowledge on the role of NAb in these models is
completely lacking.

NATURAL ANTIBODIES AGAINST
PATHOGENS AND INFECTIONS

NAb were acknowledged as a first line of defense to infectious
agents (29). IgM NAb might be involved in tuberculosis as a
decrease in serum IgM levels against phospholipids is observed
after intensive phase treatment, probably due to a decrease in
bacterial burden (156). However, a decrease in IgM contrasts with
the observation in other models where a decrease in NAb usually
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is a negative predictor for disease. An age-dependent decline in
IgM NAb against pneumococcal capsular polysaccharides (PPS)
and IgG NAb against a pool of virulence-associated proteins
(VAP) of various Streptococcus pneumoniae (S. pneumoniae)
strains was observed in humans, which could lead to increased
susceptibility to S. pneumoniae infection (157).

In mice, NAb provide protection to viral infections (in an
indirect fashion) by targeting virus-antibody complexes to the
spleen and by contributing to the resolution of the acute phases
of some viral diseases (18, 90). Infections are also prevented
indirectly by NAb binding self-receptors such as CCR5, essential
for the entry of the HIV virions (158). Maternal natural
IgG antibodies protected neonatal mice from infection with
enterotoxigenic E. coli infections when these antibodies were
delivered across the placenta or through milk (159).

Protection to infections has been observed in veterinary
species, but information is still scarce. High levels of NAb binding
Aeromonas salmonicida protected goldfish against experimental
infection (160), and high levels of NAb (and complement
activity) correlated with fitness of wild boar when exposed to
classical swine fever (161). Chickens bred for high levels of
anti-KLH NAb showed improved resistance to avian pathogenic
E. coli (162). The latter group also identified the existence
of a single nucleotide polymorphism (SNP) variation in likely
the TLR1A gene involved in determining the levels of natural
antigen-specific IgM and total IgM antibodies in chickens (163).
Heritability of natural IgM antibody levels was found which was
absent or low for natural IgG or IgA antibodies (164).

In summary, NAb of the IgM and IgG class have been
implicated in both health and diseases and are associated with
protection against infections (Table 3) and disorders (Table 2)
in humans and veterinary species. Future research should aim
to expand this knowledge by further identifying more diseased
states in which NAb are involved to further demonstrate their
importance in maintaining health, and whether modulation of
NAb-levels is feasible and desirable.

IgA NATURAL ANTIBODIES REQUIRE
MORE INTENSIVE INVESTIGATION

IgA is the most abundant immunoglobulin, with a production in
humans of about 66mg.kg−1.day−1 (reflecting 3–5 g per day). In
humans, monomeric IgA (at 2mg.ml−1) predominantly resides
in serum where it functions as a potent pro-inflammatory agent
by inducing rapid FcαRI mediated activation of neutrophils
(166). In humans, two subclasses, IgA1 and IgA2, were identified
in serum and secretions. These pro-inflammatory properties are
not well-known as IgA has been perceived as a redundant non-
inflammatory immunoglobulin in the intestinal lumen, which is
true for secretory IgA (sIgA). sIgA originates at the basolateral
side of mucosal areas where J-chain linked dimeric IgA (dIgA)
is transported across the mucosal barrier into the lumen via
the polymeric IgA receptor (pIgR). Upon its release into the
lumen, dIgA retains a fraction of the pIgR, known as the
secretory component (SC), which makes sIgA more robust and
resistant against bacterial derived proteases. The SC also prevents
association with the FcαRI which prevents interaction with

immune cells, resulting in a homeostatic immunoglobulin that
neutralizes microbiota and food antigens to prevent interactions
with the host (167). Innate-like B1-cells can be stimulated by IL-
5, IL-10, Toll-like receptor (TLR) agonists or whole bacteria to
secrete IgM and IgA. As a pro-inflammatory immunoglobulin,
serum IgA is crucial in the first line of defense against pathogens
as a rapid activator of neutrophils. Meanwhile, homeostatic
sIgA at mucosal sites most likely experiences the largest and
most diverse amount of antigen interactions and is constantly
challenged by this hostile environment.

IgA is perhaps the most important Ig-class, but the available
literature on IgA NAb in humans and mice is lacking far behind
in contrast to IgM and IgG NAb. Research in domesticated
animals pointed to an important role for IgA NAb in binding
larval antigens on mucosal tissues and aiding in the development
of immunity to nematodes (168), and other parasites. Further
studies into the role of IgA NAb in veterinary species are
urgently needed.

IgA NATURAL ANTIBODIES IN SERUM
BIND TO SELF-ANTIGENS

An antigen microarray screening of self-binding NAb in serum
and cord blood of ten mothers and their infants found IgA NAb
against myelin oligodendrocyte glycoprotein (MOG), Gelsolin,
Low Density Lipoprotein (LDL), Factor X and Protease in all
subjects (54). While the reactivity of IgM NAb was nearly always
higher than the reactivity of IgA NAb to a specific antigen, this
was not the case for High Density Lipoprotein (HDL) and α2-
microglobulin. On other occasions, IgA NAb showed higher
reactivity against HDL, α2-microglobulin, LDL, Factor X, and
Gelsolin compared to IgG NAb. Additional research is required
to understand why IgA specifically seems to favor these antigens.
Other studies found IgA NAb against α-Gal, which is considered
as one of the most abundant natural antibodies (169). Anti
α-Gal IgA was found in healthy subjects (170) but was also
associated with Henoch-Schönlein purpura, IgA nephropathy
and Crohn’s disease (133). As serum IgA is a potent pro-
inflammatory immunoglobulin, a sufficient amount of IgA NAb
in serum against foreign antigens could be very beneficial in the
critical time period of adaptive immunoglobulin development,
by rapidly recruiting neutrophils to the side of infection. A
pro-inflammatory response against self-antigens is questionable,
unless it concerns oxidized, or (carbohydrate) modified (neo-
epitope) forms of these antigens.

IgA NATURAL ANTIBODIES AT MUCOSAL
SITES LIKELY ORIGINATE FROM
COMMITTED B1b-CELLS

Commensal gut bacteria are targeted in the small intestine by
polyclonal oligo-specific B1b-cell derived IgA NAb whereas B1a-
cells recognize restricted microbial regions (171). In contrast
to B1a-cells, B1b-cells are able to switch to IgA+ plasma cells
in a T-cell independent manner under the influence of TGF-β
and Retinoic Acid (RA), which induces upregulation of α4β7+
and CCR9, providing a gut-homing phenotype (171, 172). A
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TABLE 3 | Involvement of natural antibodies in prevention or combat of infection.

Antigen(s) Isotype Infection Effect References

Self- and microbiota IgM, IgA Microbiota Protection (37)

Glycans and microbiota Not specified Microbiota Orchestration (43)

Carbohydrates IgM Microbiota (44)

LPS,KLH,

Peptidoglycan

IgM, IgG, IgA Unknown Heritable (88)

PC-rich IgM S. pneumonia Protection (89, 148)

Streptococcus pneumonia

OxLDL, T15 idiotype

VSV virus, Listeria IgM VSV virus, Listeria Protection (90)

Influenza strains Not specified Influenza Protection (91)

Malaria IgM, IgG Malaria Protection (97)

Schistosome Schistosomiasis

myelin basic protein IgG Porcine reproductive Protection? (119)

respiratory syndrome virus

Phospholipids IgM Tuberculosis Protection? (156)

Virulence-associated IgM, IgG S. pneumonia (157)

Protein

self-antigens, IgM Microbiota Protective? (18)

Phospholipids,

T-cell independent-

antigens

CCR5 Not specified HIV Protective? (158)

Pantoea-1 microbes IgG E. coli Protective (159)

Aeromonas salmonicida IgM A. salmonicida Protective (160)

Chicken red blood cells not specified Classical swine fever Protective? (161)

KLH IgM E. coli Protective (162)

Phosphatidylcholine IgG Plasmodium chabaudi Protective (165)

Galα1-3Galβ1-GlcNAc IgM, IgG, IgA Block infections (43, 44, 54, 155)

follow-up study found that naïve B-cells recirculated through
Peyer’s Patches to become IgA-secreting plasma cells in germfree
and antigen-free mice (173). So it appears that B1b-cells are
committed to eventually secrete IgA NAb at mucosal sites
whereas activated B1a-cells migrate from the peritoneal cavities
toward the spleen where they eventually secrete IgM (46, 47).
Targeted modulation of the B1b-cell population might improve
or diversify IgA NAb-responses at mucosal sites which could
result in a better protection against exposure to microbes.

Chickens supplemented with probiotics showed higher levels
of NAb (IgM and IgG) in their serum and intestines (IgA and
IgG). These NAb also reacted with bacterial exotoxins (174). This
implicates that studies on the role of microbes and hygiene in the
formation of serum (IgM and IgG) and mucosal NAb (IgA) via
dietary interventions could add in health management of both
humans and veterinary species.

IgA NATURAL ANTIBODIES IN MILK MAY
SHAPE NATURAL IMMUNITY OF THE
INFANT

Human milk is highly saturated with sIgA in concentrations up
to 12 g/l in colostrum and 1 g/l in mature milk (175). These IgA

NAb bind to endogenous antigens like actin, myosin, tubulin,
transferrin, thyroglobulin, spectrin, laminin, myoglobulin, and
native DNA (176, 177). Human colostrum derived sIgA reacted
in vitro with human Hep-2 cells and monkey ovary, pancreas
and adrenal gland tissue while in a lesser extend to monkey
liver, testes, salivary gland, muscle, and thyroid glands (175).
IgA NAb in milk can also be directed against foreign antigens,
like protein disulfide isomerase (PDI) of Toxoplasma gondii
(178). There is probably an interesting link between IgA NAb
in milk and the gut. One study phenotyped milk derived B-
cells as CD38-high, complement receptor-low, indicating that the
milk derived B-cell population predominantly contained plasma
blasts and plasma cells that actively secreted immunoglobulins.
Further phenotyping revealed that the majority of milk derived
B-cells were α4β7+ CD62L–, which are migration patterns
similar to Gut Associated Lymphoid Tissue (GALT) B-cells
(179). These findings lead to the hypothesis that an IgA NAb-
profile of the environment is created in the maternal gut,
specifically by B1b-cells that locally switch to IgA to create
a highly promiscuous pool of immunoglobulins that react to
both foreign and self-antigens. Human breast milk or raw cow’s
milk-derived immunomodulatory cytokines, like TGF-β2 and
(very low levels of) IL-10, might upon consumption induce a
regulatory environment in the gut which induces Regulatory
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T-cells and leading to the production of IgA and IgG4. Supplying
sIgA NAb in breast milk can potentially enhance intestinal
immunity in early life (180).

The exact effect and function of maternal sIgA for
the infant is not known, but it fits in Jerne’s idiotypic
immune network theory where natural IgA would act as
an educator of the infant’s immune system (181). In this
model, maternal sIgA (Ab1) is elicited against an environmental
epitope in the mother and transferred toward the infant via
the milk. In the infant, an anti-idiotypic immunoglobulin
(Ab2) is generated against the maternally acquired Ab1.
Subsequently, a third immunoglobulin mimicking the Ab1
BCR (Ab3) is generated against Ab2, which allows the
infant to imprint this maternal immunoglobulin or BCR
within its own repertoire. Previously mentioned findings in
serum further support this idea (49), where it was observed
that maternal IgG educated the neonatal independent IgM
repertoire. However, the relationships between serum IgA
levels and maternal IgG and/or neonatal IgM were not
investigated. In mice, it was already shown that anti-idiotypic
IgM antibodies specific for the IgA myeloma protein TEPC-
15 (anti-phosphorylcholine) specificity, share similar or even
identical idiotypes (182). In summary, natural IgA NAb or
maternally derived natural antibodies may provide protection
of the infant gut and be involved in maturation of the mucosal
immune system.

In most veterinary species (e.g., cows and poultry) IgA is
not the predominant maternal antibody as its role is fulfilled
by IgG. Birds receive maternal IgG in the yolk, and are thus
hatched with the maternal antibody repertoire, including self-
binding antibodies (183). Calves, like most mammalian food
animals, receive maternal IgG via colostrum including self-
binding antibodies (51). Whether these maternal IgG antibodies
shape the neonatal antibody repertoire as discussed above for
man is currently unknown.

MODULATING NATURAL ANTIBODIES
AND THERAPEUTIC OPPORTUNITIES

NAb are important as a first line of defense against pathogens
and as homeostatic agents that inactivate or clean up potential
dangerous self-antigens. Modulation or enhancement of NAb-
levels and their diversity could lead to new therapeutic strategies
and new insights into the usefulness of NAb. There is increasing
knowledge of NAb in humans and their implications in health
and disease, but studying intentional enhancement or decrease
of NAb-levels in humans faces ethical objections because the
effects and eventual risks are unknown, therefore urging the use
of animal models. Mice are usually the first model of choice as
they are economically affordable, easy to handle and share many
parallels with human immunology. While mice have given many
tremendous new insights into human immunology, there are
also significant differences in immune development, activation
mechanisms and immune response as mice andmen are different
in physiology, anatomy, size and lifespan (184, 185). Using non-
human primates would be a logical alternative as they come

closest to humans in genetics, physiology and behavior (186), but
they are expensive and also require tight ethical regulations.

Alternative animal models that would fill a niche between
mice and men are veterinary species like cattle, poultry, sheep
and pigs which are not as tightly restricted by regulations and
relatively economically affordable. In addition, contemporary
agricultural practices require more knowledge on the
maintenance or enhancement of health and welfare in veterinary
species as well. Pigs are physiologically and anatomically close to
humans, sharing similarities in cardiovascular systems, feeding
(omnivorous) and skin composition (187, 188). Chickens being
the most wide spread and most consumed veterinary species
would also be interesting models as some major immunological
breakthroughs in the past were achieved in chickens, including
the principles of graft vs. host reactions and the delineation of
the adaptive immune system into immunoglobulin secreting
B-cells and cell-mediated immunity by T-cells (189).

Findings from veterinary species can be translated back to
humans, but can also be applied within the field of veterinary
immunology itself. Veterinary species are constantly challenged
by bacteria, viruses, and parasites which not only has a major
impact on animal welfare but also on the economy due to
prevention and treatment costs, production losses and premature
culling (190, 191). Diseases of bacterial nature are often treated
with antibiotics, but the popularity of antibiotics has decreased
due to risk of antibiotic resistance. Vaccination has received
more popularity as it is preventive and actively stimulates the
immune system, but vaccines are not always fully protective
(192) or available. Therefore, there is a need for innovation in
veterinary treatment strategies (193) and elucidating NAb and
their functionality in veterinary species may provide new exciting
opportunities. NAb have been described in veterinary species and
it has been demonstrated that they are able to bemodified, but the
clinical relevance of NAb in veterinary species remains enigmatic.
Humans and veterinary species would mutually benefit from
the combined effort to study NAb and allow for the reciprocal
exchange of findings from their respective fields.

INTRAVENOUS OR ORAL
ADMINISTRATION OF
IMMUNOGLOBULINS

Intravenous immunoglobulin (IVIg) preparations contain large
amounts of immunoglobulins reactive with various constituents
and a portion of these are most likely (self-binding) NAb. IVIg
has been used in humans as a therapeutic in immunodeficiency
to replace missing immunoglobulins (194). IVIg was used as a
successful treatment for Kawasaki disease, which is a pediatric
disorder that leads to inflammation of coronary arteries, and
diminished coronary dilation and improved coronary flow (195).
IVIg was also used as a therapeutic for unexplained recurrent
spontaneous abortion, and is especially effective when repetitive
miscarriage occurs after an initial live birth (196), suggesting
that tolerance against the neonate is breached during first
pregnancy and that IVIg, which likely includes NAb, might
restore this. This inspires the investigation of NAb-exclusive IVIg
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administration for the treatment of immune mediated diseases.
Natural antibodies, present in IVIG, could be used to prevent
autoimmune reactions and to enhance the immune response
to vaccination.

Albeit no IVIg sensu stricto, intravenous administration of
KLH binding NAb to chickens enhanced specific antibody
responses to KLH after immunization indicating an “adjuvant”
role of NAb (22). Oral administration of NAb could also be
beneficial, as pigs fed with pig plasma-derived natural IgG
showed a decrease in shedding of Salmonella enterica diarizone
and three strains of E. coli (O138, O149:F4 and F18), and
a restoration of microbiota diversity compared to untreated
pigs (197). NAb binding glutamate dehydrogenase, carbonic
anhydrase, myosin and transferrin were found in unborn calves
prior to intake of colostrum, and were greatly enhanced by
colostrum resident NAb against the same self-antigens (51). This
is in line with previously mentioned findings on the presence
of self-binding natural sIgA in colostrum and milk of humans
(175–178), speculating that oral ingestion of NAb may lead to
immune education and therefore adequate NAb-levels in the
neonate. These findings suggest that NAb-levels in neonates,
and immunity in general, heavily rely on these early maternal
NAb and stresses the importance of breastfeeding or oral Ig-
supplementation.

From a veterinary perspective: IVIg procedures are likely not
useful, but providence of colostrum and allowing food animals
such as calves and piglets to stay with their mothers for an
extended period of time would give them a more extensive
immune-education that would prevent disease later in life.

IDENTIFYING NATURAL ANTIBODIES AND
TARGET EPITOPES TO DEVELOP
THERAPEUTIC IMMUNOGLOBULINS

Several IgM NAb-clones were isolated from cancer patients
and were able to bind carbohydrate structures on tumors and
subsequently decrease tumor burden (136). Another example of
an isolated NAb is the IgM clone “EO6,” which was isolated
from apolipoprotein E-deficient mice (198). EO6 bound to
oxLDL, apoptotic cells, atherosclerotic lesions and oxidized
phospholipids whereas it did not recognize native lipoproteins
(199). Furthermore, EO6 administration in ApoE deficient mice
lead to less oxLDL uptake by macrophages and thus decreased
formation of foam cells (200). Intravenous administration of
a specific MDA antibody in vivo neutralized endogenously
generated MDA epitopes that resulted in decreased hepatic
inflammation in low-density lipoprotein receptor-deficient mice
on a Western-type diet (125).

There is an opportunity to isolate and develop monoclonal
therapeutic NAb. This approach would have several benefits
in comparison to monoclonal conventional antibodies: (i)
NAb would be cost-efficient as they could be directly isolated
from donor volunteers which would leave the immunization
of mice and other laboratory animals unnecessary. (ii) NAb
have been demonstrated to be oligo-specific, so by binding to
multiple antigens a single therapeutic NAb could be applied

in the treatment of multiple diseases. (iii) NAb that have been
investigated so far did not show to bind to healthy tissue or native
forms of their target antigens, suggesting less therapeutic side-
effects. These therapeutic NAb-inspired immunoglobulins could
also be administered to veterinary species to treat inflammatory
diseases or prevent cancers, such as Marek’s disease in poultry.

IMMUNIZATION OR ENVIRONMENTAL
EXPOSURE AS TRIGGERS FOR NATURAL
ANTIBODY SECRETION

NAb in neonates have not been positively associated with
vaccinations due to maternal IgG. IgG in humans and apes is
the only isotype that can pass the placental wall and serves as
a single dose of immunoglobulins to the neonate which possess
them post-natal up to 12 months. This single dose immunization
helps to defend against pathogens in a critical window where the
infant’s immune system is under development, as demonstrated
in agammaglobulinemia patients that were fully protected against
bacterial infection up to 6 months after birth (201). While
maternal antibodies are considered as essential in the critical
window of neonatal immune development, it was demonstrated
that maternal IgG may have a substantial inhibitory effect on
many human and veterinary vaccines and could even lead to a
partial or complete lack of protection in humans and cotton rats
[reviewed in (202)].

It can be hypothesized that maternal IgG immunoglobulins
are able to neutralize the antigen components from the vaccine
and therefore prevent recognition by adaptive immunity. So, the
ideal time-point for a vaccination would be when these maternal
IgG’s have disappeared, but this is highly variable and difficult
to predict (202). These effects might be due to neutralization of
live vaccines, epitope masking, elimination of antibody-coated
vaccines by FcγR-mediated phagocytosis, and inhibition of B-cell
activation by Fcγ-receptor mediated signaling. A strategy to
evade this phenomenon could be to extend the protection of
maternal IgG’s and vaccinate with known NAb-epitopes (203),
therefore stimulating the development of natural immunity itself
and thus provide protection without conventional vaccines.
Maternal NAb, likely initiated by the intestinal microbiota,
protected neonatal mice in an antigen-non-specific fashion
(203). Serum from mice immunized with KLH, DNP and
peanut extract showed increased binding of immunoglobulins
on brain, liver and spleen slices in vitro, demonstrating that
NAb-levels can be regulated via (non-specific) immunization
(204). This suggests that (non-specific) immunization can
increase NAb-levels and therefore be utilized as prevention
against autoimmune diseases. In mice solely expressing IgM
NAb, approximately 30% of all NAb bound to model oxidation-
specific epitopes, atherosclerotic lesions and apoptotic cells. It
was hypothesized that these epitopes exert selective pressure to
expand NAb, which in turn play an important role in mediating
homeostatic functions consequent to inflammation and cell
death, as demonstrated by their ability to facilitate apoptotic
cell clearance thereby preventing chronic inflammatory
diseases and atherosclerosis (71). Indeed, active immunization
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with phosphorylcholine-enriched pneumococci protected
mice against non-alcoholic steatohepatitis (126), whereas
immunization with phosphatidylcholine, a component of red
blood cells protected mice against Plasmodium infection (165).
Also passive immunization of mice with monoclonal IgM against
phosphorylcholine reduced vein graft atherosclerosis (128).

Higher IgM NAb-levels, but not IgG, have been found
in wild rats compared to their laboratory counterparts (205),
suggesting environmental antigens directly influence NAb-
levels and diversity. Moreover, several bacterial orders were
demonstrated to influence α-Gal NAb-levels (43), while chickens
fed with probiotics showed enhanced levels of NAb binding to
KLH (174). Recently, it was demonstrated that immunization of
rats with model antigens (KLH-FITC or DNP-Ficoll) enhanced
the level of antibodies binding various autologous organ extracts
for both IgM and IgG, suggesting an enhanced network of
NAb (204). Flynn et al. (206) found that domestic cats infected
with feline immunodeficiency virus (FIV) showed enhanced
levels of antibodies toward non-viral antigens: trinitrophenol
(TNP), ovalbumin, beta-galactosidase, and DNA, which were not
due to the presence of cross-reacting epitopes on recombinant
FIV p17 or p24 antigens and suggesting that B-cell activation
associated with infection was polyclonal rather than entirely virus
specific (206).

Unpublished results from our lab revealed that chickens kept
under high hygienic conditions had low levels of NAb to KLH
and self-binding antibodies to liver as opposite to chickens
kept under unhygienic conditions. NAb therefore would fit
in the hygiene hypothesis, stating that a decreased incidence
of infections, especially in the Western world, results in a
higher incidence of autoimmunity and allergy (207). Here,
microbes would educate natural immunity to peritoneal B1-
cells that subsequently secrete homeostatic NAb to prevent
autoimmune diseases. Almost by definition, this activity starts
immediately after birth and is relevant in early life, precisely as
implicated by the hygiene hypothesis. This also would suggest
that dietary antigens could influence NAb levels, especially since
the “WesternDiet” that is rich in refined sugars, salt and saturated
fat has been associated with immune alterations, including
pathological autoimmunity (208).

Thus, altering antigenic experience by changes in diet or
supplementation with probiotics or challenge by microbes
might improve NAb-levels and diversity and thus enhance
resistance to infection and decrease the incidence of pathological
autoimmunity, or enhance the homeostatic function of
NAb in preventing mal-behavior and metabolic disorders in
veterinary species.

BREEDING OR GENETIC MODIFICATION
OF NATURAL ANTIBODIES, USE OF
VETERINARY SPECIES

NAb are often germline encoded, so there is a possibility to
modify their levels and diversity on a genetic level. Additionally,
it is also important that NAb generally have a restricted VH gene
usage, which can also be modified genetically. While performing

genetic alterations in humans is obviously difficult due to ethical
reasons, veterinary models could be used instead as they are less
tightly regulated and experimental circumstances are much more
controlled. In addition, breeding companies continuously search
for new breeds with higher health status.

There is evidence that breeding for high levels of NAb and
NAAb is possible. Different NAAb-levels were earlier determined
in inbred mouse strains (78), but studying veterinary species
also allows (unexpected) linkage of NAb-levels with various
other physiological and important production and welfare traits.
The advance of synthetic biology approaches relies on the
use of omics information and these greatly improved insights
provide opportunities to more closely monitor health conditions,
modulate the genetic background, and thus improve animals on
a pre-selected genetic background (209). High levels of anti-
nuclear immunoglobulins were found to be heritable in sheep
and were associated with higher longevity (70). Overall survival
during a laying period was higher in chickens with high NAb-
levels (129, 130), and life history: “fast” or “slow” correlated
with constitutive immune defenses, i.e., that slower developing
species showed higher NAb-levels, as was also true for solitary
living bird species (210). NAb levels can thus be used to compare
constitutive humoral immunity among and within species with
respect to strain, age, sex, treatments, ecology, and “life span or
history” (33).

Genetic regulation of NAb was demonstrated in poultry that
were divergently bred for high levels of anti-KLH NAb (211).
Divergent breeding of poultry for NAb also affected their self-
antigen binding antibodies (212). A genome wide association
study (GWAS) showed that the KLH NAb High line of chickens
possessed a single nucleotide polymorphism (SNP) within the
TLR1A gene significantly explaining levels of KLH binding IgM’s,
indicating that TLR1A has a major impact on NAb-levels and/or
NAb B-cells. This TLR1A region was also significant for total
levels of IgM in blood (163) and most likely levels of IgM
antibodies binding self-antigens (213).

NAb-levels to KLH from pigs in high-health environments
were proposed to be used as phenotypical predictors for resilience
and mortality under a disease challenge, and higher NAb-levels
at a young age correspond to increased resilience and decreased
mortality in swine (214). NAb against KLH were also found to
be heritable in cattle (88, 94). NAb-levels were associated with
inflammatory diseases in cattle (215), and NAb-levels in milk
and serum correlated both phenotypically and genetically with
immune associated traits and diseases in cows (216) including
mastitis (131, 217). It is suggested that breeding of cattle against
diseases such as mastitis or uterus inflammation may benefit
from specifically breeding for high NAb-levels. Different levels of
NAb were also found in different genetic lines of common carp
(Cyprinus carpio) independent of antigen, age and environment,
further suggesting that NAb are for an important part under
genetic control and could therefore be modulated genetically to
improve disease resistance in fish (218) and food animals such as
cattle and poultry.

Genetic modulation of NAb could give new insights in key
genes that regulate NAb-levels and findings from these studies
might be translated to humans in future gene therapies and
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could possibly restore defected genes associated with decreased
NAb-levels that are correlated with disease.

CONCLUDING REMARKS

While Burnet’s forbidden clone paradigm still provides a barrier
to many immunologists, others gradually accept the existence of
NAb and their importance in health and disease. In humans and
mice, various infectious, neurological-, tumor-, cardiovascular-
, and metabolic diseases were related with (usually decreased)
levels of (self-binding) NAb. Still, homeostatic NAb and their
target antigens deserve more attention, especially in food
animals as they most likely contribute to maintaining health by
preventing development of disease in animals as well. While IgM
and IgG have been thoroughly investigated in many species, the
data on IgA NAb are lacking far behind and should be more
intensively investigated. Importantly, NAb may not function
completely in an antigen-non-specific manner as previously
thought, since relations between diseases, specific antigenic
epitopes and specific NAb-isotypes and idiotypes become more

apparent. Genomics, proteomics, and quantitative Western
blotting approaches will likely reveal many (un)expected self,
non-self- and neo-antigens that contribute to the formation and
maintenance of NAb. Understanding the functional relationship
between NAb and their antigen will lead to intervention, such as
vaccination and diet modulation in both humans and animals, or
selective breeding and hygienemanagement strategies in animals.
This may result in new health management strategies, such as
vaccination and diet modulation in both humans and animals, or
selective breeding and hygienemanagement strategies in animals.
Albeit that the role of NAb in veterinary species in contrast to
humans is largely unknown, veterinary animals would provide
excellent models to investigate the possibilities of modulating
NAb, allowing the reciprocal exchange of data that will mutually
benefit both human and veterinary immunology.
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