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ABSTRACT: Stable cell performance in a fluctuating environment is essential
for sustainable bioproduction and synthetic cell functionality; however,
microbial robustness is rarely quantified. Here, we describe a high-throughput
strategy for quantifying robustness of multiple cellular functions and strains in a
perturbation space. We evaluated quantification theory on experimental data
and concluded that the mean-normalized Fano factor allowed accurate, reliable,
and standardized quantification. Our methodology applied to perturbations
related to lignocellulosic bioethanol production showed that the industrial
bioethanol producing strain Saccharomyces cerevisiae Ethanol Red exhibited
both higher and more robust growth rates than the laboratory strain CEN.PK
and industrial strain PE-2, while a more robust product yield traded off for
lower mean levels. The methodology validated that robustness is function-
specific and characterized by positive and negative function-specific trade-offs.
Systematic quantification of robustness to end-use perturbations will be
important to analyze and construct robust strains with more predictable functions.
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Microbial robustness ensures predictable, stable synthetic
cellular functionality in spite of internal or external

perturbations.1−3 Robust cell manufacturing and destination
performance will be a key in realizing new synthetic biology
modalities and efficient bioproduction.4−6 Robustness is
defined for a specific function (or phenotype) and set of
perturbations.7 Robustness is therefore different from toler-
ance, which specifically describes stable growth or survival to
various perturbations, e.g., via specific growth rates.6,8 In silico
systems biology quantifies robustness by the influence on a
cellular function of a frequency-normalized perturbation space
relative to a control condition9 with a normally distributed
mean and standard deviation. Experimentally, measures of
variation represent the stability (dispersion) of quantitative
traits across perturbations, but not at different scales,7 for
which the dimensionless coefficient of variation (CV) is better
suited.10 Yet even if central to realizing predictable, scalable
synthetic biology, robustness is seldomly quantified exper-
imentally for strain functions, which may be subject to genetic
or environmental perturbations of stochastic or determined
behavior.5,11,12 Here, we present and validate a high-
throughput methodology to experimentally quantify microbial
robustness (script available on GitHub). We show that the
methodology can be used to systematically quantify and
compare the robustness of different strain functions of interest
in a relevant perturbation space and relate them to their
performance level. Precise quantification will allow for
exploration of trade-offs between robustness and performance
of different cellular functions.

■ RESULTS AND DISCUSSION

Development of a Systematic Method for Quantifi-
cation of Robustness Based on the Fano Factor. In order
to experimentally quantify robustness (R), we first set four
important criteria to ensure consistency, reproducibility, and
standardization. (1) Testing more perturbations should not
change R, only its statistical significance. (2) Positive and
negative deviations from the mean or a control performance
level9 should contribute negatively to R. (3) Higher R should
represent greater robustness. (4) R should be dimensionless
and capture cellular function values at different orders of
magnitude allowing comparison. To meet these criteria, we
evaluated the reported theory.9,10

The first theory quantifies R as the CV based on standard
deviation/mean (σ/x̅).10 RCV was calculated as

R
x

1 CV 1CV
σ= − = −

̅ (1)

However, when cellular functions are subjected to different
experimental perturbations, CV becomes >1 complicating
interpretation. More importantly, as others have, we found that
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CV was poorly accurate in describing data dispersion with
means between 0 and 1 (Figure S1).13 CV therefore failed our
fourth criterion.
The second theory quantifies R by evaluating a function

change in relation to a specific control condition 0, according
to an embodiment of Kitano’s formula:9

R
f p

f
p p

( )

(0)
( ) d

P

i S

i S
Kitano

,

,
∫ ψ=

(2)

RKitano reports the ratio between the perturbed function
f i,S(p) and the control condition f i,S(0) over a space of
perturbations P, each multiplied for its frequency ψ(p). We
simplified eq 2 and assumed an equal frequency for each
perturbation. However, functions performing better than the
control achieved higher robustness (Figure S2); further,
defining a control condition performance is not always
meaningful. As a result, RKitano failed our criteria 1, 2, and 4.
Therefore, we evaluated an approach quantifying R as the

dispersion of data around the function means using the Fano
factor (Figure 1). The Fano factor is commonly used to study

transcriptional bursting and noise in gene expression by
identifying deviation from Poissonian behavior and has been
proposed for robustness before,7,13−15 but not actually
deployed. For each function i, a strain S, and a perturbation
space P, RS,i,P was calculated as σ2/x̅:16

R
x m

Fano factor
mean

1
S i P, ,

2σ= − = −
̅
·

(3)

To allow comparison of R between functions, we normalized
the different Fano factors to the mean of the functions they
describe (m) across all strains (Figure 1). We set the upper
limit for R to 0 (highest robustness) and the problem of 0 < x̅
< 1 was solved. As the Fano factor remained finite for mean
values approaching zero, the weight of the mean on R was
higher than for the CV. This quantification strategy was
frequency independent, dimensionless, and free from arbitrary
control conditions, thereby meeting all criteria. The use of m,
however, still means that the R values calculated using the
mean-normalized Fano factor by definition always will be
relative to the investigated data case.

Quantifying Robustness of Five Cellular Functions:
Case Study of Lignocellulosic Bioethanol Production.
To validate the methodology for quantifying microbial
robustness, we used lignocellulosic bioethanol production
(Materials and Methods). We included the Saccharomyces
cerevisiae CEN.PK113−7D laboratory strain,17 and the
industrial strains Ethanol Red and PE-2, whose robust ethanol
production and growth is advantageous in starch and sugar
cane fermentation.18−20 We measured five relevant cellular
functions (maximum specific growth rate, lag phase, cell dry
weight, biomass, and ethanol yields) across 29 different
perturbations (single-component lignocellulose growth con-
ditions) in a 96-well plate high-throughput setup (Materials
and Methods).
The three strains exhibited different production and growth

functionality when exposed to the 29 perturbations (Figure
2A). Across the lignocellulose perturbation space, Ethanol Red
performed better than CEN.PK and PE-2 in all functions,
except for ethanol yield. Aldehydes had a negative effect on all
five measured functions, while pentoses resulted in unchanged
or improved functions. Lactic, levulinic, formic, and acetic acid
reduced cell dry weight and biomass yield (Figure 2A).
We next quantified the robustness and found the maximum

specific growth rate, ethanol yield, and cell dry weight as
significantly higher in Ethanol Red (cell dry weight (p-value <
0.005), maximum specific growth rate (p-value < 7 × 10−8),
ethanol yield (p-value < 0.001)) (t test) (Figure 2B),
supported by data less dispersed around the mean. These
robust cellular functions were accompanied by a more fragile
biomass yield, most robust in CEN.PK (p-value < 0.02), and
lag phase most robust in PE-2 (p-value < 0.002) (Figure 2B).
PE-2 achieved high mean ethanol yield, but its robustness was
the lowest in part due to positive effects from pentoses. The
observed very robust growth and production functions of
Ethanol Red could explain its application in first-generation
bioethanol plants that share our perturbations mainly except
aldehydes,18 but came with a cost of lower average perform-
ance. High performance and high robustness are sometimes
considered mutually exclusive.21 In theory, these two proper-
ties are believed to trade off with one another in several
biological systems.22,23 Our quantification methodology
identified possible robustness and performance trade-offs in
lignocellulose-based bioethanol production (Figure 2C). For
example, Ethanol Red traded its ethanol yield performance for
high robustness, and vice versa for PE-2. Oppositely, we found
that PE-2 traded robustness for performance for its maximum
specific growth rate. On the basis of these findings, we
observed that correlations between performance and robust-
ness are both function and strain dependent. Larger data sets
are needed to establish such correlations. In our investigation,
the mean-normalized Fano factor was the best option to

Figure 1. Relevant functions are measured upon exposure to various
perturbations (colored dots) and robustness is calculated as the
negative mean-normalized Fano factor. A control condition (e.g., 20
g/L glucose) is needed for calculation of RKitano.
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calculate robustness, but we noticed that its suitability could be
limited by the normalization with m (the mean of the function
performance among the strains). The normalization is required
by criteria four; however, it further adjusts R to the strains
tested in the study.
A systematic framework for assessing robustness of several

performance indicators will improve our understanding of how
cellular functions respond to relevant perturbations, e.g., by
favoring robustness, performance, or a suboptimal state for
both. In strain engineering, robust yields of products are
sometimes preferred over higher but unstable yields.5 In
synthetic biology, engineered strains should carry new
functions that perform robustly under anticipated perturba-
tions. Relevant functions include biosensor signals, gene
expression reporters and heterologous proteins production.

Quantifying robustness to scale-up or long-term cultivation
(such as genetic robustness) will also be highly relevant to
prevent declines of performance due to accumulation of
mutations and heterogeneity,5,24 e.g., by quantifying robustness
over many cellular divisions.
The high-throughput methodology described here will be

useful for quickly quantifying robustness of multiple strain
variants, environments and functions. For example, when
engineering strains for heterologous expression, one could
compare the robustness and performance trade-offs of product
yield under various environmental and genetic conditions (e.g.,
different gene homologues, promoters, growth conditions). By
doing so at laboratory scale, it may be possible to better
understand and screen for robust cellular functions, rather than
high-performing but unstable functions. When a strain is

Figure 2. Quantification of microbial robustness with the Fano factor. (A) Function evaluation in a large perturbation space containing
components found in lignocellulosic hydrolysates. CDW: cell dry weight; μmax: maximum specific growth rate. All points are individual biological
replicates (n = 3). Lag phase missing points: cultures did not grow within 48 h. (B) Robustness quantification for each function. Error bars:
standard error of the mean (n = 3). (C) Robustness and performance trade-offs for each function and strain.
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selected with a robust cell function, shifting conditions (e.g.,
different concentrations of inhibitors in the growth media)
would not affect functionality. Thus, different industrially
“robust strains” may be optimized toward robustness of
production functionality across the narrow environmental and
stochastic perturbation space of the bioprocess, making such
strains robust to typical fluctuations in the process and thus
not necessarily robust in foreign environments. Quantification
methodology can uncover which perturbations affect the
robustness of specific functions and how robustness relates
positively and negatively to performance for each function (i.e.,
trade-offs). Through our methodology, we validated that
robustness is function-specific,7 rather than a universal strain
value, as previously theorized.
Future work will also show whether strains with robust

functions are better starting points for subsequent enhance-
ments via metabolic or evolutionary engineering. Robustness
quantification may also include perturbation frequency, as well
as more strains and perturbations. At present, our method-
ology may be applied to phenomics databases to compare
numerous traits and strains.

■ MATERIAL AND METHODS

Strains. The strains used in the study were Saccharomyces
cerevisiae CEN.PK113−7D25 (Scientific Research and Devel-
opment GmbH, Oberursel, Germany), PE-226 (wild-type
strain isolated during sugar cane-to-ethanol production in
Brazil), and Ethanol Red (kindly provided by Societ́e ́
Industrielle Lesaffre, Division Leaf).
Media Preparation. Delft minimal medium27 was used for

strain cultivation. The medium was prepared with 5 g/L
(NH4)2SO4, 3 g/L KH2PO4, 1 g/L MgSO4·7H2O, 1 mL (in 1
L solution) trace mineral solution (Table S1), and 1 mL (in 1
L solution) vitamin solution (Table S2). The medium was
adjusted to pH 5 with KOH and buffered with 250 mM
potassium hydrogen phthalate. Multiple compounds were
added to the minimal medium to mimic the composition of
lignocellulosic hydrolysates obtained mostly from spruce, corn
starch, and wheat straw (Table S3).
Fermentation Experiments. The strains were preserved

in glycerol (final concentration 16%) at −80 °C. Precultures
were prepared by inoculating 10 μL glycerol stocks in 5 mL of
the above-described Delft medium (20 g/L glucose), followed
by incubation at 30 °C with 200 rpm shaking.
The optical density at 600 nm (OD600) of overnight cultures

was monitored in a GENESYS 10 spectrophotometer (Thermo
Scientific). After 24 h, the cultures (in exponential phase) were
inoculated in square polystyrene 96-half-deepwell microtiter
plates (CR1496dg; Enzyscreen) at a starting OD600 of 0.02.
Strain growth was monitored in a Growth Profiler 960
(Enzyscreen) and was expressed as green value (GV) units.
The microplates were covered with a CO2-release cover
(CR1296t; Enzyscreen) to minimize passive diffusion of O2
and mimic anaerobic conditions. Each plate was used for a
single strain, each well corresponded to a specific growth
condition, and each condition was assayed in three technical
replicates. The strains were cultivated in the growth profiler for
48 h at 30 °C, with 250 rpm shaking. After 48 h, the plates
were removed from the growth profiler and the GV units at 48
h were converted to OD values according to the following
formula:

a c

e

OD (GV GV ) (GV GV )

(GV GV )

b d

f
value blank value blank

value blank

= − + −

+ −

The constants were as follows: a = 0.019, b = 1, c = 3.82 ×
10−6, d = 2.66, e = 3.111 × 10−22, f = 10.5, and GVblank = 26.3.
The equation was previously calibrated using Delft medium

and S. cerevisiae CEN.PK113−7D. Cultures were diluted based
on the final OD600 measured in the growth profiler. OD600 of
the culture at 48 h was measured in a plate reader
(SPECTROstar nano; BMG LABTECH). The culture was
transferred on a hydrophilic polytetrafluoroethylene multi-
screen solvinert 96-well filter plate (MSRLN0410; Millipore)
and filtered into a new 96-well microtiter plate (82.1581;
Sarstedt).

Cell Dry Weight (CDW) Determination. S. cerevisiae
strains were cultivated in Delft medium (20 g/L glucose) to
stationary phase and centrifuged at 5000 rpm for 5 min. The
cell pellet was resuspended in 1 mL water and OD600 was
measured. A series of five 1:2 dilutions were made and filtered
through a predried and weighed 0.45 μm poly(ether sulfone)
membrane (Sartorius). OD600 of the dilutions was measured.
The filters containing the samples were dried for 10 min in a
microwave oven (350 W) and weighed again. Calibration
curves were constructed with CDW and OD600. The slope
values for each strain were used subsequently to calculate the
CDW of the growth profiler cultures.

Determination of Sugars and Ethanol. Culture medium
obtained by filtration from the first cultivation was used to
determine the sugars and ethanol content. Ethanol was
measured with the K-ETOH Ethanol Assay Kit, glucose with
the K-GLUHK-220A D-Glucose HK Assay Kit, mannose with
the K-MANGL D-Mannose/D-Fructose/D-Glucose Assay kit,
xylose with the K-XYLOSE D-Xylose Assay Kit, and galactose
and arabinose with the K-ARGA L-Arabinose/D-Galactose
Assay Kit (all Megazyme). The assays are based on enzymatic
reactions, which produce NADH, whose absorbance at 340 nm
can be read in a spectrophotometer. The amount of NADH is
stoichiometric with the amount of the compound of interest,
making it possible to calculate the concentration (g/L) of the
respective compounds.

Determination of Performance Values. The growth
data in GV units were imported in R software for visualization
and determination of growth parameters. The maximum
specific growth rate (μmax) was determined using all_splines
function. Duration of the lag phase was determined by
calculating the x coordinate of the intersection between the
line with μmax slope passing through the inflection point and
the line passing through y0 parallel to the x-axis. In the wells
where no growth was detected, R2 was <0.99, so the μmax was
set to 0 while the lag phase was set to NA.
Ethanol yield and biomass yield were calculated based on

total consumed sugars as follows:

Y
ethanol produced (g)

initial sugars (g) final sugars (g)e =
− (4)

Y
CDW (g)

initial sugars (g) final sugars (g)b =
− (5)

Scripts with line-by-line explanation available on Github
(https://github.com/cectri/Quantification-of-microbial-
robustness).
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Robustness Calculation. Eq 3 was applied to the case
study database mentioned above. The following variables were
considered: μmax (1/h), lag phase (h), CDW (g/L), biomass
yield (g biomass/g consumed substrate), and ethanol yield (g
produced/g consumed). Robustness and performance values
were calculated and plotted in R. Statistical difference among
the different cellular functions and strains was determined with
an unpaired, two-sided t test and p-values were adjusted with
Holm−Bonferroni method.
Scripts with line-by-line explanation available on Github

(https://github.com/cectri/Quantification-of-microbial-
robustness).
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