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Abstract
The estimation of a connectional brain template (CBT) integrating a population of brain networks while capturing shared and
differential connectional patterns across individuals remains unexplored in gender fingerprinting. This paper presents the first study
to estimate gender-specific CBTs using multi-view cortical morphological networks (CMNs) estimated from conventional T1-
weighted magnetic resonance imaging (MRI). Specifically, each CMN view is derived from a specific cortical attribute (e.g.
thickness), encoded in a network quantifying the dissimilarity in morphology between pairs of cortical brain regions. To this
aim, we propose Multi-View Clustering and Fusion Network (MVCF-Net), a novel multi-view network fusion method, which
can jointly identify consistent and differential clusters of multi-view datasets in order to capture simultaneously similar and distinct
connectional traits of samples. Our MVCF-Net method estimates a representative and well-centered CBTs for male and female
populations, independently, to eventually identify their fingerprinting regions of interest (ROIs) in fourmain steps.First, we perform
multi-view network clustering model based on manifold optimization which groups CMNs into shared and differential clusters
while preserving their alignment across views. Second, for each view, we linearly fuse CMNs belonging to each cluster, producing
local CBTs. Third, for each cluster, we non-linearly integrate the local CBTs across views, producing a cluster-specific CBT.
Finally, by linearly fusing the cluster-specific centers we estimate a final CBT of the input population. MVCF-Net produced the
most centered and representative CBTs for male and female populations and identified the most discriminative ROIs marking
gender differences. The most two gender-discriminative ROIs involved the lateral occipital cortex and pars opercularis in the left
hemisphere and the middle temporal gyrus and lingual gyrus in the right hemisphere.

Keywords Cortical morphological networks . Gender differences . Connectional brain template estimation . Multi-view
clustering . Population-driven connectome . Brain connectome atlas learning

Introduction

Several human neuroimaging studies have been conducted to
analyze brain connectivity between regionswith respect to gender
differences providing fundamental insights into the organization
and integration of brain networks in male and female populations
(Ingalhalikar et al. 2014; Jiang et al. 2019). In particular, brain

connectivitymodels interactions between different regions,which
can be leveraged to investigate gender fingerprinting. Gender
differences can be identified using functional connectivity and
structural connectivity, derived from functional magnetic reso-
nance imaging (fMRI) and diffusion weighted imaging (DWI)
respectively (Tyan et al. 2017; Jiang et al. 2019; Dadashkarimi
et al. 2019). By explicitly deriving structural and functional brain
connectivity from functional and diffusion-weighted magnetic
resonance imaging (fMRI and dMRI), network analysis presents
a powerful tool for exploring structural–functional connectivity
relationships (Zhou et al. 2006; Honey et al. 2007, 2009) and
revealing the causative linkage between connectivity changes
and task performance across genders (Bolla et al. 2004).

Several studies (Spelke 2005; Koch et al. 2007; Keller and
Menon 2009; Derntl et al. 2010) on sex differences revealed
contrasting activation patterns in cognitive abilities, behaviors
and emotions between male and female brains. Such studies
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provide a better understanding of learning processes, language
development, and progression of neurologically-based dis-
eases such as autism spectrum disorder and depression
(Zaidi 2010; Werling and Geschwind 2013) across genders.
What’s more, early prediction, risk, and protective factors of
brain disorders can be captured, as well as personalized treat-
ments for male and female populations can be designed.
Although fMRI and dMRI neuroimaging modalities allowed
the discovery of predictive brain connections fingerprinting
gender differences, they may have a few limitations. On the
one hand, functional MRI can produce spurious and noisy
connectomes due to the low signal-to-noise ratio induced by
non-neural noise (Soussia and Rekik 2018). On the other
hand, diffusion MRI can produce biased and largely variable
structural connectomes depending on the employed fiber
tractography method; a fact supported by a recent study
(Petrov et al. 2017) which evaluated 35 methods to generate
structural connectomes and showed that how variations in
diffusion MRI pre-processing steps affect network reliability
and its ability to classify subjects remains opaque.

To circumvent the limitations of these neuroimaging modal-
ities, recent studies have explored an alternative brain network
representation, a cortical morphological network (CMN) con-
structed from structural T1-w MRI. The main idea is to build a
network based on morphological connections of the cortical
surface derived from a unique cortical attribute such as sulcal
depth or cortical thickness. Specifically, CMNs model the rela-
tionship in morphology between different cortical regions
quantified using specific cortical measurements. For instance,
CMNs were investigated in neurodegenerative disorders
(Mahjoub et al. 2018; Lisowska et al. 2019) as well as in neu-
ropsychiatric disorders (Soussia and Rekik 2018; Georges et al.
2020). (Nebli and Rekik 2019) presented the first study on
gender differences using CMNs of healthy subjects. This work
leverages a feature selection method to find the most discrimi-
native morphological connections between male and female
cortices using different cortical attributes. Although compel-
ling, this study might discard some of the important connec-
tional features (CFs) in revealing the gender-specific brain con-
nectional map. In fact, the utilized feature selection method
selects only the important CFs and eliminates others which
can lead to losing rich information when creating holistic maps
of the male and female multi-view CMNs.

On the other hand, the concept of connectional brain template
(CBT) comes in to normalize a set of multi-view brain networks,
while considering all connectivities to enable the integration of
complementary information and the production of a representa-
tive `average’ of a given population. Hence, the estimation of a
CBT provides an excellent tool for mapping human psycholog-
ical behavior and cognitive functions, by providing a representa-
tive and holistic connectional map of a set of multi-view brain
networks. As integral and normalized representations of the
multi-view brain connectivity, CBTs estimated for each gender,

can hence help spot out different connectional patterns between
the male and female brains. (Rekik et al. 2017) presents the first
study on the estimation of a centered CBT using a population of
brain networks based on a diffusive-shrinking graph technique.
However, this work was limited to handling single-view net-
works, thereby overlooking the complementary and richness of
multi-view brain networks populations, where each individual is
represented by a set of brain networks (i.e., views). (Dhifallah
et al. 2019) generalized this concept tomulti-view brain networks
for a more holistic and integral mapping of brain connectivity by
first non-linearly fusing multiview brain networks for each indi-
vidual in the population, and secondly by clustering the fused
networks and integrating themwithin each cluster, and finally by
averaging the obtained centers of all clusters. Despite its prom-
ising performance, this study has a major drawback which is
clustering the samples without considering their heterogeneity
across views which fails to simultaneously capture the distinct
and the shared population-specific traits.

To address these limitations, we proposeMVCF-Net, a novel
multi-view network brain connectivity clustering-fusion method
that estimates a representative and centered CBTs for a given
population, with application to gender fingerprinting. Our meth-
od is rooted in the identification of consistent and differential
clusters across brain views to generate a representative and well-
centered CBT for a given population and to reduce subject inter-
variability. To this aim, first, we leverage multi-view network
clustering model based on manifold optimization method (Yu
et al. 2019), which performs clustering across data views. Thus,
similar connectional traits and distinct connectional traits of
samples within and across clusters in different views can be
identified in an unsupervised way (Yu et al. 2019). Second,
for each view, we linearly average the CMNs of the subjects
within each cluster, so that each cluster is represented by a local
CBT. Third, for each aligned cluster, we nonlinearly integrate its
local CBTs across views into a cluster-specific CBT. Finally, we
linearly fuse the cluster-specific CBTs to estimate the final CBT
representing a given population. The estimated CBT captures
both shared and distinct traits of a population. Ultimately, by
simply comparing the CBTs derived from female and male
populations, respectively, we spot out gender connectional dif-
ferences. We demonstrate that the resulting multi-view popula-
tion-driven CBTs byMVCF-Net fulfill the following criteria: (i)
they are well-centered and they achieve the minimum Frobenius
distance to all brain views and all subjects in a given population,
and (ii) they can effectively differentiate gender fingerprints by
capturing the most discriminative brain connections regions be-
tween male and female cortices.

Material

Dataset and data prepossessing steps We evaluate our pro-
posed MVCF-Net method using the brain genomics superstruct
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project (GSP) dataset (Buckner et al. 2012; Holmes et al. 2015)
detailed in Table 1. The dataset consists of 698 healthy candi-
dates split in two populations: 308 subjects are males and 390
subjects are females, and none of them carry any sign of brain
disorders or had any history of mental disease. Each subject is
represented with structural T1-w MR image which undergoes
preprocessing steps such motion and topology correction, T1-w
intensity normalization and segmentation of the subcortical white
and deep grey matters volumetric structures (Nebli and Rekik
2019). Then, we leverage the reconstruction of the right and
the left cortical hemispheres (RH and LH) for each subject
(Nebli and Rekik 2019). Next, we partition each hemisphere into
Nr = 35 cortical regions of interest (ROIs) using Desikan-
Killiany Atlas (Fischl et al. 2004) and FreeSurfer (Fischl 2012).
Finally, for each subject n and for each hemisphere, we define

M= 4 networks Vm
n

� �M
m¼1

, where each is represented by a cor-

tical morphological network (CMN):V1
n indicates the maximum

principal curvature brain view,V2
n marks themean cortical thick-

ness brain view,V3
n is generated using themean sulcal depth, and

V4
n is derived from the mean cortical curvature. Brain morpho-

logical networks are constructed separately for the left and the
right hemispheres, and they are investigated independently as we
aimed in this study to overlook morphological connections that
can be “biased” by the brain hemispheric asymmetry (Witelson
and Pallie 1973; Wada et al. 1975). Combining them also pre-
vents the loss of insightful information on how gender affects
each hemisphere independently.

Cortical morphological network construction We represent
each subject n by a set of Mmulti-view brain networks, where
we hypothesize that brain networks of a single view m lie on a
manifoldMm. We denote by M the number of manifolds and

V1
n;V

2
n;…;VM

n

� �
are the brain networks where Vm

n is the
CMN of the mth view representing subject n nested in Mm

manifold. We denote bym in ℝ the index of a brain network
view and by Vm

n the brain network of the mth view for
subject n. A view m is a description of a single view in the
brain network tensor of a single subject (e.g., mean cortical
thickness brain view), which is represented by a vectorized
brain network lying in a high dimensional space. On the other
hand, a view-specific manifold Mm is a learnable topological
space where all mth brain network views of all subjects are
nested. In other words, a view-specific manifold Mm aims to
embed brain networks of the mth view of each subject into a

low dimensional space. We represent each single-view brain
network as a complete graph comprisingNr nodes, where each
node denotes an ROI in the cortex, and the edge denotes the
connection quantifying the dissimilarity strength between two
ROIs. The graph can be mathematically encoded in an Nr × Nr

symmetrical matrix Vm
n , where each element Vm

n i; jð Þ ∈Vm
n

measures the interaction or relationship between Ri and Rj.
Specifically, we define Vm

n i; jð Þ as the absolute difference be-
tween the means of cortical attributes fmci and fmc j (i.e. cortical

thickness) respectively in regions Ri and Rj: fmci−fmc j
�� ��.

#{v ∈ Ri } denotes the number of vertices v belonging to
ROI Ri and mc(v) is the cortical measurement value assigned
to vertex v, we compute the average of mc(v) across all ver-
tices v in Ri as follows:

fmci ¼ 1

# v∈Rif g ∑v∈Ri
mc vð Þ ð1Þ

Method

Overview In this section, we detail our joint multi-view net-
work clustering and fusion framework MVCF-Net to estimate
a population-based CBT from a set of multi-view CMNs. We
illustrate in Figs. 1 and 2 the four proposed steps of MVCF-
Net: 1) feature extraction similarity networks construction, 2)
multi-view clustering using optimization manifolds, 3)
Individual-based non-linear fusion of connectional brain
views, and 4) Linear fusion. Furthermore, we detail our eval-
uation strategies for assessing the representativeness and dis-
criminability of the estimated CBTs as well as the identified of
the top discriminative regions of interest differentiating both
genders. For easy reference, we summarize the major mathe-
matical notations in Table 2 and detail the steps of the pro-
posed MVCF-Net framework in Algorithm 1.

Feature extraction and similarity networks construction First,
for each view m we extract the off-diagonal elements of the
upper triangular part of each brain network encoded in a sym-
metric connectivity matrix to form the feature vector fmn . The
dimension of each feature vector is thus equal to Nf = Nr × (Nr

− 1)/2 . Next, for each view m, we define a pairwise distance
matrix Dmbetween subjects, where Dm(i, j) is the Euclidian
distance between subject i and subject j using their feature
vectors fmi and fmj . We then generate the similarity matrix

Sm based on the distance (i.e., dissimilarity) matrix Dmto cap-
ture the similarity strength between each pair of subjects. We
denote by Sij the similarity value between subjects i and j,
where Sij approaches zero when i and j are dissimilar.

Multi-view clustering using optimization manifolds (Step1)
Unlike other methods (Dhifallah et al. 2019) which generate

Table 1 Data distribution of female/male dataset

Dataset Male Female

Number of subjects 308 390

mean ± std. age 21.6 ± 0.9 21.6 ± 0.8

2083Brain Imaging and Behavior (2021) 15:2081–2100



CBTs by directly fusing heterogeneous connectional brain net-
works of a given population, first, we group subjects into more
homogenous clusters by leveraging amulti-view clusteringmod-
el developed by (Yu et al. 2019), which returns the aligned
clusters in each view. Thus, both the consistent clusters and the
differential clusters are identified in each view. Specifically, for
each manifold Mm, we transform the connectional brain net-
works to similarity matrices that measure the relation between
different subjects. Next, for each view, we partition subjects into
aligned clusters by solving an optimization problem using the
line-search method and then by applying k-means clustering.
While the line-search method returns the assignment of subjects
into all clusters for each view, k-means clusteringmethod groups
subjects into clusters. Thus, the aligned clusters are identified in
each view. We detail these steps in the following part.

First, we construct the diagonal matrix Wm by summing
each row of Sm as indicated in Eqs. (2) and (3), then perform
spectral clustering to solve the optimization model (Zhang
et al. 2015) as follows:

Wm ¼ diag1≤ i≤N Sið Þ ð2Þ

where Si ¼ ∑
N

j¼1
Si j ð3Þ

minUm∈RN�Nc trace UTLU
� �

s:t: UTU ¼ INc ð4Þ

where L ¼
L1 0
0 L2

⋯ 0
0

⋮ ⋮ ⋱ 0
0 0 ⋯ LM

0
B@

1
CA−

0 In
In 0

⋯ In
In

⋮ ⋮ ⋱ In
In In ⋯ 0

0
B@

1
CA

8>><
>>: ð5Þ

and U ¼

U1

U2

:
:
:

UM

0
BBBBBB@

1
CCCCCCA

ð6Þ

whereNc denotes the putative number of the clusters in each view,
Lm=Sm -Wm is the Laplacian matrix of Sm andUm is the assign-
ment matrix of N subjects into NC clusters for view m. The

Fig. 1 Pipeline of the proposed MVCF-Net framework for connectional
brain template (CBT) estimation using multi-view brain networks. First,
for a given brain network view and for each subject, we extract features by
vectorizing the upper off-diagonal part of each brain connectivity matrix.
Second, we compute the Euclidian distance between each pair of subjects
using their corresponding features vectors to eventually derive a multi-view
similarity matrix. Third, we perform multi-view network clustering based
on manifold optimization method (Yu et al. 2019) to partition subjects into

shared and differential clusters across views. Fourth, we linearly average all
brain networks in each cluster as they lie close to each other, producing
local CBTs. Next, for each cluster, we nonlinearly fuse its local CBTs
across each view using similarity network fusion (SNF) since the local
CBTs might lie far from each other. This produces a cluster-specific
CBT. Last, we average all cluster-specific CBTs across all clusters, thereby
generating the global population CBT
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Laplacian matrix reveals the information about the structure of a
graph by showing how many edges are linked to each node (sub-
ject), and is used to partition the nodes into clusters by leveraging
the Laplacian eigenvectors and eigenvalues in spectral clustering
method. Spectral clustering is an effective technique for identifying
communities of nodes in a graph based on the edges connecting
them. This is achieved by dividing the graph nodes into several
groups such that nodes in the same group are similar and nodes in
different groups are dissimilar to each other (Yu et al. 2019). The
first term in the objective function (4) clusters the subjects in each
view, while the second term is a constraint to align the clusters in
each view. The parameter β is to balance the importance between
the network views. Since we treat all views equally, we consider
that networks are on the same level and we set β= 1.

To solve the optimization problem (4), we implement the line
search algorithm on Stiefel manifold (Yu et al. 2019) to find the
optimal solution of the objective function trace(UTLU) (Absil
et al. 2008). This approach includes three steps. First, we project
the negative gradient descent direction of the objective function to
the tangent vector space of the Stiefel manifold

Mm ¼ Um∈ℝN�Nc : UT
mUm ¼ INc

� �
;m ¼ 1; 2;…;M: The

gradient descent of the objective function can be defined in a
closed form as:

−∇U trace UTLU
� � ¼ −LU ¼ ZT

1 ;Z
T
2 ;…;ZT

M

� �T ð7Þ

For each manifoldMm, we compute the orthogonal projec-
tion to the tangent vector space to get the direction ηm which
represents also the eigenvector of the Laplacian, then we
search for the next point by adding a multiple of this direction
to the old iteration point.

ηm ¼ Zm−
1

2
Um UmÞTUm þ Zmð ÞTUm

� ��
ð8Þ

Second, we associate to the new iteration point a retraction to
the manifold using single value decomposition and we get the
new assignment vector Um of the N subjects into Nc clusters.
We keep updating the line searchmethod until the value of vector
Um converges to U. Finally, we use unsupervised k-means clus-
tering to cluster the elements inU. By taking only the k eigenvec-
tors corresponding to the k smallest eigenvalues ofLm, we extract
the cluster assignment vector which represents the partition of all
subjects in the aligned clusters Cm

1 ;…;Cm
Nc

for each view m.

Individual-based non-linear fusion of connectional brain net-
work views (step 2) To estimate the CBT Am

nc
of each

Fig. 2 Multi-view clustering using manifold optimization. For each view
m lying on a manifold Mm, first, we calculate pairwise distance matrix
between subjects. Second, for each view m, we derive the similarity
matrices using K-nearest neighbor (KNN) method and compute the
Laplacian matrix. Then, for each view m, we partition all subjects into
clusters while preserving their alignment using multi-view spectral clus-
tering. Thus, both consistent and differential clusters can be identified
simultaneously. To do that, we solve the optimization problem for each
view: mintrace(Um

T L Um) where Um is a vector representing the initial

partition of N subjects into NC cluster. The optimization process includes
three steps: first we project the negative gradient on the tangent vector to
the manifold m and we obtain the direction ηm. Second, we update Um

by adding a multiple of this direction to its previous measurement. Third,
we retract the new Um+ 1 to the manifold using single value decomposi-
tion. Finally, as U converges, we compute k-means clustering to obtain
the final label vector partitioning the N subjects into NC clusters for each
network view

2085Brain Imaging and Behavior (2021) 15:2081–2100



cluster nc for the mth view, we linearly average all brain
networks of subjects belonging to cluster nc in view m:

Am
nc
¼ ∑i∈qV

m
i

dim ncð Þ ; 1≤ i≤N; 1≤m≤M; 1≤nc≤Nc ð9Þ

where q is the number of subjects in cluster nc for a
given view m. q can take different values across views
and clusters. Next, we merge all Am

nc
across M views

using non-linear fusion function ϕ in order to derive
an `average’ connectional brain representation of
cluster nc across all views:

ɸ Am
nc
M
m¼1

�
↦Fnc

�
ð10Þ

Ultimately, ϕ non-linearly maps the view-specific CBTs

Am
nc

n oM

m¼1
located in different views to a fused brain network

Fnc of multi-view networks in cluster nc. Thus, we integrate
networks sharing the same connectional traits from different
manifolds (i.e., views), but within a single cluster. To do so,
we leverage the similarity network fusion technique (SNF)
proposed by (Wang et al. 2014). SNF enables the fusion of
subjects having common neighbors across views so that com-
plementary information can be propagated through the fusion
process. Given a cluster nc, for each CBT Am

nc
of view m,

Pm
nc

i; jð Þ ¼
Am

nc
i; jð Þ

2∑l≠iA
m
nc

i; lð Þ ; j≠i

1
	
2; j ¼ i

8><
>: ð11Þ

Smnc i; jð Þ ¼
Am

nc
i; jð Þ

2∑l∈Ni
Am

nc
i; lð Þ ; j∈Ni

0; otherwise

8<
: ð12Þ

Note that P carries all information about ROIs similarities
of each subject to all other ROIs, whereas S only encodes the
similarity to the Kn most similar ROIs. Ni denotes the set of
most q closed ROIs (neighbors) to the target ROI Ri. To find
the set Ni, we use the K-nearest neighbors (KNN) algorithm.
Next, we compute iteratively the status matrices Pm

nc
by using

the following equation (Wang et al. 2014):

Pm
nc
¼ Smnc �

∑
t≠m

Pt
nc

M−1

0
B@

1
CA� Smnc

� �T
;m∈1;…;M ð13Þ

For each cluster nc and view m, we update the similarity
matrix Pm

nc
by diffusing the global structure of other networks

∑t≠mP
t
m

m−1 along the sparse structure Smnc of the current view m.

After Nt iterations, we compute the average of the diffused
matrices Pm

nc
across the different M views and we get the

fused CBT representing the cluster nc across views using the
following equation:

Fnc ¼
∑M

m¼1P
m
nc

M
ð14Þ

Linear fusion (step 3) After obtaining the cluster-based CBTs
Fncf gNc

nc¼1, we linearly average them into a single final CBT

denoted as C:

C ¼ ∑Nc
nc¼1Fnc

Nc
ð15Þ

MVCF-Net Algorithm 1: Joint multi-View Network
Clustering and Fusion.

Table 2 Major Mathematical notations used in this paper

Math
notation

Dimension Definition

M ℕ number of views
m ℕ view m
n ℕ subject n
Mm – manifold ofmth view, 1 ≤m ≤M
N ℕ number of subjects in a

given population, 1 ≤ n ≤N
Nr ℕ number of regions of interest in

a brain network (ROIs)
Ri – regions of interest i, 1 ≤ i ≤Nr

Nc ℕ number of clusters
Nt ℕ number of iterations in SNF algorithm
Nf ℕ dimension of feature vector fmn
K ℕ number of folds used for

cross-validation partition
Kn ℕ number of the nearest neighbors

used for KNN algorithm
Cm

nc – cluster nc in m
th view, 1 ≤ nc ≤Ncfmci ℝ mean cortical attribute of Ri

Vm
n ℝNr�Nr brain network of mth view for subject n

Dm ℝN×N distance matrix of mth view
f mn ℝN f �1 feature vector ofmth view for subject n

Sm ℝN×N similarity matrix of mth view
Wm ℝN×N diagonal matrix of mth view of matrix Sm
Lm ℝN×N Laplacian matrix ofmth view of matrix Sm
Um ℝN�Nc assignment matrix ofmth

view of all subjects into NC clusters
ηm ℝN�Nc eigenvector ofmth view of the Laplacian Lm
V ℝNc�Nc right singular vectors decomposition of U
W ℝN�Nc left singular vectors decomposition of U
U ℝ M�Nð Þ �Nc representation of Umin all network views
Am
nc ℝNr�Nr estimated CBT of cluster nc inm

th view
Pm
nc

ℝNr�Nr full kernel matrix formth view and cluster nc
Sm
nc

RNr�Nr sparse kernel matrix formth view and cluster nc
Fnc ℝNr�Nr fused CBT of cluster nc across all views
C ℝNr�Nr estimated connectional brain template
q ℕ number of subjects in cluster nc
T ℝ absolute difference matrix between two CBTs
α ℝ discriminative score vector

of ROIs distinguishing two groups
ym ℕ class label vector of all subjects inmth view
x RN f �1 weight feature vector of ROIs
B ℝNr�Nr discriminative weight matrix of ROIs

KNN K-Nearest Neighbors, SNF Similarity Network Fusion, SVD singu-
lar vectors decomposition
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Evaluation strategy of connectional brain template represen-
tativenessWe evaluate both the centeredness and representa-
tiveness of the estimated CBT for a given population using
two evaluation metrics: (i) the mean Frobenius distance as
well as (ii) the Pearson correlation between the estimated
CBT and the brain networks of all subjects across views in
the given population. For each view m, we compute the mean
Frobenius distance dmF between the estimated CBT and all
brain networks, then we calculate the average of dmF across
the views. Likewise, we compute the mean Pearson correla-
tion rm for each view between the predicted CBT and all brain
networks belonging to a given population, then we linearly
average rm across views. The Frobenius distance and the
Pearson correlation between two matrices G = (gij) and
H = (hij) where 1 ≤ i, j ≤N are calculated as follow:

dF G;Hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∑ jjgi j−hi jj2

q
ð16Þ

r G;Hð Þ ¼
∑i∑ j gij−g

� �
hij−h

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∑ j gij−g

�� ��2� �
∑i∑ j hij−h

��� ���2� �s ð17Þ

where g ¼ mean Gð Þ and h ¼ mean Hð Þ. For evaluating the
reproducibility of the estimated CBTs, we use K-fold cross-
validation for validating and testing. We randomly split each
group in the given population of multi-view brain networks
into K sub-populations. For each sub-population, we generate
a CBT and we measure its Frobenius distance to views. For
better visualization of the results and for easy comparison
between methods, we further normalize the Frobenius dis-
tances for each fold using the following formula:

d′F ¼ dF−meanið Þ= maxi−meanið Þ þ 1:5 ð18Þ
where meani and maxi denote respectively the average and the
maximum Frobenius distances in fold i.

Evaluation strategy of connectional brain template discrimi-
nability In this part, we aim to test the discriminability of the
estimated CBTs by identifying the top brain ROIs that distin-
guish between two groups. This experiment evaluates the per-
formance of a given method in relation with the discrimina-
bility of the ROIs. To do so, we estimate a CBT for each
group, then by computing the difference between both tem-
plates, we identify the top ROIs distinguishing between both
groups. Next, we compute the overlap (in %) between the top
discriminative ROIs found by MVCF-Net and a supervised
machine learning method based on multiple kernel learning
(MKL) (Fig. 3). Both methods are detailed below.

Identification of top discriminative ROIs using the estimated
CBTs To assess the reproducibility of our proposed method,
we use K-fold cross validation strategy to partition samples in
each population (male/female) into K groups (folds). We de-

note by pi the fold i of group 1 (e.g., male) and p
0
j the fold j of

group 2, where 1 ≤ i, j ≤K. After computing the estimated
CBTs of all folds for both populations, we compute the aver-
age absolute difference between all possible pair combinations
of estimated CBTs. Each combination includes CBTs from
both fold groups p and p′, then we define an Nr × Nr matrix
T representing the cumulative absolute differences between
all pairs of CBTs:

T ¼ ∑K
i; j¼1jAp

i −A
p
0

ij j; 1≤ i; j≤K ð19Þ

Fig. 3 Identification of regions of interest (ROIs) scores usingMVCF-Net
method. First, we calculate the absolute difference between two estimated
connectional brain templates (CBTs) to generate the absolute difference
matrix. Secondly, we aggregate the column elements of each row in the

absolute difference matrix to produce a score vector assigning the weight
for each ROI. Finally, we decreasingly rank the elements of score vector
to get the top discriminative ROIs
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where Ap
i denotes the CBT of group 1 from fold i and Ap0

j is

CBT of group 2 from fold j. By aggregating the elements of
each row in T, we get the weight score αi assigned to the ROI
Ri. The obtained αi denotes the cumulative Euclidian distance
from Ri to all other ROIs Rj (j ≠ i). Next, we rank the
elements in score vector α decreasingly to identify the
top discriminative ROIs having the highest scores. The
pipeline steps of top discriminative ROIs are illustrated
in Fig. 3. is calculated as follows:

Reproducibility of top discriminative ROIs Next, we aim to
evaluate the reproducibility of the top discriminative ROIs
revealed by two CBTs, each derived from a particular popu-
lation. To this aim, we propose to use an independent
machine-learning methodology for supervised feature selec-
tion, namely multiple kernel learning (MKL), and compare
the ROIs identified by MVCF-Net and MKL. MKL is a tech-
nique that learns an optimal combined kernel from predefined
basic kernels (e.g. information coming from multiple sources
by maximizing separability between them). Specifically,
MKL was shown to be powerful in classification task that
distinguishes between classes while identifying the most dis-
criminative features between them (Varma and Babu 2009).
Given a labeled sample with its corresponding feature vector,
we train an SVM classifier that learns a weight score for each
feature measuring its discriminative power in the target clas-
sification task. For each network view m, we use a K-fold
randomized partition to divide the data into K subpopulations.
Let p denote population 1 and p′ population 2. For each com-

bination of subpopulations pi and p
0
j , where 1 ≤ i, j ≤K, we

construct a feature vector Fm
n for each subject n in both sub-

populations p and p′ using the vectorized upper triangular part
of the connectivity matrix Vm

n , and we assign its label ymn ∈
{±1} indicating the population class. Using fmn ; y

m
n and the

subpopulations pi and p
0
j as inputs to train the SVM classifier,

we use a wrapper method to estimate a weight vector xmi; j
which assigns a learned weight quantifying the importance
of each feature (i.e., brain connectivity) in distinguishing be-
tween two classes. We compute the total weight vector x by
cumulating xmi; j across all views and all combinations of sub-

populations:

x ¼ ∑
k

i; j¼1
∑
M

m¼1
xmi; j ð20Þ

We apply anti-linearization to transform the weight vector
x into a square matrix B where each element B(i, j) represents
the learned weight assigned to brain connections between
ROIs Ri and Rj. Next, by summing up the weights of all
connections involving Ri to other ROIs, we obtain the weight
score αi that quantifies the discriminative power of Ri. αi is
then calculated as follows:

αi ¼ ∑
j≠i
B i; jð Þ; 1≤ j≤Nr ð21Þ

Finally, we select the top discriminative ROIs using
the highest scores αi, where 1 ≤ i ≤Nr . The identifica-
tion pipeline of top discriminative ROIs using MKL
technique is illustrated in Fig. 4.

Results

Comparison methods In this work, we propose a robust multi-
view clustering and fusion network MVCF-Net method for
CBT estimation which can simultaneously capture shared
and distinct traits of a population lying on different views
and identify the top discriminative ROIs marking gender dif-
ferences. For comparative evaluation, we benchmark MVCF-
Net against a state-of-the-art method (SCA) introduced in
(Dhifallah et al. 2019).

Parameter setting We list below the parameters used in our
methodology and comparison methods: (1) Kn: the number of
selected neighbors for KNN (2) Nc: the number of clusters for
k-means clustering and (3) M: the number of views:

& Number of clusters Nc. In fact, we use a grid search strat-
egy that considers all parameter combinations by varying
the number of clusters Nc in the range [2,15] in order to
determine the best Nc that achieves the minimum
Frobenius distance and the maximum Pearson correlation
for the multi-view brain networks across all methods (ours
and SCA). We found that the optimal number of clusters
Nc is equal to 3 across all methods.

& Kn in KNN algorithm. We also investigate the best number
ofKn nearest neighbors used in KNNmethod.We varyKn in
the set (5,10,15,20) and we find that Kn = 5 achieves the
minimum Frobenius distance between the estimated tem-
plates and all population networks for eachmethod, indepen-
dently. Figures 5 and 6 display the average Frobenius dis-
tance between the estimated CBT and all CMNs using our
method and SCA (Dhifallah et al. 2019) while varying the
number of Kn nearest neighbors. Noticeably, setting Kn =
5 achieves the best results across all methods. We also use
the grid search strategy to identify the best combination of
the parameters Nc and Kn dependently.

& Number of views M. We vary the number of selected
views to build the subject-specific CMNs from 2 to 4
views. For each selected number of views, we assess all
possible combinations of views out of the existing 4 views

(e.g., we have C2
4 possible combinations of M = 2 out of 4

views). We report the average Frobenius distance and the
average Pearson correlation between the estimated mor-
phological CBT and all CMN views in the left (LH) and
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Fig. 4 Identification of the top discriminative ROIs using multiple kernel
learning (MKL). First, we linearize the multi-view brain connection net-
works for training and testing brain networks through the vectorization of
the upper triangular part of each population matrices to generate a feature
vector for each brain network. Second, for each view m, we apply MKL
based on support vector machine (SVM) to obtain a weight vector xm

quantifying the discriminability of each brain feature (i.e., brain connec-
tivity between two anatomical regions of interest (ROIs)). Next, by sum-
ming the weight vectors xm across views, we obtain the total weight

vector x for a particular ROI. We then use anti-linearization to transform
the weight vector into a matrix where each element represents the con-
nectivity weight between two ROIs. Specifically, anti-linearization is the
inverse of features vectorization where the weight vector represents the
upper triangular part of the resulting symmetrical connectivity matrix. By
aggregating the columns of the resulting matrix, we obtain the score
vector denoting the discriminative power of each ROI. Finally, we rank
brain ROIs according to their highest scores

Fig. 5 Average Frobenius distance between the estimated CBT byMVCF-Net and all CMNs in the left (LH) and right (RH) hemispheres as we vary the
number of selected neighbors for KNN
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right (RH) hemispheres using our method MVCF-Net in
comparison with SCA (Dhifallah et al. 2019) respectively
represented in Figs. 7 and 8.

Figures 7 and 8 display the average Frobenius distance and
the average Pearson correlation between the estimated mor-
phological CBT and all CMNs using our method MVCF-Net

in comparison with SCA (Dhifallah et al. 2019) as we vary the
number of selected views constructing the subject-specific
CMNs. For each selected number of views (e.g. 2 views, 3
views, all views), we compute the average of metric (e.g.
Frobenius distance, Pearson correlation) using all combina-
tion of brain networks. Noticeably, including all views togeth-
er (e.g. four cortical attributes) achieves the best results for the
average Frobenius distance and the average Pearson

Fig. 6 Average Frobenius distance between the estimated CBT by SCA (Dhifallah et al. 2019) and all CMNs in the left (LH) and right (RH) hemispheres
as we vary the number of selected neighbors for KNN

Fig. 7 Average Frobenius distance between the estimated morphological
CBT and all CMNs in the left (LH) and right (RH) hemispheres using our
methodMVCF-Net in comparisonwith SCA (Dhifallah et al. 2019) as we

vary the number of selected views constructing the CMNs from 2 to 4
views. Each bar represents the average Frobenius distance and its stan-
dard deviation of all possible combinations for a given number of views
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correlation in the left (LH) and right (RH) hemispheres across
all methods (Ours and SCA).

CBT representativeness and centeredness We evaluate the
representativeness of the proposed CBT by computing the
mean Frobenius distance and the Pearson correlation between
the estimated brain network and all different views (4 views)
in each population for SCA as well as for MVCF-Net in left
and right hemispheres. To better visualize the difference in
performance between MVCF-Net and SCA, we plot the nor-
malized Frobenius distance in Fig. 9. Also, we randomly par-
tition our data into 5 folds to evaluate the reproducibility of
our results across folds as well as when using the whole
dataset. As illustrated in Figs. 9 and 10, our MVCF-Net pro-
vides the best centered CBTs for male and female populations
in both hemispheres. Based on both evaluation metrics,
MVCF-Net method outperforms SCA by achieving the min-
imum Frobenius distance and the maximum correlation be-
tween the estimated CBT and all views for whole and sub-
populations (5 folds) in each hemisphere. Excluding one male
LH sub-population, MVCF-Net achieves the maximum cor-
relation comparing to SCA. A smaller Frobenius distance in-
dicates a more centered CBT with respect to all individuals in
the population and all views. Clearly, MVCF-Net estimates
the most centered brain template for each population. Further,
our method stands out in performance in comparison with
SCA as we vary the number of selected views constructing

the morphological CMNs from 2 to 4 views. As illustrated in
Figs. 7 and 8, ourMVCF-Net provides the best centered CBTs
for male and female populations by achieving the optimal
averages in both Frobenius distance and Pearson correlation
between the estimated morphological CBT and all CMNs in
the left (LH) and right (RH) hemispheres when the number of
views is equal to 2, 3 and 4, respectively.

We note that MVCF-Net significantly (p value <0.001)
outperforms SCA comparison method in terms of centered-
ness across all populations in both hemispheres based on two-
tailed paired t-test.

CBT discriminability In addition to being well-centered, we
demonstrate that MVCF-Net generates a well-discriminative
CBT able to easily spot gender-distinctive brain regions. In
particular, we identify the top 15 discriminative ROIs
distinguishing between male and female populations for both
hemispheres using the estimated CBTs representing each
group. To compare the performance between MVCF-Net
and SCA methods, we evaluate the reproducibility of
the top 15 discriminative ROIs distinguishing between
gender populations in comparison with a feature selec-
tion method, namely MKL. Next, we compute the over-
lap between the most discriminative ROIs identified
using our method and those using MKL.

Table 3 displays the overlap in % between the top 15 dis-
criminative ROIs identified using (i) MKL and (ii) the

Fig. 8 Average Pearson correlation between the estimatedmorphological
CBT and all CMNs in the left (LH) and right (RH) hemispheres using our
methodMVCF-Net in comparisonwith SCA (Dhifallah et al. 2019) as we

vary the number of selected views constructing the CMNs from 2 to 4
views. Each bar represents the average Pearson correlation and its stan-
dard deviation of all possible combinations for a given number of views
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absolute difference between the two estimated CBTs by
MVCF-Net and SCA, respectively. We demonstrate that our
method achieves an overlap percentage of 60% in identifying
the most discriminative brain regions in the left hemisphere
between genders and 46.67% in the right hemisphere. While

SCA method reaches only an overlap percentage of 53.33%
and 33.33% in the left hemisphere and the right hemisphere,
respectively. Table 4 displays the overlap in % between the
top 20 discriminative ROIs identified using MKL and the
absolute difference between the two estimated CBTs.

Fig. 9 Evaluation of the normalized Frobenius distance between the estimated morphological CBT and all multi-view brain networks for male and
female populations in left and right hemispheres (LH and RH) using our method MVCF-Net in comparison with SCA (Dhifallah et al. 2019)

Fig. 10 Evaluation of Pearson correlation between the estimated morphological CBT and all multi-view brain networks for male and female populations
in left and right hemispheres (LH and RH) using our method MVCF-Net in comparison with SCA (Dhifallah et al. 2019)
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Specifically, our method achieves an overlap percentage of
65% in identifying the most discriminative brain regions in
the left hemisphere between genders and 60% in the right
hemisphere, while SCA reaches only an overlap rate of 45%
for left hemisphere and 55% for the right hemisphere. We
notice that the overlap rates between the most discriminative
ROIs identified using (i) MKL and MVCF-Net methods as
well as using (ii) MKL and SCAmethods are higher in the left
hemisphere compared to the right hemisphere. Our finding
supports the evidence that strong gender-related differences
are more prevalent in the left hemisphere (Tian et al. 2011).

In Fig. 11, we visualize the top 15 discriminative ROIs that
distinguish between gender populations for left and right
hemispheres using MKL and MVCF-Net, respectively. We
plot the discriminability weight of ROIs using the normalized
score vector . We note the most two discriminative ROIs
selected by MVCF-Net differentiating between male and fe-
male populations include the lateral occipital cortex (region
12) followed by the pars opercularis (region 19) for the left
hemisphere. These regions are correlated with processing of
visuospatial and motion information (Amunts et al. 2007). For
the right hemisphere, the two highly ranked discriminative
ROIs identified by our method included the middle temporal
gyrus (region 16) and lingual gyrus (region14) which are cor-
related with brain size, gray-matter volume and concentration
(Takahashi et al. 2011; Yang et al. 2017). Table 5 displays the
top 5 discriminative ROIs distinguishing between gender pop-
ulations usingMVCF-Net for both RH and LH. These regions
are consistent with the literature findings investigating the

gender fingerprint, where they were shown to be involved in
visuospatial processing, cognitive performance, emotion and
facial expression. Precisely, the most discriminative regions
selected by our method explain the difference in integration,
communication, reaction and memories abilities between hu-
man genders (Diano et al. 2017).

Our discriminative analysis of the estimated CBTs shows
the consistency of our proposed method in relation with MKL
technique. By detecting gender-specific biomarkers using
both comparative methods, we conclude that our proposed
MVCF-Net achieves the highest biomarker reproducibility
overlap of the top ROIs distinguishing between male and fe-
male CMNs (Tables 3, 4 and Fig. 11). This demonstrates the
effectiveness of our method, first in merging complementary
information from one population while computing multi-view
clustering using manifolds optimization, in which the aligned
clusters preserves simultaneously similar and dissimilar traits
of the subjects, second in enhancing the distinctive traits be-
tween male and female cortical morphological networks while
capturing their fingerprinting ROIs.

Discussion

In this paper, we introduceMVCF-Net, a novel framework for
connectional brain template estimation that leverages comple-
mentary information offered by multi-view CMNs for a pop-
ulation of multi-view brain networks. Using the estimated
CBTs, we identify the top discriminative ROIs distinguishing
between genders. First, for each view, MVCF-Net groups
similar subjects in the same cluster while separate dissimilar
subjects in different clusters. Based on manifold optimization,
the clustering process computes the aligned clusters across
views to map the subjects to a common space. Then a multi-
fusion operation is applied to obtain a representative CBT that
captures both shared and differential traits of a population
using different views.

Parameters impacts The impact of changing the number of
clusters Nc on the estimated CBT can be explained by the fact
that the k-means clustering algorithm is sensitive to the initial
positions of the cluster centroids. As we vary the number of
clusters, the total within-cluster variation changes result in
different CBTs. We note that the generated CBT depends also
on the selected number of nearest neighbors Kn. In KNN al-
gorithm, the computation of both pairwise similarity matrix
and the Laplacian matrix depends on the value of Kn, where a
smaller value of Kn can fail to depict a highly heterogeneous
multi-peaked distribution of the population whereas a larger
value might over-cluster the data and fail to mimic the real
distribution. For the selection of the appropriate number of
views (cortical attributes), we demonstrate that including four
cortical morphological networks will provide the best results

Table 3 Matching rate in % between the top 15 discriminative ROIs
distinguishing between male and female populations identified by (i)
MKL and (ii) the difference between the estimated CBTs by SCA and
our method for the right and left hemispheres (RH and LH)

Datasets Male / Female

LH RH

SCA 53.33% 33.33%

Ours 60% 46.67%

Table 4 Matching rate in % between the top 20 discriminative ROIs
distinguishing between male and female populations identified by (i)
MKL and (ii) the difference between the estimated CBTs by SCA and
our method for the right and left hemispheres (RH and LH)

Datasets Male / Female

LH RH

SCA 60% 45%

Ours 65% 55%
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Table 5 Top 5 discriminative regions of interest (ROIs) in left (LH) and right (RH) hemispheres distinguishing between gender populations revealed
by computing the absolute difference between male and female CBTs by MVCF-Net
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in terms of CBT centeredness and representiveness.
Constructing the CMNs using all views together achieves
the optimal average Frobenius distance and the optimal aver-
age Pearson correlation in the left (LH) and right (RH) hemi-
spheres across all methods (Ours and SCA). A combination of
morphological attributes has been proven to have better diag-
nostic performance compared with a single attribute (Yu et al.
2018). This can be explained by the fact that each type of
morphological view is derived from a specific cortical mea-
surement will reveal different changes in the morpholo-
gy of the brain regions. Thus, the constructed CMNs
efficiently handle the complexity of the cortical net-
works and its multivariate interacting effects between
the regions which can greatly help in learning a holistic
map of the brain connectivity.

CBT representativeness and centeredness Our proposed
method achieves the best performance in terms of centered-
ness where the estimated CBTs, derived frommale and female
populations in both left and right hemispheres, achieve the
minimum mean Frobenius distance to all network views
(Fig. 9) as well as the highest Pearson correlation when ran-
domly partitioning the data as well as when using the whole
data (Fig. 10). These results can be explained by the fact that

while SCA integrates heterogeneously the network views ly-
ing on different manifolds by merging them directly on a
global scale, MVCF-Net learns how to align clusters across
views to capture both consistent and differential clusters si-
multaneously. The correlation between the estimated CBT
and all network views in each population is globally consistent
across both hemispheres, yet the results between the right and
the left hemispheres for gender populations show higher cor-
relations for the left hemisphere. This difference can be
explained by the fact that both hemispheres present
morphological asymmetry (Witelson and Pallie 1973;
Chiron et al. 1995), which generates different CBTs
with different centeredness rates.

CBT discriminability We demonstrate the discriminative po-
tential of MVCF-Net against SCA in distinguishing between
gender populations, where MVCF-Net remarkably achieves
the highest matching rate with MKL method of the most 15
discriminative ROIs and the most 20 discriminative ROIs as
shown in Table 3, Fig. 11, and Table 4, respectively. These
results indicate the effectiveness of our framework in identi-
fying brain regions marking gender differences. This can be
explained, first, by the fact that the estimated CBT occupies
the minimum distance compared to all subjects in the

Fig. 11 Evaluating the discriminability of the estimated population-
specific connectional brain template by MVCF-Net. We identify the top
15 discriminative ROIs using multiple-kernel learning (MKL) and the

absolute difference between male and female CBTs in the right and left
hemispheres (RH and LH). For each of top identified 15 ROIs, we display
their discriminative weight
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population, which results in minimizing the inter-subject var-
iability. Second, MVCF-Net is based onmulti-view clustering
strategy which learns cluster alignment across views to even-
tually identify both consistent and differential clusters at the
same time. Furthermore, MVCF-Net integrates SNF to fuse
complementary data lying on different manifolds and avoid
dealing with different scales, collection bias and noise in dif-
ferent data types (Wang et al. 2014). Therefore, we believe
that MVCF-Net produces more holistic CBT representations
for male and female populations, stimulating a deeper under-
standing of gender difference using multi-view cortical mor-
phological networks.

We display in Table 5 the top 5 discriminative ROIs char-
acterizing the differences between male and female CMNs in
the right and left hemispheres. MVCF-Net shows that the top
three ROIs distinguishing between genders in the left hemi-
sphere are the lateral occipital cortex, pars opercularis and
postcentral gyrus. The lateral occipital cortex is correlated
with the control of vision processing specifically facial expres-
sion. Our findings are consistent with previous studies, where
men showed an asymmetric functioning of visual cortex while
decoding faces and expressions, whereas women showed a
more bilateral functioning. These results indicate the impor-
tance of gender effects in the lateralization of the occipito-
temporal response in facial expressions. Other studies
supporting our findings, showed a higher activation through
a rapid and symmetric of visual time inputs for women rather
than men (Proverbio et al. 2006; Proverbio et al. 2012). The
reason behind an earlier visual ability is that women have a
higher concentration of fibers in the right optic radiation than
men (Good et al. 2001). Besides, the pars opercularis region
shows an increased volume in young adult females in com-
parison to males which reflects the high emotional empathic
level in women (Cheng et al. 2009). The third most discrim-
inative region, postcentral gyrus, is involved in multiple as-
pects of sensory processing and sensorimotor integration
(Clower et al. 2001) especially in the perception of emotions
in facial stimuli (Radua et al. 2010). The study of (Xu et al.
2015) supports our discovery of the postcentral gyrus region
as a gender biomarker and showed higher regional homoge-
neity in females than males. This explains why female gener-
ally excel in language (Hyde and Linn 1988; Kimura 1996),
facial emotion recognition (Rahman et al. 2004) and emotion-
al memory tasks (Crespo-Facorro et al. 2011).

The fourth most discriminative ROI in LH is the caudal
anterior cingulate cortex, which is widely known to be in-
volved in the sensory motor (e.g. motor of reactions) (Naito
et al. 2000). While the fifth region corpus callosum has been
already demonstrated by a large number of studies to show a
sexual dimorphism. This finding can be explained by the dif-
ference in the shape of this region between genders, where it
was more bulbous shaped in females and more tubular-shaped
in males (Allen et al. 1991). Generally, anatomical sex

differences such as shape and volume could underlie
gender-related differences in behavior and neuropsycho-
logical functions.

For the right hemisphere, our method shows that the most
three discriminative regions are the middle temporal gyrus,
lingual gyrus and superior parietal gyrus. Themiddle temporal
gyrus reveals the difference in the functional organization of
the brain activation between male and female brains, where
males show a greater ventral stream activation than females.
This explains the high mathematical and spatial cognition per-
formances in males (Keller and Menon 2009). The lingual
gyrus is responsible for visuospatial processing in mental ro-
tation tasks, where the female brain was shown to use spatial
attention and working memory, whereas the male brain uses
the visuo-motor network (Clements-Stephens et al. 2009).
Other morphological differences in the right occipital lingual
gyrus and the right middle temporal gyrus were identified by
(Chen et al. 2017), noting that females have significantly in-
creased gray matter concentration rather than male, while
males have increased gray matter volume. The third most
discriminative ROI, superior parietal gyrus, is correlated with
the conscious visual perception of individuals. This focal re-
gion showed a difference in brain structure variability between
genders which can be explained by gray matter density dis-
parity in the parietal cortex between them.

The fourth most discriminative region in RH is pars
triangularis which is important for verbal and language pro-
cesses. The selection of this region is consistent with (Rubin
et al. 2017) study showing the difference of hormone levels in
male and female brains responsible for brain system regula-
tion. Compared to women, men showed higher nodal degree
and nodal efficiency in pars triangularis. While the entorhinal
cortex represents the fifth most discriminative ROI which is
consistent with (Nebli and Rekik 2019) finding that this region
is considered as a morphological ‘hub’ in CMNs derived from
four measurements: maximum principal curvature, mean
sulcal depth, mean average curvature and mean cortical
thickness. Particularly, the entorhinal cortex might ex-
plain the difference in gender behavior and why males
and females learn differently.

The difference between the top discriminative regions
in the right and left hemispheres are mainly due to the
asymmetric nature of the human brain (McGlone 1980;
Chiron et al. 1995). This lack of equivalence comes
from the difference in cognitive function for each hemi-
sphere called hemisphere lateralization. While the right
hemisphere is responsible for the visuospatial processing
tasks, which is consistent with our finding about the top
discriminative regions for the right part of the brain
(e.g. middle temporal gyrus region and lingual gyrus),
the left hemisphere is used for linguistic processing and
communication which is consistent with our top dis-
criminative regions in the left hemisphere related to
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facial emotional expressions (Stone et al. 1996). Our
results confirm the fact that the top discriminative re-
gions in the right and left hemispheres are different. In
fact, (Kovalev et al. 2003; Tranel et al. 2005) demon-
strated in their studies the asymmetric influence of gen-
der on the morphological aspects between both hemi-
spheres where male brains were found to be more
asymmetric than female. This gender-related effect is
noticeable in all brain areas but is most significant in
the superior temporal gyrus.

Study limitations and future recommendations In summary,
we evaluated MVCF-Net, which has the best results in
terms of CBT centeredness and representiveness, on mor-
phological connectomic data. Although promising, our
method overlooks the topological properties of brain net-
works when integrating them into a unified CBT. One can
integrate topological measures such as degree centrality or
betweenness centrality, quantifying the hubness of brain
regions in a network, to perverse the population topolog-
ical properties when estimating the target CBT. We will
also tap into the nascent field of graph neural networks
(GNNs), which will enable us in an end-to-end manner to
learn a CBT without resorting to craftsmanship of an in-
dependent data processing steps. We note that our pro-
posed framework is generalizable to different network
neuroscience modalities such as functional and structural
connectivities, independently. In our future work, we will
examine CBTs generated from multimodal brain networks
for a more holistic investigation of gender difference at a
morphological, functional and structural levels. This will
give new insights into how gender-specific brain mor-
phology relates to brain function and structure. Also, we
will use different weights for different views (attributes)
according to their importance instead of equal weights. As
alternative, we propose simultaneous learning of view-
specific weights while optimizing the loss function of
the multi-view clustering task. This will enable us to iden-
tify the most important views in the fusion process and
estimation of the gender-specific population-driven CBT.

Conclusion

In this paper, we proposed a multi-view clustering and
fusion network MVCF-Net framework to estimate a
well-representative and centered connectional brain tem-
plate (CBT) for a population of multi-view brain net-
works. By estimating gender-specific CBTs for male
and female cortical morphological networks, respective-
ly, we identified the top cortical ROIs marking gender
differences. We demonstrated the outperformance of
MVCF-Net in comparison with a state-of-the-art method

SCA in terms of (i) centeredness and representativeness
compared to all subjects and all views in the population
and (ii) discriminability in identifying the most repro-
ducible and discriminative gender connectional markers.
By generating a robust and holistic connectional brain
map (i.e., CBT) representing a given population,
MVCF-Net revealed gender-specific fingerprints using
multi-view cortical morphological in relation to behav-
ior, learning, and cognition. In our future work, we will
examine how the identified gender cortical morphologi-
cal markers relate to brain function and structure using
multimodal brain networks.
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