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It remains unknown whether tobacco smoke induces DNA hypermethylation as an early event in carcinogenesis or as a late event,
specific to overt cancer tissue. Using MethyLight assays, we analyzed 316 lung tissue samples from 151 cancer-free subjects (121
ever-smokers and 30 never-smokers) for hypermethylation of 19 genes previously observed to be hypermethylated in nonsmall
cell lung cancers. Only APC (39%), CCND2 (21%), CDH1 (7%), and RARB (4%) were hypermethylated in >2% of these
cancer-free subjects. CCND2 was hypermethylated more frequently in ever-smokers (26%) than in never-smokers (3%). CCND2
hypermethylation was also associated with increased age and upper lobe sample location. APC was frequently hypermethylated
in both ever-smokers (41%) and never-smokers (30%). BVES, CDH13, CDKN2A (p16), CDKN2B, DAPK1, IGFBP3, IGSF4,
KCNH5, KCNH8, MGMT, OPCML, PCSK6, RASSF1, RUNX, and TMS1 were rarely hypermethylated (<2%) in all subjects.
Hypermethylation of CCND2 may reflect a smoking-induced precancerous change in the lung.

1. Introduction

Lung cancer causes more deaths in the United States each
year than breast, colon, pancreatic, and prostate cancer
combined, approximately 157,300 deaths estimated in 2010
[1]. Cigarette smoking is the most significant risk factor for
developing lung cancer and contributes to 80–90% of these
deaths [2, 3].

Over the past four to five decades, significant progress
has been made to elucidate the carcinogenic mechanisms
of tobacco smoking. Using animal models, it has been
shown that among over 60 established carcinogens in
cigarette smoke, 20 can cause lung tumors [4]. It has been
proposed that these carcinogens, when metabolized, form

DNA-adducts which may directly cause genetic alterations
if not repaired. When these genetic alterations affect tumor
suppressor genes or tumor oncogenes, they can promote cell
proliferation and malignant transformation [5]. Studies in
lung cancer patients clearly suggest that cigarette smoking
can lead to acquisition of genetic mutations in p53 and ras
oncogene [6, 7]. In addition, cigarette smoke is proposed to
cause immunosuppression, which provides an environment
for tumor progression [8, 9].

Recently, DNA hypermethylation has been recognized
as an alternative, epigenetic mechanism for gene silencing
in lung cancer, in addition to genetic mutation. Several
environmental exposures are thought to cause aberrant DNA
methylation, including dietary factors, chemotherapeutic
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agents, and heavy metals [10]. Tobacco smoke exposure has
been associated with increased expression of DNA methyl-
transferases [11–14]. Consistent with this observation, lung
cancers arising in heavy smokers show increased hyperme-
thylation of various genes, especially CDKN2A (p16) and
RASSF1, compared with lighter smokers or nonsmokers [15–
27].

However, these results do not reveal whether DNA
hypermethylation occurs early or late in carcinogenesis.
Early changes in carcinogenesis (especially those related to
smoking) are hypothesized to occur somewhat diffusely in
the lung and may therefore be detectable in noncancerous
lung tissue, as well as in any cancers which arise [28–30]. For
example, frequent hypermethylation of CDKN2A, RASSF1,
CDH13, and other genes has been observed in sputum
samples from cancer-free smokers, suggesting that they may
be hypermethylated early [31–34]. In contrast, late changes
in carcinogenesis are thought to arise mainly in overtly
malignant tissues.

We recently analyzed matched cancerous and noncancer-
ous lung tissues from patients with nonsmall cell lung cancer
(NSCLC). We observed that in the 27 genes tested, most
DNA methylation changes were tumor-specific and therefore
might be considered late changes in carcinogenesis [35].
However, in these NSCLC patients, a small number of genes,
including CCND2, APC, CDH1, and RARB (Table 1), were
also hypermethylated in a portion of noncancerous lung
tissues, suggesting that one or more of these genes might
become hypermethylated as an early precancerous change.
We hypothesized that early changes in DNA methylation,
if present, might be associated with exposure to cigarette
smoke. Furthermore, because smoking-related lung tumors
and emphysema are known to disproportionately affect the
upper lobes of the lungs [36, 37], we hypothesized that
methylation changes related to smoking would similarly be
more frequent in the upper lobes, compared with the lower
lobes.

2. Materials and Methods

2.1. Subject Enrollment. All procedures were conducted in
accordance with institutional review board and human
subjects committee approval. Subjects were retrospectively
enrolled who had undergone lung surgeries (lung volume
reduction, lung transplant, wedge biopsy, or lobectomy)
for nonmalignant diseases including emphysema, chronic
bronchitis, bronchiectasis, granulomatous disease, various
infectious diseases, and cystic or pulmonary fibrosis, at
the University of Washington Medical Center (UWMC)
between July 1st 1995 and July 1st 2005. All specimens were
reviewed by an expert pathologist (CDJ) to confirm that they
represented noncancerous lung tissue. All clinical data were
gathered from subjects’ UWMC medical records, including
smoking history and primary pulmonary diagnosis. Subjects
were excluded for the following reasons: previous diagnosis
of lung cancer, insufficient lung tissue for methylation
analysis, or unknown pack years of smoking. In total, 372
nonmalignant lung tissue samples from 159 subjects were
identified for DNA methylation analysis.

2.2. DNA Isolation from Paraffin Blocks. From each block, six
20-μm sections were cut and deparaffined by xylene extrac-
tion. Proteinase K was used to digest the resulting tissue
pellets overnight, at 48◦C. Genomic DNA was then isolated
by phenol/chloroform extraction and ethanol precipitation.
Finally, DNA was purified using a QIAamp DNA minicol-
umn (Qiagen) according to the manufacturer’s instructions.

2.3. Sodium Bisulfite Conversion. As previously described
in detail [42], in vitro fully methylated DNA (methylated
DNA control) and human sperm DNA (unmethylated DNA
control) were converted with clinical samples. Briefly, ∼1 μg
DNA was modified by 5 mol/L sodium bisulfite, desulfonated
with NaOH, and then purified and resuspended in 80 μL
elution buffer (EB; 10 mmol/L Tris-HCl, pH 8.0).

2.4. DNA Methylation (MethyLight) Assay. All primers and
probes for MethyLight assays were designed specifically for
bisulfite-converted fully methylated DNA. Their sequences
have been reported previously [35]. Amplification of bisulfite
converted beta-actin (ACTB) DNA was used to normalize
for the quantity of input DNA. Samples negative for ACTB
were excluded from methylation analysis. Of 372 identified
samples, 56 (15%) were excluded because they were negative
for ACTB. The percentage of samples excluded after bisulfite
conversion was similar in smokers (15%) and nonsmokers
(16%). A plasmid containing bisulfite converted ACTB gene
of known concentration was diluted and used as a standard
curve for quantification. The assay for a given set of samples
was only considered valid if the converted unmethylated
human sperm DNA was not amplified, whereas the con-
verted fully methylated DNA was amplified. For each locus,
the percentage methylated reference (PMR) was calculated
by dividing the gene/reference ratio of a sample by the
gene/reference ratio of fully methylated DNA control [43].
Genes were considered to be positive for any hypermethyla-
tion at PMR >0%.

2.5. Statistical Methods. For comparisons between groups,
to provide independent observations, we randomly selected
one tissue block per subject to represent each subject’s
hypermethylation profile. To evaluate potential differences
in gene methylation by site of the lung, paired upper,
and lower lobe tissue samples from within subjects were
compared using McNemar’s Test. To assess the univariate
and multivariate relationships between gene methylation and
independent variables (smoking, age, gender, lobe of lung,
pack years, and years since quitting), we included all available
tissue samples from each subject and employed generalized
estimating equations (GEE). This method enables the anal-
ysis of data with repeated measurements (multiple tissue
samples per subject from different lobes) and accounts for
within-subject correlations. In selecting a model, a logit
link was used and we assumed an exchangeable working
correlation structure to account for intrasubject correlation.
Parameter estimates were exponentiated to provide odds
ratios (OR) and 95% confidence intervals (CI). A 2-sided
0.05 test level determined statistical significance for all
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Table 1: Genes hypermethylated in >2% of noncancerous lung tissues.

HUGO
acronym

Gene name Function

APC Adenomatous polyposis coli
Cell cycle: inhibits WNT signaling pathway, involved in spindle assembly and
chromosome segregation, cell adhesion, and cell migration [38].

CCND2 Cyclin D2 Cell cycle: regulates entry into S-phase with CDK4 and CDK6 [39]

CDH1
Cadherin 1; e-cadherin

(epithelial)
Cell adhesion, epithelial-mesenchymal transition [40]

RARB Retinoic acid receptor, beta Regulation of cell proliferation and differentiation [41]

analyses. All analyses were conducted using SAS version 9.1
(SAS Institute Inc., Cary, NC).

3. Results

3.1. Study Population and Tissue Samples. We retrospectively
enrolled 151 subjects who contributed a total of 316 available
pathology blocks (Table 2). At the time of their surgery,
121 subjects were current or former smokers (ever-smokers),
while 30 reported no smoking history (never-smokers).
Among the never-smokers, none had any history of cancer,
either prior to or after the surgery that yielded the tissue
used in this study. Of the ever-smokers, 10 had a history of
prior cancer other than lung (1 breast, 2 cervical, 2 colon,
2 prostate, 1 testicular, and 2 uterine) and all were cancer
free at surgery. Four of the ever-smokers developed a cancer
subsequent to the surgery that yielded the cancer-free lung
tissue (1 bladder, 1 colon, and 2 NSCLCs, one at 2 years
after, one at 5 years after). The clinical data show that never-
smokers and ever-smokers who had undergone lung surgery
comprised two distinct populations. Ever-smokers were
significantly older than never-smokers (61 years versus 44
years). Further, of ever-smokers who contributed specimens
from lung surgery, 71% had a diagnosis of emphysema,
compared to only 10% of never-smokers.

We analyzed a total of 316 available pathology blocks
from these 151 subjects, including 177 upper lobe samples,
105 lower lobe samples, 30 middle lobe or lingula samples,
and 4 whose lobe of origin was unclear. Multiple blocks
were available for 98 (81%) of ever-smokers and 13 (43%) of
never-smokers; from the 121 ever-smokers, 269 samples were
tested, while from the 30 never-smokers, 47 samples were
tested. Sample sites varied substantially in ever-smokers and
never-smokers as 50% of ever-smokers, compared to 17%
of never-smokers, contributed only samples from the upper
lobes. This difference arose because many ever-smokers in
our sample underwent lung volume reduction surgery for
emphysema, which predominantly affects the upper lung
zones when induced by smoking.

3.2. Gene Hypermethylation and Smoking Status. Consid-
ering one random tissue block per subject, only APC
(39%), CCND2 (21%), CDH1 (7%), and RARB (4%) were
hypermethylated in more than 2% of subjects (Figure 1).
All 15 remaining genes (BVES, CDH13, CDKN2A (p16),
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Figure 1: Hypermethylation of four genes in noncancerous lung
tissues. Percent of subjects with hypermethylation of four genes
(APC, CCND2, CDH1, and RARB), stratified by smoking status.
Samples were considered to be positive for any hypermethylation at
PMR >0%. To provide population statistics, one lung tissue sample
per subject was randomly selected. The 15 other genes tested were
hypermethylated in <2% of all subjects.

CDKN2B, DAPK1, IGFBP3, IGSF4, KCNH5, KCNH8,
MGMT, OPCML, PCSK6, RASSF1, RUNX, and TMS1) were
hypermethylated in less than 2% of subjects. CCND2
was hypermethylated significantly more frequently in ever-
smokers compared to never-smokers (26% versus 3%, P <
.001). APC was hypermethylated somewhat more frequently
in ever-smokers (41% versus 30%), but this did not achieve
statistical significance (P = .3).

3.3. Correlation of APC and CCND2 Gene Hypermethlation.
APC and CCND2 were often hypermethylated in the same
samples; 179 (57%) samples were negative for both genes,
16 (5%) were positive for hypermethylation of CCND2, but
not APC, 68 (22%) were positive for hypermethylation of
APC but not CCND2, and 53 (17%) samples were positive
for both genes. CCND2 hypermethylation was significantly
correlated with APC hypermethylation in all subjects (OR
= 7.3, 95% CI = 3.9–13.8) and in smokers only (OR = 7.4,
95% CI = 3.9–14.0). In nonsmokers, 31 (66%) samples were
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Table 2: Clinical data of 151 cancer-free subjects with lung tissue available for MethyLight assay.

Never-smokers (n = 30) Ever-smokers (n = 121)

Age at surgery (mean years ± sd) 43.7 ± 11.6 61.0 ± 9.9

20–39 11 (37%) 2 (2%)

40–49 8 (27%) 14 (12%)

50–59 9 (30%) 33 (27%)

60–69 2 (7%) 43 (36%)

70–79 0 (0%) 29 (24%)

Female gender 18 (60%) 58 (48%)

Smoking pack years

1–39 N/A 50 (41%)

≥40 N/A 71 (59%)

Years since quittinga

0 (Current) N/A 15 (13%)

1–4 N/A 31 (26%)

5–9 N/A 27 (23%)

10–19 N/A 30 (25%)

≥20 N/A 17 (14%)

Surgery

Lung volume reduction 0 (0%) 57 (47%)

Lung transplant 9 (30%) 31 (26%)

Wedge Biopsy 18 (60%) 24 (20%)

Lobectomy 2 (7%) 5 (4%)

Bullectomy 0 (0%) 4 (3%)

Segmentectomy 1 (3%) 0 (0%)

Number of samples evaluated

One sample 17 (57%) 23 (19%)

Multiple samples 13 (43%) 98 (81%)

Sample locationsb

Upper lobe only 5 (17%) 60 (50%)

Middle lobe or lingula only 6 (21%) 1 (1%)

Lower lobe only 10 (34%) 21 (18%)

Multiple lobes 8 (28%) 37 (31%)

Etiology

Emphysemac 3 (10%) 86 (71%)

Inflammatory conditionsd 13 (43%) 21 (17%)

Infectious diseases 4 (13%) 7 (6%)

Cystic fibrosis 5 (17%) 0 (0%)

Pulmonary hypertension 1 (3%) 2 (2%)

Sarcoidosis 1 (3%) 1 (1%)

Lymphoid hyperplasia 1 (3%) 1 (1%)

Infarct 1 (3%) 1 (1%)

Hemangioma 0 (0%) 1 (1%)

Trapped lung 1 (3%) 0 (0%)

No histologic abnormalities 0 (0%) 1 (1%)
a
Quit years not available for 1 subject.

bSample location unknown for 4 samples from 3 subjects.
cSee results section for details.
dInflammatory conditions included chronic bronchitis, bronchiectasis, pulmonary fibrosis, and granu-
lomatous disease.
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Table 3: All subjects—odds ratios for promoter hypermethylation (95% CI).

Ever-smokers versus never-smokers Age per 10 years Female versus male Upper versus lower lobe

Univariatea

APC 1.3 (0.6–2.9) 1.1 (0.9–1.4) 0.6 (0.5–0.8) 1.6 (0.9–2.7)

CCND2 6.9 (1.6–29.8) 1.9 (1.4–2.7) 0.8 (0.6–1.1) 2.3 (1.2–4.4)

Multivariatea

APC 1.0 (0.4–2.6) 1.0 (0.8–1.3) 0.6 (0.4–0.8) 1.6 (1.0–2.8)

CCND2 2.8 (0.6–12.1) 1.7 (1.2–2.4) 0.8 (0.6–1.2) 2.0 (1.0–3.8)
a
Associations between clinical parameters and gene hypermethylation, assessed at PMR > 0%, in all 316 lung specimens from 151 subjects.

negative for both genes, 14 (30%) were positive for APC only,
and 2 (4%) samples were positive for both APC and CCND2.

3.4. Gene Hypermethylation and Clinical and Demographic
Factors. In univariate GEE analyses of all specimens
(Table 3), CCND2 hypermethylation was significantly asso-
ciated with a positive smoking history, increasing age, and
sample origin from the upper versus lower lobe of the
lung. APC hypermethylation was significantly less frequent
among females and moderately more frequent in upper lobes
compared to lower lobes but was not significantly associated
with a positive smoking history. In a multivariate model
simultaneously assessing smoking history, age, gender, and
location of the sample (upper versus lower lobe) in all sub-
jects, hypermethylation of CCND2 remained significantly
associated with increased age (OR = 1.7, 95% CI = 1.2–
2.4 for each 10 years of age) and upper lobe location (OR
= 2.0, 95% CI = 1.0–3.8). CCND2 hypermethylation was
somewhat associated with a positive smoking history (OR =
2.8, 95% CI = 0.6–12.1) but this did not achieve statistical
significance.

3.5. Gene Hypermethylation and Duration of Smoke Exposure.
Within the subset of 269 samples from 121 ever-smokers
(Table 4), APC hypermethylation was not related to pack-
years of cigarette smoking or years since quitting smoking.
In univariate GEE analysis, CCND2 hypermethylation was
significantly associated with greater pack years but was not
related to years since quitting. However, in a multivariate
GEE analysis simultaneously assessing pack years, years since
quitting, age, gender, and location of the sample (upper
versus lower lobe), CCND2 hypermethylation was no longer
associated with pack years (OR = 1.0, 95% CI = 0.9–1.2 per
10 pack years).

3.6. Gene Hypermethylation in Upper- and Lower-Lobe Sam-
ples. Smoking-related lung tumors and emphysema are
known to disproportionately affect the upper lobes of the
lungs. Thus, if hypermethylation of a gene is associated with
smoking, we might expect to find more hypermethylation in
upper lobe samples compared to lower lobe samples, among
ever-smokers.

Examining all 269 samples from ever-smokers (Table 4),
in univariate GEE analysis, both APC (OR = 2.0, 95% CI =
1.1–3.5) and CCND2 (OR = 1.9, 95% CI = 1.0–3.5) hyper-
methylation were more common in upper compared to lower

lobes. In multivariate analysis including pack-years, years
since quitting, age, gender, and upper versus lower lobe, APC
hypermethylation remained significantly associated with
upper-lobe sample location (OR = 2.1, 95% CI = 1.1–4.0),
while CCND2’s positive association with upper lobes was
reduced to slightly below the level of statistical significance
(OR = 1.7, 95% CI = 0.9–3.4).

Among the 121 ever-smokers in our cohort, 30 had
both upper and lower lobe samples available, and were
included in within-subjects, pairwise comparisons. For APC,
12 of 30 pairs had discordant hypermethylation status
(1 positive and 1 negative), of which 8 of 12 displayed APC
hypermethylation in an upper lobe but not a lower lobe
sample (P = .25). For CCND2, only 7 of 30 pairs had
discordant hypermethylation status, of which only 3 of 7
were hypermethylated in the upper but not the lower lobe
(P = .7). Thus, too few subjects had discordant hypermethy-
lation in upper and lower lobe samples to yield statistically
meaningful results in within-subjects comparisons.

4. Discussion

DNA hypermethylation is an important event in lung
carcinogenesis. However, it is currently unknown whether
changes in DNA methylation are early events, occurring
in previously normal lung tissue or whether they are late
changes that occur only in overt tumor cells [30]. To attempt
to answer these questions, we tested DNA hypermethylation
in lung tissues from subjects without cancer—both smokers
and nonsmokers—using a panel of 19 genes which we had
previously found to be hypermethylated in some nonsmall
cell lung cancers [35, 44]. This unique study design allowed
us, for the first time, to characterize the DNA hypermethyla-
tion profile of nonsmokers’ lung tissues and to compare this
profile to that of smoke-exposed lung.

Importantly, we observed that CCND2, which is known
to be frequently hypermethylated in lung cancer tissue
[35, 44–47], was hypermethylated more frequently in ever-
smokers (26%) than in never-smokers (3%). Also, as pre-
dicted, in ever-smokers, CCND2 was hypermethylated more
frequently in samples from the upper lobes, which are
known to suffer far more negative effects from cigarette
smoke, such as lung cancer and emphysema [36, 37]. These
findings support the conclusion that CCND2 reflects an
early, precancerous change in the lung, caused by cigarette
smoke.
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Table 4: Ever-smokers only—odds ratios for promoter hypermethylation (95% CI).

Pack years per 10 years Quit years per 10 years Age per 10 years Female versus male Upper versus lower lobe

Univariatea

APC 1.0 (0.9–1.1) 0.9 (0.6–1.2) 1.1 (0.8–1.5) 0.6 (0.5–0.8) 2.0 (1.1–3.5)

CCND2 1.1 (1.0–1.3) 0.8 (0.6–1.1) 1.8 (1.3–2.6) 0.8 (0.6–1.1) 1.9 (1.0–3.5)

Multivariatea

APC 0.9 (0.8–1.1) 0.8 (0.6–1.2) 1.2 (0.8–1.7) 0.6 (0.4–0.8) 2.1 (1.1–4.0)

CCND2 1.0 (0.9–1.2) 0.8 (0.5–1.2) 1.8 (1.2–2.9) 0.9 (0.6–1.2) 1.7 (0.9–3.4)
a
Associations between clinical parameters and gene hypermethylation in 269 lung specimens from 121 subjects with a current or past history of smoking.

CCND2 encodes cyclin D2, a protein involved in cell
cycle progression that is thought to act as a regulator of
cyclin dependent kinase 4 and cyclin dependent kinase 6
in the transition from G1 to S-phase [39]. CCND2 hyper-
methylation appears to be common in many cancers. In
breast cancer, where it has been studied most extensively,
CCND2 hypermethylation is detected frequently, though it
appears to be rarely detected in normal breast tissue [48–54].
Interestingly, while CCND2 hypermethylation (and there-
fore low CCND2 protein expression) has been associated
with poor prognosis in epithelial ovarian cell cancer [55]
and recurrence of hepatocellular carcinoma [56], increased
CCND2 expression has been associated with poor prognosis
in diffuse large B-cell lymphoma [57].

In the lung, CCND2 hypermethylation has been found
in 40–56% of NSCLCs [35, 44, 45, 47]. In noncancerous lung
tissue, whereas Virmani et al. found CCND2 hypermethy-
lation in 0 of 18 samples [45], our previous investigation
found CCND2 hypermethylation in 24% of noncancerous
lung tissues from patients with NSCLC [35]. This closely
matches the rate observed in the present study, in cancer-
free ever-smokers (26%). Possibly, our group observed a
higher rate of CCND2 hypermethylation in both cancerous
and cancer-free lung tissues because we used MethyLight
assays instead of methylation-specific PCR (MSP), which
was used by Virmani et al. Thus, we may have detected
low levels of hypermethylated genes in cancer-free tissues
which were not detected by MSP. Discrepancies may also
be due to the somewhat different primers and probes
used in analyses, which indicate different sequence regions
investigated. In addition, Kubo et al. did not observe any
CCND2 hypermethylation in 30 matched noncancerous lung
tissues but it should be noted that in this study, 70% of
subjects were nonsmokers who would not be expected to
have significant rates of CCND2 hypermethylation [46].

Combined, these results reveal a progression in the rate
of CCND2 hypermethylation in the lung, corresponding
with the risk for developing lung cancer. While CCND2
hypermethylation was very infrequent (3%) in our current
study’s low-risk group of 30 never-smokers, it was more
frequent in a high-risk group of ever-smokers (24–26% in
our current and previous studies), and most frequent in overt
NSCLC tissue (40–56%). This risk-stratified progression in
lung tissues suggests that CCND2 hypermethylation may
truly reflect an early precancerous change in the lung, en

route to overt cancer, which may be due to the effects of
smoking.

Still, our findings regarding CCND2 should be regarded
as preliminary at this time, for several reasons. In multi-
variate analysis, the effect of smoking status on CCND2
hypermethylation was reduced to trend-level significance
after taking into account the effects of sample location
(upper versus lower lobe) and subject age. This likely
occurred because in our sample, the majority of smokers
underwent lung surgery for emphysema and represented a
significantly older group, more likely to contribute samples
from upper lobes (where emphysema is most prominent).
In contrast, nonsmokers were younger and underwent lung
resection for a variety of diseases. With such significant
correlation of these factors, multivariate analysis may not
have reliably separated each factor’s relative contribution to
gene hypermethylation. Thus, observed differences in the
rate of CCND2 hypermethylation could be attributable to
any of these factors or others that differed between ever
and never-smokers. Emphysema, for example, made CCND2
hypermethylation more likely although significant rates of
CCND2 hypermethylation were also found in smokers with
other diagnoses. While CCND2 hypermethylation could be
part of the unique pathophysiology of emphysema, it more
likely arose because emphysema reflects severe smoking-
induced lung damage. The effect of age on CCND2 hyperme-
thylation has not been studied previously in noncancerous
lung, although several genes have been reported to undergo
increased rates of hypermethylation with age, in various body
tissues, including CDH1 and DAPK1 in the lung [58]. In
noncancerous breast epithelium [59] and in peripheral blood
samples from cancer-free subjects [60], advanced age was not
observed to correlate with CCND2 hypermethylation. Thus,
the relationship between age and CCND2 hypermethylation
remains unknown at this time. In weighing the relative
contributions of age, sample location, and emphysema
status on CCND2 hypermethylation, it is worth noting that
smoking history was by far the strongest single predictor of
CCND2 hypermethylation in univariate analysis (OR = 6.9,
95% CI = 1.6–29.8). One limitation of the present study was
that despite our overall large number of 151 subjects, only 30
were never-smokers. This occurred because never-smokers
far less frequently undergo lung resections which produce
tissue. This may have been part of the reason why in mul-
tivariate analysis, we observed only trend-level significance
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for smoking’s effect on CCND2 hypermethylation. We were
able to improve our statistical power somewhat by using
generalized estimating equations (GEE) for our univariate
and multivariate analyses, allowing us to enter multiple tissue
blocks per subject when available (multiple observations),
without biasing the results. However, future studies should
seek to verify the low rate of CCND2 hypermethylation we
observed in never-smokers. An additional limitation of our
study design was that all subjects had an underlying non-
cancer pulmonary diagnosis that necessitated lung surgery.
Thus, while observed gene hypermethylation was unrelated
to cancer, it cannot definitely be said to represent healthy
lung. Finally, due to our study design, we only provide indi-
rect evidence of interaction between smoking and CCND2
hypermethylation. Future studies utilizing animal models
may be useful to elucidate the potential causal relationship
between smoking and CCND2 hypermethylation.

In our current and previous studies, CDKN2A (p16) was
hypermethylated in 26% of cancer tissues [44] but was rarely
hypermethylated in noncancerous lung tissues, regardless of
smoking status [35]. However, CDKN2A hypermethylation
has previously been characterized as an early event in lung
carcinogenesis [28–30], and hypermethylation of CDKN2A
has been commonly detected in sputum samples from heavy
smokers without lung cancer [32, 61]. Overall, a very wide
range of hypermethylation rates for CDKN2A has been
reported in the literature, for noncancerous lung tissues.
Along with other researchers who observed low rates of
CDKN2A hypermethylation in noncancerous lung tissues,
our results suggest that CDKN2A hypermethylation may
actually represent a later change in carcinogenesis [62–
66]. However, the surprisingly large discrepancies between
studies may be related to differences in assay methodology
(including PCR primers and specific CpG islands) or patient
populations.

5. Conclusions

CCND2 hypermethylation likely represents an early, smok-
ing-induced, precancerous change in the lung; it is very infre-
quent in the lung tissue of never-smokers, more frequent
among smokers, and most frequent in overt NSCLC tissue.
This conclusion should be verified in future investigations.
In addition, this study supports the conclusions of our pre-
vious investigation, that although they are hypermethylated
in many NSCLC tumor tissues, RASSF1, DAPK1, BVES,
CDH13, MGMT, KCNH5, and to some extent CDH1 and
RARB, are rarely hypermethylated in the cancer-free lung,
even after significant tobacco exposure [35]. These genes
may therefore yield clues to understanding the later stages of
carcinogenesis. In addition, if hypermethylation of CCND2
or other genes represents an early precancerous change, it
is possible that drugs aimed at reversing DNA methylation
could be used to prevent smoking-related carcinogenesis.
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