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Abstract: Angiogenesis, the growth of new blood vessels out of existing vessels, is a complex and
tightly regulated process. It is executed by the cells that cover the inner surface of the vasculature, i.e.,
the endothelial cells. During angiogenesis, these cells adopt different phenotypes, which allows them
to proliferate and migrate, and to form tube-like structures that eventually result in the generation
of a functional neovasculature. Multiple internal and external cues control these processes and the
galectin protein family was found to be indispensable for proper execution of angiogenesis. Over
the last three decades, several members of this glycan-binding protein family have been linked to
endothelial cell functioning and to different steps of the angiogenesis cascade. This review provides
a basic overview of our current knowledge regarding galectins in angiogenesis. It covers the main
findings with regard to the endothelial expression of galectins and highlights their role in endothelial
cell function and biology.

Keywords: vasculature; gene expression; tube formation; sprouting; VEGF; integrins; galectin;
extracellular matrix; microenvironment

1. Introduction

With an estimated length of at least 100,000 kilometers (±60,000 miles), the adult
human vasculature forms an immense infrastructure encompassing all blood vessels,
ranging from the large arteries and veins to the countless number of small capillaries. This
vast vascular bed ensures that all organs, tissues, and cells in the body have access to
sufficient amounts of oxygen and nutrients and that waste materials can be disposed of. In
addition, platelets and blood-borne cells, such as leukocytes, are able to travel to all parts
of the body via the vasculature. The key players that are involved in building, maintaining,
and providing functionality to the blood vessel system are the endothelial cells. These cells
are of mesodermal origin and they cover the inner surface of all blood vessels. As such, the
vascular endothelium serves as the main interface between all components in the blood
and the underlying tissues. Consequently, endothelial cells participate in several biological
processes, e.g., coagulation, inflammation, and transendothelial transport/migration [1].
Moreover, in case of a demand for new vessels, the endothelial cells can be triggered to start
the formation of new blood vessels, a process referred to as angiogenesis. Angiogenesis
is not only an intricate part of different physiological processes, e.g., the menstrual cycle,
embryogenesis, or wound healing, it is also involved in different pathologies, including
cancer [2]. In fact, 50 years ago it was shown that tumor tissues, once they reached
a few cubic millimeters, depended on activation of angiogenesis in order to maintain
growth [3,4]. If tumor cells fail to induce angiogenesis, the growing tumor mass is provided
with insufficient oxygen and nutrients and remains dormant [5]. Consequently, activation
of tumor angiogenesis is considered a hallmark of cancer and targeting this process has
been recognized as a potent strategy for cancer therapy [6,7].

Angiogenesis, both in the physiological and pathological context, is a complex and
multistep process during which endothelial cells respond to a multitude of external and
internal signals [7]. These signals trigger endothelial cells to adopt different phenotypes
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that ultimately result in the formation of new blood vessels. It is now well recognized
that several galectins are involved in facilitating different endothelial activities during
angiogenesis [8–10]. The current review will provide a basic overview of the current
knowledge regarding the role of galectins in endothelial cell biology and angiogenesis.

2. Endothelial Galectin Expression

The mammalian galectin family comprises 15 members, 11 of which were also found
expressed at the protein level in humans. These glycan-binding proteins share a so-called
carbohydrate recognition domain (CRD) of approximately 130 amino acids, which is composed
of two antiparallel beta-sheets that fold in a beta-sandwich. The beta-sandwich structure is
slightly curved forming a groove in which carbohydrate binding occurs. Main interactions
with beta-galactoside containing glycans involve a core-binding site inside the groove that
contains several evolutionary conserved amino acids (Figure 1a). Glycan-binding specificity
and affinity of each galectin are further mediated through small structural differences within
(and outside) the binding groove. Based on the number and structural arrangement of the
CRDs, galectins can be classified into three subgroups (Figure 1b), i.e., prototype galectins (single
CRD; gal-1/-2/-7/-10/-13/-14), chimeric galectins (single CRD with an N-terminal non-lectin
domain; gal-3), and tandem repeat galectins (two linked CRDs; gal-4/-8/-9/-12). Their ability
to engage in glycan-dependent, as well as glycan-independent interactions, allows them to
exert multiple functions in many different biological processes. Indeed, galectins are expressed
by many different cell types where they can be found intracellularly and/or extracellularly
(Figure 1c). For an extensive and more in-depth background on the structure, glycan-binding,
and function of galectins, see [11–13]).

Figure 1. The galectin protein family. (a) Cartoon of the anti-parallel beta-sheet structure forming the carbohydrate
recognition domain of galectin-1. On the left, the interaction of a LacNAc(N-acetyllactosamine) moiety in the binding
groove is shown. (b) Overview of the 11 mammalian galectins that are expressed in humans. See text for explanation of
the subgroups. (c) Schematic representation of the (extra)cellular location of galectins. In the extracellular environment
and on the cell surface, galectins can interact with glycoconjugates to facilitate, e.g., cell–ECM and cell–cell interactions. In
addition, galectins can mediate interactions between molecules in the cell membrane. In the cytosol and nucleus, galectins
can engage in (mostly) glycan-independent protein/protein interactions involved in, e.g., signaling and mRNA splicing.

With regard to the expression of galectins in endothelial cells, we performed a broad
galectin-profiling study in 2008 showing that the endothelial expression of galectins is
mainly restricted to galectin-1, -3, -8, and -9 (Figure 2a) [14]. The mRNA expression levels
of three other galectins (galectin-2, -4, -12) were low and not confirmed at the protein level,
while mRNA expression of the remaining galectins (galectin-7, -10, -13, -14) could not be
detected at all. The findings of this extensive galectin profiling study corroborated previous
observations [15–18] and were later confirmed by different research groups in endothelial
cells from variable origins [19–24]. Only recently, it was reported that galectin-2 protein
expression was also detectable in endothelial cells, albeit in a specific context, i.e., in fetal
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endothelial cells in the placenta of women with gestational diabetes mellitus [25]. While
this needs further confirmation, it indicates that the cellular context can control specific
endothelial galectin expression. In line with this, galectin-8 expression appears to be higher
in primary isolated lymphatic endothelial cells when compared to regular endothelial
cells [19,26]. Likewise, galectin-3 expression was reported to be higher in endothelial
progenitor cells as compared to normal endothelial cells [27]. Furthermore, we (and others)
have shown that several cytokines, growth factors, and other molecules can alter galectin
expression levels in endothelial cells (Table 1) [9]. For example, galectin-8 and galectin-9
expressions are reduced in serum-activated primary isolated endothelial cells as compared
to non-activated counterparts [22]. At the same time, treatment with interferon gamma
(IFNγ) can trigger the endothelial expression of galectin-9 [23,24,28,29]. IFNγ, as well
as other cytokines, was also shown to increase endothelial galectin-1 expression [16,30],
and more recently, cathepsin L was found to induce endothelial expression of galectin-
1 [31]. The expression of galectin-3 by endothelial cells was shown to be induced by,
e.g., matrix component fibronectin [32], advanced glycosylation end products [33], and
interacting neutrophils [34]. It is important to note that the overview presented in Table 1
is likely far from complete, as it is still poorly understood which and how environmental
triggers affect endothelial galectin expression. This is illustrated by the observation that
many cancer tissues—often characterized by an aberrant microenvironment—display
altered expression of endothelial galectins (for overview see [9]). For example, we have
shown that galectin-9 expression, which is reduced in activated endothelial cells [14], is
significantly increased in the tumor endothelium of different cancer types [35]. Since tumor
cells secrete many different factors to modulate their microenvironment, including the
immune infiltrate and the vasculature, it can be anticipated that the list of proteins provided
here merely represents the tip of the iceberg when it comes to regulation of endothelial
galectin expression.

To further complicate matters, it has been shown that extracellular triggers, such as
cytokines, growth factors, or hypoxia, can alter the glycosylation patterns on the endothelial
cell surface, which in turn affects the binding of galectins to the cells [36,37]. For example,
hypoxia was shown to increase the presence of β1-6GlcNAc-branched N-glycans, poly-
LacNAc structures, and fucosylated glycans on the endothelial cell surface, while α2-6
sialylation and α2,3-sialylated moieties are reduced [36,38]. Such alterations change the
permissiveness of the endothelial cell towards specific galectin binding, which in turn
affects how galectins control endothelial cell functionality.

At the same time, galectins can trigger the endothelial expression and release of
cytokines and growth factors [21,39–41]. All of this points towards a complex relationship
between the microenvironment and endothelial galectin expression. It is an ongoing
challenge to unravel this relationship, in particular in the in vivo context where multiple
triggers can simultaneously influence the endothelial cell phenotype.

It is also important to realize that endothelial galectin expression is not only controlled
at the transcriptional level, but also at the post-transcriptional and post-translational level
(Figure 2b). For example, alternative splicing has been shown to occur for tandem repeat
galectin-8 and galectin-9. In endothelial cells, the alternative splicing can give rise to up to
3 different protein isoforms by affecting the length of the linker region between the two
CRDs [14,20,22,29,42,43]. While the regulatory mechanisms that control the alternative
splicing remain elusive, we observed that cytokines and growth factors could affect the
mRNA expression levels of the different endothelial galectin-9 splice variants in vitro [22].
Whether it is also true for endothelial galectin-8, and how this is regulated in endothelial
cells in vivo, requires further investigation.

The need for more research also applies to the role of post-translational modifications
of galectins in endothelial cells. Different protein modifications with different functional
effects on galectins have been reported, including proteolytic cleavage, phosphorylation,
and S-nitrosylation [44–51]. With regard to angiogenesis, it was shown that proteolytic
processing of galectin-3 influences the angioregulatory activity of the protein (see also next
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section) [52]. We also found that the two distinct galectin-9 CRDs, which can be generated
upon proteolytic cleavage [51], have different effects on endothelial cell function [23].
However, a comprehensive insight in the post-translational modifications of endothelial
galectins, how it is regulated, and how it affects endothelial cell function is still lacking.

Figure 2. Endothelial galectins. (a) Schematic representation of the four dominant galectins that are expressed by endothelial
cells. (b) Overview of the main post-transcriptional and post-translational modifications that occur in endothelial galectins.
Note that the modifications shown here are illustrative and do not represent the actual location of modification in the
respective proteins.

Table 1. Regulators of endothelial galectin expression.

Galectin Expression Induced by Expression Reduced by

Galectin-1 IL-1β, IFNγ, TNFα, LDL, LPS,
Cathepsin L, High serum b -

Galectin-3
IL-1β, fibronectin, AGEs,
asialofetuin, neutrophil

adhesion/transmigration
-

Galectin-8 a - High serum b

Galectin-9 IFNγ, IFNβ, IL-10, viral RNA VEGF, IL-1, High serum b,c

IL = Interleukin, IFN = Interferon, LDL = low-density lipoprotein, LPS = lipopolysaccharide, AGE = Advanced
glycosylation end products, VEGF = vascular endothelial growth factor. a higher expression in lymphatic EC as
compared to normal EC. b Cells cultured in 20% serum. c Differential effects on specific splice variants.

Finally, an important aspect that should be taken in consideration when studying
endothelial galectin expression is the cellular localization. As briefly mentioned before,
galectins can be located intracellularly and extracellularly. In fact, galectins can be found
in specific compartments of a cell, including the nucleus, the cytoplasm, and the cell
membrane [14,20,53,54]. In addition, galectins can be secreted into the extracellular mi-
lieu [21,39,41]. With regard to the cellular localization and secretion of galectins, again,
environmental clues that regulate endothelial activity appear to play an important role.
For example, activation of cultured endothelial cells by high serum conditions or by a
tumor conditioned medium was shown to increase cell surface exposure of galectin-1, -8,
and -9 [14,30]. In line with this, the surface translocation of endothelial galectin-9 can be
triggered by IFNγ [28,29] while secretion of galectin-8 has been linked to treatment with
LPS [21]. Furthermore, endothelial cells in tumor tissues show altered cellular location
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of galectins as compared to normal endothelium [14,20]. All of this further supports the
concept that the microenvironment is a key regulator of endothelial galectin expression as
it provides most of the signals to which the endothelial cells respond.

3. Galectins in Endothelial Cell Function and Angiogenesis

As evident from the previous section, the expression of endothelial galectins is con-
trolled by many different factors. Such a complex level of regulation suggests that galectins
are involved in different aspects of endothelial cell function. Indeed, research over the last
three decades has shown that adequate expression and function of galectins is required
in multiple endothelial cell activities related to, e.g., inflammation and immunomodula-
tion [55], coagulation [56], and angiogenesis [9,57–59]. While there is increasing interest in
the immunomodulatory functions of endothelial galectins [24,60], this review will solely
focus on the angioregulatory role. In particular, the role of the individual endothelial
galectins in cellular functions related to angiogenesis will be highlighted.

3.1. Galectin-1

The first studies reporting on endothelial galectin-1 expression appeared around the
1990s in the previous century [15,17,61,62]. While these findings hinted towards a pos-
sible function in angiogenesis, the first clear evidence that directly linked galectin-1 to
endothelial cell biology was provided by us in 2006. Using a protein–protein interaction
screen, we identified galectin-1 as the target protein of a synthetic peptide inhibitor of
angiogenesis [63]. Subsequent research showed that galectin-1 was essential for different
endothelial cell functions during angiogenesis, in particular cell proliferation and migra-
tion [63]. Nowadays, it is well established that endothelial cells in vitro as well as in vivo
angiogenesis rely on galectin-1 [31,64–70]. Only recently, the importance of galectin-1 in
endothelial cell biology was again confirmed in a study that explored vascular remodeling
after cerebral ischemia [71]. This study also reiterated the important link between galectin-1
and the angiostimulatory protein vascular endothelial growth factor (VEGF) by showing
an association between galectin-1 and VEGF/VEGF receptor expression in endothelial
cells [71]. Previous work had already shown that galectin-1 can delay endocytosis of
VEGFR2 [72] and that binding of galectin-1 to the VEGFR2 co-receptor neuropilin-1 en-
hanced receptor phosphorylation and downstream signaling [64]. Moreover, Croci et al.
found that altered glycosylation of VEGFR2 allows galectin-1 to activate receptor signaling
in VEGF refractory tumors [36]. Importantly, this was linked to interactions of galectin-1
with non-sialylated N-linked glycans on the VEGF receptor [36], indicative of an important
role of endothelial cell glycosylation in the sensitivity to galectins. Interestingly, it was
also recently suggested that galectin-1 might interact with VEGF mRNA transcripts, which
might interfere with VEGF translation and/or secretion [73]. This could be related to
the possible role of galectin-1 in splicing [74] but needs further validation. Nevertheless,
it is evident that galectin-1 can induce endothelial cell activation and control or even
replace the angiostimulatory activity of VEGF. Altogether, these findings show that the
galectin-1/VEGF/VEGFR2 axis represents an important route for inducing and maintain-
ing endothelial cell activation. Of note, galectin-1 was also shown to regulate vascular
permeability involving neuropilin-1/VEGFR1 mediated signaling [75].

Apart from the interactions with VEGF (co)receptors, galectin-1 was also shown to
bind to CD146 (melanoma cell adhesion molecule; MCAM), which resides on the en-
dothelial cell surface. It was suggested that this interaction prevented galectin-1-induced
apoptosis with CD146 serving as a galectin-1 scavenger molecule [76]. While the obser-
vation that galectin-1 can induce endothelial cell apoptosis appears contradictory to its
angiostimulatory role, it is important to realize that high concentrations of galectin-1 were
used in this particular study (millimolar range). Indeed, the activity of galectin-1, in
particular in relation to glycan-binding functionality, is dependent on the ability to form
homodimers [77–80]. At too low concentrations, insufficient numbers of dimers will be
formed, while at too high concentrations, an excess of dimers might interfere with effective
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crosslinking of glycoproteins. Therefore, the effects of galectin-1 on endothelial cells (and
on other cells) were found to be concentration-dependent with inhibitory effects at high
concentrations [65,81,82]. This biphasic activity should always be taken into account when
studying the function of galectin-1 in endothelial cell biology and angiogenesis.

Finally, many other proteins were identified that engage in either protein-carbohydrate
or protein-protein interactions with galectin-1 [83]. While some of these proteins have
known functions in endothelial biology, e.g., thrombospondin, integrins α1β1 and α5β1, it
is still poorly understood whether and how these interactions contribute to endothelial cell
function or angiogenesis.

3.2. Galectin-3

The first compelling evidence that galectin-3 is involved in angiogenesis was provided
by Nangia-Makker et al. The authors observed increased endothelial cell tube formation in
the presence of galectin-3 as well as a higher number of blood vessels in Matrigel plugs in
mice that contained galectin-3 compared to Matrigel alone [84,85]. The angiostimulatory
activity, including enhanced migration, proliferation, and in vivo angiogenesis, was later
confirmed by others [72,86–89]. However, the context is important, as galectin-3 was also
shown to increase endothelial cell dysfunction in the presence of oxidized low-density
lipoprotein [90] and to inhibit endothelial cell proliferation [91].

Similar to galectin-1, galectin-3 can delay VEGFR2 endocytosis and stimulate VEGFR2
phosphorylation and signaling [72,86,87]. In fact, when applied together, galectin-1 and
galectin-3 were also shown to trigger VEGFR1 signaling in endothelial cells [72]. Next
to increased VEGFR2 signaling, the angiostimulatory activity of galectin-3 was recently
also linked to the protein’s ability to interact with JAG1, a NOTCH1 ligand. Dos Santos
et al. described that binding of galectin-3 to JAG1 increased the half-life of the latter
resulting in enhanced JAG1/NOTCH1 signaling and stimulation of sprouting angiogene-
sis [92]. Interestingly, a galectin-3/JAG1/NOTCH1 signaling axis has also been linked to
transdifferentiation of pulmonary artery-derived endothelial cells into a smooth muscle
cell-like phenotype [91]. In line with this, it has recently been described that galectin-3 can
regulate endothelial-to-mesenchymal transition of human lung micro-endothelial cells [93].
Although it requires further investigations, it is tempting to speculate that galectin-3
plays a role in regulating the balance between a migratory and proliferative phenotype of
endothelial cells, which is key during angiogenesis.

Of note, it was reported that the angiogenic activity of galectin-3 is lost upon removal
of the N-terminal tail [87,94]. In line with this, it was shown that proteolytic removal
of a large part of the tail by PSA hampers the angiogenic activity of galectin-3 [48]. At
the same time, proteolytic cleavage by MMP within the N-terminal tail of galectin-3 can
stimulate the angiogenic activity [52]. Moreover, aminopeptidase N (CD13) was sug-
gested to enhance the angiostimulatory activity of galectin-3 by proteolytic processing [95].
Apparently, galectin-3, and in particular the non-CRD tail, is susceptible to proteolytic
cleavage, which is important for the activity of the protein during angiogenesis. Whether
galectin-3 processing affects both VEGFR2- and JAG1/NOTCH1-mediated signaling re-
quires further investigation. It is however tempting to speculate that modifications of the
tail region control the ability of galectin-3 to oligomerize, which might differentially affect
both signaling pathways.

The ability of galectin-3 to stimulate endothelial migration and tube formation has
been linked to integrin-αV/β3. Galectin-3 was found to induce glycosylation-dependent
clustering of integrin-αV/β3, resulting in enhanced FAK signaling [86]. Consequently,
blocking integrin-αV/β3 hampered the VEGF-induced migration and tube formation by
galectin-3 [86]. Galectin-3 was also found to form a complex with integrin-α3/β1 and the
proteoglycan NG2, which could be involved in mediating the angiostimulatory activity
of the latter [96]. More recently, a study by Sedláø et al. also suggested a role for glycan-
independent effects of galectin-3/integrin interactions. The authors described that blocking
antibodies targeting integrin-αV/β3, integrin-α5/β1, or integrin-α2/β1 could hamper



Biomolecules 2021, 11, 1386 7 of 15

endothelial cell adhesion to a galectin-3-coated surface [97]. All of these findings suggest
an important link between galectin-3 and integrins in controlling endothelial cell biology,
in particular with regard to endothelial cell migration and adhesion.

Apart from integrins, galectin-3 was shown to interact with other proteins on the en-
dothelial cell surface, including CD31 (PECAM-1), CD146 (MCAM), CD144 (VE-cadherin),
CD106 (endoglin) [41,98]. As described above, CD146 could serve as a galectin-1 scavenger
molecule to hamper galectin-1-induced apoptosis [76]. The interaction of galectin-3 with
CD146 was shown to activate AKT signaling and stimulate the release of cytokines by
endothelial cells [41]. In addition, the CD146 interaction reduced endothelial cell migra-
tion [99]. Whether CD146 also serves as a galectin-3 scavenger or whether galectin-1/CD146
interactions affect cytokine release and migration remains to be studied. In addition, the
functional consequences of the other galectin-3/protein interactions in endothelial cell
biology are still largely unknown and should be further explored.

3.3. Galectin-8

In contrast to galectin-1 and galectin-3, research on the role of galectin-8 in endothelial
cell biology and angiogenesis is relatively sparse. Nevertheless, it was shown that this tan-
dem repeat galectin is also involved in regulation of endothelial cell function (for excellent
review see [57]). In part, the regulatory activity appears to be dependent on the endothelial
cell phenotype and the presence of galectin-8-binding proteins that are associated with
that phenotype. For example, in lymph endothelial cells, which display high expression
of galectin-8, a glycosylated transmembrane protein called podoplanin was identified as
an important binding partner. Podoplanin is a specific marker of lymphatic vessels and
indeed, lymph endothelial cells were able to bind to surface-immobilized galectin-8 while
regular endothelial cells were not [19]. At the same time, in a tube formation assay on
collagen, galectin-8 was inhibitory towards lymph endothelial cells [19] while stimulatory
towards regular endothelial cells [20]. In the latter, CD166 (ALCAM) was identified as a
binding partner suggesting that the interaction of galectin-8 with specific endothelial cell
surface molecules determines the angioregulatory function of the protein. In line with this,
Hadari et al. showed that endothelial cell binding to vitronectin was hardly enhanced by
galectin-8 since this adhesion is mediated through integrinαVβ3, which only shows limited
interaction with galectin-8 [100]. Instead, galectin-8 was shown to interact with other
integrin subunits present in endothelial cells, including α3, α5, and β1 [100,101]. As such,
galectin-8 can be expected to differentially mediate cell adhesion and migration, depending
on the presence of specific extracellular matrix components as well as certain endothelial
cell surface molecules. The complexity of such interactions was shown by Chen et al.,
again, in the context of lymphangiogenesis. The authors not only confirmed the interaction
between podoplanin and galectin-8, but also presented elegant data that supported a model
in which galectin-8 clustered podoplanin with integrins α1β1/α5β1 in order to activate
signaling pathways in lymphangiogenesis. By additional clustering of this complex with
VEGR3, signaling was further potentiated [26]. Interestingly, galectin-8 was also shown to
interact with CD44 [102], a surface molecule that is associated with angiogenesis [103,104]
and that also binds podoplanin to promote tumor cell migration [105]. To what extent
potential protein clusters of galectin-8/podoplanin/CDD44/integrins contribute to, e.g.,
endothelial cell migration, is currently not known.

Apart from a role in (lymph)endothelial cell adhesion and migration, galectin-8 has
also been shown to induce a pro-inflammatory phenotype in endothelial cells, which
was characterized by increased secretion of proinflammatory cytokines and increased
binding of platelets [21]. More recently, it was suggested that galectin-8 enhanced the
stimulatory effects of VEGF on endothelial cell proliferation and migration, but these
effects were small. Moreover, the effects were only observed at the lowest concentration
and galectin-8 alone did not stimulate proliferation and migration [106]. The clearest
stimulatory effect of galectin-8 on angiogenesis, both with or without VEGF, was observed
in the in vivo chorioallantoic membrane assay [106]. Whether these findings hint towards a
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function of galectin-8 in VEGF-signaling, similar as galectin-1 and galectin-3 needs further
confirmation. In that regard, it has been shown that galectin-8 can bind to VEGFR2 [101].

Finally, galectin-8 was also shown to increase vascular permeabilization, similar as
reported for galectin-1 [75]. However, the galectin-8 induced permeabilization appears to
be triggered by a different pathway, i.e., activation of eNOS and disruption of adherens
junctions through S-nitrosylation of p120 (Catenin Delta-1). Moreover, here, β1 integrins
appeared to be involved [101].

3.4. Galectin-9

With regard to the regulation of endothelial cell function, galectin-9 is relatively a
new kid on the block. Indeed, because endothelial galectin-9 expression was identified
as an eosinophil chemoattractant [107] and was found induced by, e.g., IFNγ and viral
RNA [29,108,109], the protein has been mainly studied in the context of immunomodula-
tion [110,111]. With regard to angiogenesis, we have shown that exogenous application of
galectin-9M, the dominant isoform in endothelial cells, hampers in vivo angiogenesis in
the chicken chorioallantoic membrane assay [22,23]. In contrast, O’Brien et al. reported
increased in vivo angiogenesis using a Matrigel plug assay in mice [112]. Although these
appear as opposite findings, the Matrigel plug experiments actually confirmed the findings
that galectin-9M serves as a chemoattractant for endothelial cells [22,112], while the CAM
experiments confirmed the inhibitory effects of galectin-9M on proliferation and migra-
tion [22,23]. However, it should be noted that the effects of galectin-9M are concentration
dependent and often show a biphasic effect, similar as described for galectin-1. In addition,
the activity depends on the cellular activation status [23] as well as on the origin of the
cells with primary endothelial cells being more sensitive (low nM range) compared to
immortalized endothelial cells (high nM range) [22]. While this already indicates a complex
regulatory role of galectin-9M in angiogenesis, matters are further complicated by the fact
that multiple galectin-9 isoform exist and that the protein is subject to proteolytic cleavage
as described previously. Indeed, when exploring the effects of the separate galectin-9 CRDs,
we observed neutralization or even reversal of activity compared to galectin-9M. These
effects again depended on endothelial cell activation status [23]. Thus, galectin-9 clearly
regulates multiple aspects of endothelial cell biology and angiogenesis, but regulation is
complex and the ultimate outcome depends on many intrinsic and extrinsic factors.

4. Summary and Outstanding Questions

Over the last thirty years, it has become evident that multiple galectin family members
are expressed by endothelial cells and that these multifunctional proteins play key roles
in endothelial cell biology and angiogenesis. As described here, endothelial galectin
expression appears to involve primarily galectin-1, -3, -8, and -9. Importantly, different
environmental conditions and triggers were found to affect the following: (i) the galectin
expression level; (ii) the presence of (processed) galectin isoforms; and (iii) the cellular
localization of galectins. Deciphering the mechanisms and pathways that control these
aspects of endothelial galectin expression represents an important challenge for future
research. This is particularly relevant in the context of disease as alterations in (vascular)
galectin expression have been associated with different pathologies, including cancer [9,35].

With regard to galectins as regulators of angiogenesis, many insights have been gained. It
has become clear that galectins can regulate vessel permeability and vessel growth and that they
contribute to multiple endothelial cell functions, including activation, proliferation, migration,
tube formation, and sprouting (summarized in Table 2 and Figure 3).
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Table 2. Effect of galectins on endothelial cell function and angiogenesis *.

Process Galectin-1 Galectin-3 Galectin-8 Galectin-9M f

Activation ↑ ↑ ↑ a UNK

Proliferation ↑/↓b ↑ = ↓/= d

Migration ↑/↓b ↑ ↑ ↑/↓ b,d

Tube formation ↑ ↑ ↑/↓ c ↑/= d

Sprouting ↑ ↑ ↑ =

Permeability ↑ UNK ↑ UNK

Angiogenesis
in vivo ↑ ↑ ↑ ↓ e

* Some effects are based on single studies and require additional confirmation. In addition, as described in the
text, effects might be dependent on specific experimental conditions, galectin isoforms, or on the endothelial
cell phenotype. UNK, unknown; a inflammatory activation; b concentration dependent, i.e., stimulation in low
nM range and inhibition in high nM/low µM range. c Dependent on lymph (↓) vs. regular (↑) endothelial cell
phenotype; d dependent on cell activation status; e only at high dose (500 nM). f Different effects were found for
the separate domains of galectin-9 (see [23]).

In general, most galectins appear to be stimulatory but it is also evident that the effects
are dependent on many different aspects, including the source and environmental context
of the endothelial cell, the activation status, and importantly, the local concentration of the
galectins. In that regard, it is important to realize that the findings described in this review
were obtained using endothelial cells from a multitude of origins. This includes primary
cells obtained from different tissues, e.g., umbilical, dermal, omental, pulmonary, aortic, as
well as different endothelial cell lines from human or mouse origin. Moreover, different
culture conditions were used with regard to, e.g., serum conditions, growth factors, matrix
proteins. Since all of these differences can affect galectin expression and functionality, it is
important to emphasize that the generalizations described here might be different for spe-
cific endothelial cells under specific conditions. In fact, deciphering the interplay between
these aspects remains a future challenge since much of our current knowledge relies on
in vitro findings or on studies using a single galectin. As it was shown that combined ap-
plication of galectins can enhance the angiostimulatory activity [72], and it was suggested
that galectins might engage in heterodimer formation [113], it is relevant to further explore
the role of multiple galectins simultaneously in appropriate in vitro and in vivo models. In
addition, while this review focused on the main endothelial galectins, recent findings have
shown that other galectins can also play a role in regulating angiogenesis. For example, it
was shown that galectin-12 expression is increased in adipose tissue under hypoxic condi-
tions. Interestingly, hypoxia was also found to change the glycan-repertoire of endothelial
cells, making them more permissive towards galectin-12 binding [38]. Subsequently, the
authors showed that galectin-12 could act as a chemoattractant for endothelial cells and
that the proteins stimulated tube formation in vitro. In addition, galectin-12 was required
for adequate vascularization of adipose tissue in vivo [38]. In addition, galectin-13 has
been linked to vascular remodeling, specifically of the uterine vasculature [114]. Although
the latter awaits confirmation in humans, all these findings highlight the need for further
research into the angioregulatory role of different galectins and specifically the relation
with altered endothelial cell glycosylation patterns. As already recognized by Croci et al.,
a key future challenge will be to obtain a comprehensive insight in the endothelial cell
glycome under physiological and pathophysiological conditions vessels, both in the pre-
clinical and clinical settings. This will help to understand how galectins (as well as other
glycan-binding proteins) are able to regulate vascular signaling programs and how to
interfere with such programs in the context of therapy [37].

It is important to recognize that apart from the direct effects on angiogenesis, galectins can
also trigger blood vessel growth indirectly. For example, galectins that are secreted or presented
on the surface of endothelial cells can serve as chemoattractants for immune cells or as platelet
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activators [115]. This can trigger the release of angioregulatory molecules, such as cytokines
and growth factors, which influence endothelial cell function and activity [115]. In addition,
galectins in the extracellular milieu can serve as scavenger molecules for cytokines [116,117].
All of this further contributes to the angiomodulatory role of galectins. In particular, the width
of galectin-cytokine interactions requires further research, as both protein families can exert
angioregulatory as well as immunomodulatory functions [118–120]. As such, endothelial
galectins hold a key position in the interface between the vasculature and immune cells, which
should be further explored.

Figure 3. Graphical abstract of the roles of galectins in endothelial cell function and angiogenesis.
See text and Table 2 for further explanation.

5. Future Perspectives

As described above, the research community has made considerable steps forward in
understanding how galectins contribute to endothelial cell biology and angiogenesis. Never-
theless, many questions remain unanswered and there are sufficient challenges and questions
that should be addressed in order to fully grasp the complex functions of galectins in vascular
biology. At the same time, increasing insights in the function of galectins in the vasculature
also provides opportunities, especially in the context of pathologies or diseases that are asso-
ciated with aberrant vascular functionality, e.g., cardiovascular disease and cancer. Indeed,
many galectin-targeting agents were developed by us and others, ranging from peptides, small
molecules, and glycan-based ligands, to blocking antibodies, and have been shown to interfere
with galectin functions during angiogenesis [63,66,70,84,121–124]. While a major future chal-
lenge is to translate these preclinical findings to clinical applications, it can be anticipated that
such galectin-targeting molecules can be used for direct therapeutic applications as well as for
indirect applications, including drug delivery and diagnostic imaging. Ultimately, this could
help to develop novel and better treatment modalities for patients suffering from diseases that
are associated with deregulated vascular galectin expression and or galectin dysfunction.
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