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Individual differences in naturalistic learning link
negative emotionality to the development of anxiety
William J. Villano1, Noah I. Kraus1, Travis R. Reneau2, Brittany A. Jaso3, A. Ross Otto4,
Aaron S. Heller1*

Organisms learn from prediction errors (PEs) to predict the future. Laboratory studies using small financial out-
comes find that humans use PEs to update expectations and link individual differences in PE-based learning to
internalizing disorders. Because of the low-stakes outcomes in most tasks, it is unclear whether PE learning
emerges in naturalistic, high-stakes contexts and whether individual differences in PE learning predict psycho-
pathology risk. Using experience sampling to assess 625 college students’ expected exam grades, we found
evidence of PE-based learning and a general tendency to discount negative PEs, an “optimism bias.”
However, individuals with elevated negative emotionality, a personality trait linked to the development of
anxiety disorders, displayed a global pessimism and learning differences that impeded accurate expectations
and predicted future anxiety symptoms. A sensitivity to PEs combined with an aversion to negative PEs may
result in a pessimistic and inaccurate model of the world, leading to anxiety.
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INTRODUCTION
Survival and well-being require accurate expectations for the sur-
rounding world. When congruent with reality, expectations for
the likely rewards and threats in one’s environment prime appropri-
ate behavioral responses and facilitate survival (1, 2), even when in-
formation is limited (3–6). However, as our environments
invariably change, expectations that were accurate yesterday might
drive us to make the wrong decision today. For example, if a distant
rumbling sound elicits an expectation of lightning, one might
decide to take cover, even before lightning is visible. Conversely,
falsely inferring that the rumble resulted from an airplane might
leave the same individual unprepared and surprised when lightning
strikes. Surprises such as this, termed prediction errors (PEs),
suggest that one’s model of the environment is inaccurate (7),
which may have dire implications for survival (8), optimal behavior
(9), and well-being (8).
To maintain accurate expectations in a dynamic world, organ-

isms continuously update their expectations in accordance with
recent PEs (10–13). In the preceding example, a PE results when
the occurrence of lightning violates one’s expectation of a nearby
airplane. Using this PE as a learning signal, an individual may
come to expect lightning when they encounter similar rumbling
sounds in the future. While the degree to which one changes their
expectation typically tracks the size of the PE (12–14), the influence
of PEs on expectation updating varies across people (15, 16) and
contexts (17, 18). To account for this variability, reinforcement
learning (RL) models [e.g., the Rescorla-Wagner model (12)]
include a parameter known as the “learning rate,” which scales the
magnitude of expectation changes relative to PEs (12). Critically,
learning rates are neither static within nor across individuals (10)
and vary by several factors including the outcome domain (19), en-
vironmental volatility (10, 20), contextual familiarity (21, 22), one’s

learning history (17, 23), and PE valence (21, 24, 25) (i.e., whether
an outcome was better or worse than expected).
Despite the presence of individual differences in learning rates,

prior computational work finds that certain regularities in learning
rates emerge across a range of RL tasks, such as the tendency to learn
differently from positive versus negative PEs (24, 26, 27). However,
the nature of these asymmetries varies considerably across studies,
with some results suggesting that individuals are optimistically
biased and learn preferentially from positive PEs (15, 26, 28–31),
and others finding the opposite pattern (i.e., negativity biases)
(24, 26, 32). Some researchers posit that these opposing asymme-
tries reflect different cognitive biases, such as loss aversion (24) or
optimism bias (33). However, others suggest that negative valence
biases seen in some RL studies (24, 26, 32) constitute artifacts of
specific learning paradigms (29) or even model misspecification
(25). Althoughmost of the evidence supports the presence of an op-
timism bias in RL (25), updating biases have been primarily quan-
tified in low-stakes learning environments with highly concrete,
value-based outcomes (e.g., small financial losses and gains, so-
called “lower-order” contexts). Thus, it is unclear whether
valence-based updating asymmetries are observed in real-world
learning contexts where outcomes are often more abstract, pertain
to higher-order beliefs, and hold greater personal meaning.
Whereas evidence for optimistic updating in these concrete,

value-based RL tasks is mixed, humans are predominantly optimis-
tic when updating abstract beliefs about themselves (34–39). For in-
stance, when considering abstract quantities, such as one’s own
ability (35, 37, 40) or one’s attractiveness (36), people tend to dis-
count negative feedback, displaying a preference for optimistic
albeit potentially inaccurate beliefs (33–36, 41). While this tendency
to optimistically update higher-order self-relevant beliefs is incom-
patible with the sole goal of minimizing errors in most RL models
[e.g., (12, 14)], optimistic belief updating may present adaptive ben-
efits, such as motivating an individual to persevere despite challeng-
es (34, 37). Moreover, in RL tasks where they emerge, optimistic
biases might improve performance beyond that of an unbiased
learner (25, 42) by enabling a clearer differentiation between
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rewarding and punishing options (42) and promoting the exploita-
tion of previously rewarded choices (29). Thus, a key question is:
Why do optimistic biases clearly emerge when humans update
higher-order self-relevant beliefs but less so when updating lower-
order expectations in RL studies?
One theory is that optimistic updating biases are limited to con-

ditions that are seldom present in RL tasks (34). First, optimistic
updating biases are typically observed when individuals are faced
with feedback regarding beliefs that they care deeply about, com-
monly termed “motivated beliefs” (34, 35, 37, 38). In contrast to
most value-based RL tasks with highly concrete outcomes and
lower-order expectations (e.g., probability of a win or loss on a
gamble) (24, 27, 32, 43), motivated beliefs are often ego-relevant
beliefs, such as the likelihood that one is more attractive than
their peers (36, 39, 41). Second, optimistic updating biases are
more likely when feedback is ambiguous (34, 36). For instance, in-
dividuals are quicker to discount negative information when receiv-
ing subjective feedback about their attractiveness, relative to
objective feedback about their intelligence (36), andmore so relative
to concrete and unambiguous value-based outcomes (34). This am-
biguous feedback may be more easily discounted, giving rise to the
observed asymmetries. Given these two boundary conditions, it
may be that when optimistic updating has not been observed in lab-
oratory RL tasks, it is because the outcomes lack personal signifi-
cance (34) or are not sufficiently ambiguous (24, 32).
Another disparity between the value-based RL and motivated

belief updating literatures involves the importance of forming accu-
rate expectations. Value-based RL assumes that agents calculate an
optimal policy given previous experience (13). Influential frame-
works of neural processing such as predictive coding posit that min-
imizing surprise (i.e., PE) via accurate prediction is a core function
of the brain (44). The importance of accurate prediction is further
evident in the brain’s error-encoding signals (45), which not only
drive learning (46) but are also aversive (47), particularly when out-
comes areworse than expected (48–50). At the same time, a separate
literature suggests that individuals often retain objectively inaccu-
rate motivated beliefs in the face of contradicting information (37,
39). While motivated beliefs often manifest as an optimism bias,
some individuals display motivated beliefs that are “defensively”
pessimistic, whereby individuals overupdate beliefs in a negative di-
rection (37, 40), owing to entrenched core beliefs about their own
capacity (51). Such a pessimistic updating style lessens the likeli-
hood that one will receive disappointing feedback in the future
(i.e., negative PEs) (52). Defensively pessimistic biases are observed
less frequently than optimistic updating at the population level (34)
but more commonly in individuals with elevated anxiety (52). To-
gether, it may be that motivated reasoning does not only promote
optimistic updating generally but also a tendency to disregard
certain feedback signals (36, 37, 39, 40) in the service of maintaining
one’s self-beliefs and at the expense of accurate expectations. These
beliefs can result in inaccurate expectations due to both optimistic
and defensively pessimistic learning biases.
While learning rates vary between and within individuals, a body

of recent RL work links variation in learning rates to psychiatric di-
agnoses (10, 20, 53–56). This work finds that depressed and anxious
individuals tend to have larger learning rates for negative PEs, indi-
cating that they learn more from unexpected punishments than
rewards. Similarly, other work suggests that optimism biases are at-
tenuated (59, 60) or even supplanted by pessimistic biases in

depressed individuals (16, 61, 62). Moreover, persistently negative
expectations, or a very low learning rate to positive PEs, can be an
operationalization of defensive pessimism, which is commonly ob-
served in individuals with elevated anxiety (52). In contrast, other
studies in psychiatric samples highlight general differences in learn-
ing rates that are agnostic to PE valence (15, 63). Results from these
studies tend to suggest that depressed individuals update expecta-
tions more slowly following PEs (15), whereas anxious individuals
update more rapidly relative to healthy controls (63). Given con-
flicting reports on whether broad variation in learning rates and
valence-based learning rate asymmetries are disorder specific, and
due to high rates of comorbidity among internalizing disorders (64,
65), it is possible that variation in learning rates constitutes a pre-
morbid risk phenotype for internalizing symptomatology (18, 66).
Although computational psychiatry research has focused pri-

marily on individuals with current internalizing symptoms, a
common hypothesis in developmental psychopathology is that ele-
vated sensitivity to negative and unexpected life events (i.e., negative
PEs) is a premorbid trait that promotes risk for internalizing disor-
ders given a certain set of life experiences (67–70). This elevated
sensitivity can result in larger learning rates for negative PEs and
thus a tendency to overlearn from negative events, leading to pessi-
mistic expectations even in the face of contradictory evidence (i.e.,
positive PEs). In support of this notion, one study found that ado-
lescents at increased risk for depression are more emotionally reac-
tive to negative PEs (71). Moreover, individual differences in
personality traits, such as extraversion, consistently predict in-
creased sensitivity to positive PEs in learning tasks (72, 73). While
these studies fall short of linking PE sensitivity to differences in PE
learning, one recent computational investigation demonstrated that
increased sensitivity to negative PEs not only predicted faster learn-
ing from negative outcomes but also resulted in inaccurately nega-
tive expectations for the future (74). Thus, it is plausible that, before
the onset of psychopathology, certain personality traits promote in-
dividual differences such as increased sensitivity to PEs, which drive
the negative learning biases observed in internalizing disorders.
Before the onset of psychiatric disorders, certain personality

traits capture temperaments and behaviors that strongly predict
the future development of psychopathology (75–80). To this end,
negative emotionality (NE; i.e., neuroticism) is a personality trait,
characterized by heightened sensitivity to unexpected and negative
events (68, 81, 82), that emerges early in life (82) and predicts the
development of anxiety disorders (75–77). Twin studies suggest that
NE accounts for one-third to one-half of genetic liability for inter-
nalizing disorders (80), and a meta-analysis of prospective studies in-
dicates that a 1-SD increase in NE nearly doubles one’s risk for
developing an internalizing disorder (75). Thus, NE is a risk factor
for the development of anxiety (66, 77), and the manner in which in-
dividuals learn from PEs may be a mechanism by which NE elevates
one’s risk (83, 84). Supporting this idea, a body of work suggests that
NE increases one’s sensitivity to negative life events (68) and height-
ens one’s stress responses to common and severe stressors (68, 82). In
concert with a learning history of negative life events, heightened
stress reactivity in NE can hinder one’s ability to discern between
threatening and safe stimuli (68, 85–87), which, in turn, yields pessi-
mistic expectations for the future. Ultimately, these overgeneralized
perceptions of threat, pessimism, and heightened stress reactivity in
NE may prompt general distress and behavioral avoidance character-
istic of anxiety disorders (68, 82, 83, 88, 89). Thus, given an
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accumulation of negative PEs over time, high-NE individuals may
overlearn from these negative PEs, ultimately prioritizing the avoid-
ance of such PEs in the future. While one hypothesis is that this type
of biased learning may place high-NE individuals at risk for anxiety
disorders, no prior work has assessed this possibility.
At present, our understanding of PE learning and its variability

across individuals is derived primarily from laboratory-based exper-
imental tasks that differ significantly from real-world contexts (90,
91). These differences limit the conclusions that can be drawn from
this work. Typically, laboratory-based tasks investigate PE-driven
learning through gambles associated with uncertain probabilities
of financial gains or losses. Over hundreds of trials, researchers
assume that individuals gradually learn from unexpected losses
and gains (PEs), iteratively updating their expectations to eventually
converge on accuracy and optimal choice (43, 92). While modeling
decision-making over hundreds of trials enables precise estimates of
individual learning parameters, this approach has several limita-
tions that hinder our understanding of PE learning.
First, expectations in these laboratory-based tasks are not explic-

itly sampled but rather inferred by modeling individuals’ behavior
—a process that requires hundreds of experimental trials per indi-
vidual. However, in everyday life, a single, personallymeaningful PE
can have profound effects (93–96), such as the changes to one’s
worldview following trauma and subsequent development of post-
traumatic stress disorder (97). Second, because of the small financial
stakes that predominate laboratory-based learning tasks, the

consequences of biased learning and resultant inaccurate expecta-
tions pale in comparison to real-world, high-stakes contexts in
which one’s future, well-being, or survival may be at stake. Third,
and relatedly, prior work suggests that updating biases are norma-
tive when individuals update higher-order, self-relevant beliefs (34,
35, 37) but are less likely to emerge when updating low-level expec-
tations for inconsequential and highly concrete financial outcomes
in RL tasks (34). However, there is a paucity of RL studies investi-
gating learning biases with consequential, personally relevant out-
comes. Furthermore, extant belief updating studies have failed to
explore whether these biased updating styles emerge when feedback
is directly experienced and not just informational (34); for instance,
one belief updating study first asks participants the likelihood they
think that they will get a certain medical diagnosis (e.g., getting
cancer), then presents the population base rates of that diagnosis,
and then asks participants their new likelihood (41). Thus, it is
unclear whether optimistic learning biases (15, 26, 28–30) emerge
in contexts where outcomes are both self-relevant and directly ex-
perienced. Last, while an emerging literature links variation in
learning rates to internalizing disorders (15, 57, 58), prior studies
have not assessed whether premorbid risk factors for internalizing
psychopathology, such as NE, predict individual differences in
learning. Thus, it remains an open question whether PE learning
differences are simply a phenotype of an extant internalizing disor-
der or an indicator of risk.

Fig. 1. Mobile phone sampling of exam grade expectations. Over the course of a single academic semester, participants in multiple cohorts reported their expected
grades on four or five major chemistry exams immediately after taking exams but before viewing their grades. Grade expectations (E) were subtracted from grade out-
comes (O) to compute grade PEs, which were hypothesized to drive changes in grade expectations between exams.
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Accordingly, the present study investigates how personally rel-
evant PEs and individual differences in NE affect naturalistic PE
learning. We assessed in a sample of 625 undergraduate students
whether midterm exam grade PEs drove updates to future grade
expectations. Using a cell phone–based ecological momentary as-
sessment (EMA) paradigm from a prior study measuring emo-
tional responses to exam grade PEs (48), we sampled
participants’ expected grades following each exam but before
grades were released. We operationalized PEs as the difference
between expected and actual grades and hypothesized that grade
PEs would engender learning, causing students to update their ex-
pectations for future exams (Fig. 1) in line with PEs.We define PE-
driven expectation updating as the process by which students
learn to more accurately predict future grades and the accuracy
of future expectations as the outcome of this learning process.
In contrast to prior RL studies using low-stakes financial out-
comes, exam grade expectations are personally relevant and thus
may be more subject to biased updating and motivated reasoning
(34, 37). However, relative to the personally relevant but ambigu-
ous feedback used in most belief updating studies, exam grade PEs
are also unambiguous learning signals and thus may be more
likely to drive rational, unbiased updating (34). This setting
allows us to specifically test whether individuals update more op-
timistically or more rationally following unambiguous but per-
sonally relevant outcomes.
Here, we demonstrate that students learned to predict their

grades more accurately over just four exams by updating their ex-
pectations for future exams in accordance with prior grade PEs.
Consistent with models of motivated reasoning (34–37, 39), stu-
dents updated their expectations optimistically on average,
making larger updates after positive PEs relative to negative PEs.
Moreover, individuals with elevated NE were less accurate in their
exam grade expectations. Critically, this difference in accuracy was
attributable to both an elevated sensitivity to positive and negative
PEs, and a defensively pessimistic tendency to make negative
updates to small positive PEs among people with high NE. Criti-
cally, using longitudinal measures of anxiety symptoms, we found
that inaccurate expectations resulting from these differences in
learning predicted the future development of anxiety symptoms
in individuals with elevated NE. Our results suggest that a sensi-
tivity to unexpected outcomes and a preference for avoiding neg-
ative PEs may lead someone to an inaccurate and pessimistic
model of the world, perhaps increasing future risk for anxiety.

RESULTS
Learning from real-world PEs
Expectations become more accurate over time
Assuming that participants learned from their grade PEs, we hy-
pothesized that the accuracy of their grade expectations would
improve over time. To test whether this was the case, we operation-
alized expectation accuracy as the inverse of participants’ unsigned
PEs [i.e., 100 - absolute value of PEs; the magnitude of “surprise”
(14)] for each exam and estimated its linear trend over exams. Par-
ticipants’ expectations became more accurate with each exam
[Bexam = 1.11 (0.14), P < 0.0001; Fig. 2A].
Expectation updating scales with PE magnitude
To determinewhether participants used PEs to improve expectation
accuracy, we tested whether changes to expectations between exams
were predicted by grade PEs. Participants changed their grade ex-
pectations as a function of their preceding grade PEs [B = 0.56
(0.02), P < 0.0001; Fig. 2B] such that higher positive PEs yielded
larger increases in expectations and vice versa.We used model com-
parison to determine the combination of indicators providing the
best fit to changes in expectation. Models included varying combi-
nations of predictors that we hypothesized could influence expecta-
tion changes, including (i) exam grades, (ii) between-exam changes
in grades (gradej − gradej-1; termed “change in grade”), and (iii)
grade PEs. As indicated in Table 1, the model including grade PE
and change in grade performed best. While the influence of grade
PEs on expectations remained significant even when controlling for
changes in grades, the effect of changes in grades on expectation
updating was also significant [B = 0.62 (0.02), P < 0.0001]. Thus,
PE-driven updating was a key mechanism that enabled individuals
to become more accurate in their expectations over the four trials.
Updating rates are larger following positive relative to
negative PEs
In the RL and belief updating literatures, findings are heteroge-
neous as to whether individuals learn preferentially from positive
or negative PEs (15, 24, 26–30, 32, 98). Prior attempts to resolve
this question have yielded contradictory results, with some studies
finding support for optimistic learning biases (15, 26, 28–30, 98)
and a smaller subset of studies finding pessimistic biases (24, 27,
32). Here, to determine whether participants were more sensitive
to PEs of a particular valence, we decomposed grade PEs into two
terms: a two-level factor representing PE sign (positive versus
negative) and a continuous variable representing PE magnitude
(absolute value of PE). We then tested whether these terms inter-
acted significantly, which would indicate greater sensitivity to PEs

Table 1. Model comparison of variables predicting change in grade expectation. Models that used grade PE and change in grade (within participant and
between exams) yielded the optimal fit to the data.

Model Predictors Number of Parameters Akaike Information Criterion Bayesian Information Criterion

1 Grade PE 5 14,595 14,622

2 Grade 5 14,686 14,713

3 Change in grade 5 14,294 14,321

4 Grade + grade PE 6 14,195 14,228

5 Grade + change in grade 6 14,287 14,320

6 PE + change in grade 6 13,650 13,682
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of one valence but not the other. In line with findings of optimistic
learning biases, participants made larger expectation changes fol-
lowing positive PEs relative to negative PEs [B = 0.29 (0.04),
P < 0.0001; Fig. 2B]. Every one-point increase to a positive PE
led to increases in grade expectations of 0.80 points. In contrast,
every one-point decrease to a negative PE led to decreases in grade
expectations of only 0.38 points. These results indicate that indi-
viduals learned preferentially from positive PEs, mirroring find-
ings from some laboratory-based studies of PE learning (15,
26, 29).

Individual differences in NE are linked to variability in real-
world learning
NE is associated with pessimistic and inaccurate expectations
regardless of outcome
Prior work suggests that differences in PE learning may affect the
ability of anxious (57, 58) and depressed individuals (15, 16, 59,
60) to maintain accurate expectations in the face of unexpected,
negative outcomes. For individuals with internalizing disorders, in-
accurate expectations for the future may promote distress and im-
pairment in daily life (18). However, it may be the case that
differences in PE learning are not an emergent symptom of inter-
nalizing disorders but rather a risk factor for their development (83,
84). Here, we evaluated whether NE, a personality trait that predicts
the future development of anxiety (75, 80, 99), might increase psy-
chiatric risk via differences in PE learning. Despite NE not predict-
ing differences in actual exam grades [effect of NE on grade:
BNE = −0.092 (0.093), P = 0.33], individuals with higher NE were
systematically more pessimistic in their expectations [effect of NE
on grade expectation: BNE = −0.32 (0.081), P < 0.0001]. As a
result, relative to those with low NE, high-NE individuals were con-
sistently less accurate when predicting their exam grades [effect of
NE on expectation accuracy: BNE = −0.089 (0.039), P = 0.022;
Fig. 3B and fig. S1] and experienced more positive PEs [effect of
NE on PE: BNE = 0.236 (0.065), P = 0.0003; Fig. 3A and fig. S1],
whereas PEs varied more randomly in valence (positive versus neg-
ative PEs) for lower-NE individuals across exams.

NE is linked to more reactive expectation updating
Given emerging evidence that internalizing psychopathology is
linked to variation in learning rates (15, 18, 20, 57, 58), we hypoth-
esized that the impaired expectation accuracy in high-NE individu-
als might result from differences in expectation updating.
Compared to participants with lower NE, participants with high
levels of NE made larger changes to their expectations after equiv-
alently sized PEs [BNE × PE = 0.010 (0.003), P = 0.019; Fig. 3D], ev-
idencing an overall more reactive updating style. Broadly, this led
high-NE individuals to overcorrect their expectations following
PEs, which is one mechanism by which high-NE individuals were
less accurate in their expectations. This finding mirrors prior work,
suggesting that exceedingly high PE learning rates can prevent an
individual from achieving accurate expectations in the face of
small (i.e., noisy) learning signals (23, 63).
Individuals higher in NE do not display differences in
expectation updating to positive versus negative PEs
While at the level of the entire sample we observed an optimistic
bias in which individuals asymmetrically updated their expectations
following positive versus negative PEs, some work suggests that
these biases are reversed in those with internalizing disorders (16,
59, 60). However, low- and high-NE individuals did not exhibit dif-
ferent valence-based updating asymmetries, as indicated by a lack of
a significant linear interaction between NE, PE sign, and PE mag-
nitude [BNE × PE sign × PE magnitude = 0.01 (0.01), P = 0.45].
While the preceding results revealed no differences in the way

higher- versus lower-NE individuals learned from positive versus
negative PEs, it is also possible that the linear functional form for
the interaction limited our ability to detect differences in updating
as a function of PE valence. Therefore, we further explored whether
NE predicted valence-dependent asymmetries in expectation up-
dating by specifying a multilevel Bayesian model with b-splines,
which permitted nonlinearity in expectation updating following
positive versus negative PEs. Results from this nonlinear model
are detailed in the Supplementary Materials and provide some evi-
dence that the optimistic updating bias observed at the group level
may be attenuated in individuals with elevated NE (see the

Fig. 2. PE learning drives improvements in expectation accuracy. (A) Over time, the accuracy of participants’ grade expectations improved. This suggests that over just
four exams, participants learned to better predict their grades. (B) Computing PEs as the differences between participants’ exam grade expectations and their actual
grades, reveals that PEs prompt updates to expectations, with positive PEs yielding larger changes relative to negative PEs. Taken with the observed trend of improving
expectation accuracy over time, this constitutes evidence of PE-driven learning.
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“Nonlinear valence asymmetry model” section in the Supplementa-
ry Text; fig. S2).
NE is linked to reduced accuracy when reducing expectations
Having demonstrated that high-NE individuals had less accurate ex-
pectations, we next tested whether the more reactive updating style
of higher-NE individuals accounted for such accuracy deficits.

Accuracy varied as a function of expectation updating across
levels of NE [BNE × update = 0.01 (0.002), P = 0.00014; fig. S3] such
that individuals with elevated NE were less accurate after making
larger updates. However, the effects of updating on accuracy dif-
fered depending on whether individuals were increasing or decreas-
ing their expectations. Specifically, higher-NE individuals were

Fig. 3. NE is linked to poor accuracy, hyperreactive updating, and defensive pessimism. (A) Individuals with elevated NE were more pessimistic, which led to more
positive PEs and larger unsigned PEs—that is, lower accuracy—over time. (B) Individuals with elevated NE reported less accurate expectations than their lower-NE coun-
terparts. (C) Lower accuracy in higher-NE individuals is further reflected in greater average sum of squared error (SSE) scores relative to lower-NE individuals. (D) Indi-
viduals with elevated NE not only made larger changes to expectations following PEs but also tended to make pessimistic updates even when PEs were equal to zero,
consistent with defensive pessimism. (E) Another signature of defensive pessimism was that higher-NE individuals tended to require larger positive PEs to update ex-
pectations positvely.
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significantly less accurate when reducing their expectations, relative
to low-NE individuals [BNE × update sign = -0.26 (0.08), P = 0.0011].
Thus, while high-NE individuals displayed a more reactive updating
style irrespective of PE sign, their updated expectations were less ac-
curate specifically when they reduced expectations.
In sum, higher-NE individuals have a reactive updating style, but

their overall poorer accuracy emerges when they reduce their future
expectations. Moreover, unlike lower-NE individuals who tend to
increase expectations following positive PEs and reduce expecta-
tions following negative PEs, higher-NE individuals tend to make
negative updates after accurate expectations (PE = 0; Fig. 3D) and
even after small positive PEs. Such a defensively pessimistic tenden-
cy is evident in the distribution of PEs that yielded positive and neg-
ative updates in high- versus low-NE individuals (Fig. 3E). Whereas
low-NE individuals required larger negative PEs than high-NE in-
dividuals to justify a negative update, consistent with the optimism
bias observed at the sample level, higher-NE individuals required
relatively small negative PEs to decrease their expectations. To de-
crease their expectation on the next exam, the statistical model in-
dicated that lower-NE individuals (i.e., bottom NE quartile)
required a negative PE larger than −2.52, while higher-NE individ-
uals (top NE quartile) only required a negative PE of −0.16 to lower
their expectations. Thus, a higher-NE individual’s impaired accura-
cy following negative updates may be the result of both overly large
updates and a greater tendency to make negative updates that were
incongruent with PE sign.
NE is linked to reduced accuracy following small PEs
The foregoing results suggest that individuals high in NE were more
sensitive to PEs during learning and tended to make defensively
pessimistic updates even when such updates may not have been ex-
plicitly warranted (e.g., when PEs were zero or positive). Thus, we
tested whether specific PE features (e.g., PE magnitude or PE sign)
were linked not just to differences in updating but to less accurate
expectations in high-NE individuals. In fact, individuals with high
levels of NE were less accurate after experiencing small PEs [BNE × PE
magnitude = 0.01 (0.0041), P = 0.02] but not after experiencing posi-
tive or negative PEs in particular [BNE × PE sign = −0.01 (0.04),
P = 0.71]. The predicted effects from this model are visualized in
Fig. 4, where PEs greater than 10 (i.e., a difference of at least one
letter grade) are categorized as “large” and PEs less than or equal
to 10 are categorized as “small.” Thus, accuracy impairments in
higher-NE individuals were most prominent after small PEs and
are likely due to differences in updating style, including both defen-
sive pessimism and hyperreactive updating. Compared to large PEs,
small PEs are more ambiguous learning signals, may be more open
to interpretation, and thus may permit more biased updating,
leading higher-NE individuals to maintain a less accurate and
more pessimistic model of the world.
Poorer expectation accuracy mediates the link between NE
and long-term anxiety symptoms
As noted in Introduction, individuals with heightened NE are at
risk for internalizing disorders and, specifically, anxiety symptoms
(82). One implication of the finding that learning differences among
high-NE individuals yield less accurate expectations is that such an
inaccurate and pessimistic model of the world may predict down-
stream anxiety risk. As a preliminary test of this hypothesis, we re-
contacted previously enrolled participants to measure their current
anxiety symptom severity [n = 364; approximately 6 to 36 months
after initial enrollment; measured using the Generalized Anxiety

Disorder 7-Item Scale (GAD-7)] (100). We then tested whether in-
dividual differences in the overall accuracy of one’s grade expecta-
tions mediated the pathway between NE and long-term anxiety
symptoms, measured at follow-up. To do this, we calculated a par-
ticipant’s average expectation accuracy over the semester [quanti-
fied as the average sum of squared error in expectation over
exams (average SSE)] as an indicator of these learning differences
and tested whether average SSE mediated the links between baseline
NE and the development of future anxiety symptoms. To ensure the
reliability of the average SSEmetric, average SSE was only calculated
for participants who provided EMA data (i.e., predictions) for at
least four exams. Thus, of the 364 participants who completed
anxiety measures at follow-up, 191 were included in the mediation
analysis.
Before evaluating the full mediation model (Fig. 5A), we sepa-

rately examined the effects from the two constituent models that
comprised the full mediation (see Materials and Methods for addi-
tional details). This allowed us to understand how baseline NE,
average SSE, and anxiety symptoms at follow-up were related,
without yet accounting for the indirect (i.e., mediation) effect of
average SSE between baseline NE and follow-up anxiety symptoms.
Because of their observed differences in learning, the first model re-
vealed that individuals with elevated NE exhibited larger average
SSE values, indicative of impaired expectation accuracy [BNE = 5.74
(2.13), P = 0.0076; Fig. 3C]. In the second model, anxiety scores at
follow-up were significantly associated with baseline anxiety
scores [BSx (baseline) = 0.244 (0.093), P = 0.0098] and average SSE
[BAvg SSE = 0.0046 (0.0018), P = 0.012]. Critically, the association
between baseline NE and follow-up anxiety symptoms was also sig-
nificant in this model [BNE = 0.199 (0.070), P = 0.0053].
Next, we evaluated these effects in the full mediation model

(paths labeled in Fig. 5A). In line with the effects that we observed
before including average SSE as a mediator, the full mediation
model revealed a significant effect of NE on average SSE [B =
5.81; 95% confidence interval (CI): (1.68, 9.98)]. Although the
effect of average SSE on follow-up anxiety symptoms did not

Fig. 4. NE is linked to reduced accuracy following small PEs. Comparing the
accuracy of updated expectations after participants experienced large versus
small and positive versus negative PEs, we found that participants with higher
levels of NE made less accurate updates to their grade expectations specifically
after small PEs. No significant differences were observed between PEs of opposing
valence (*P < 0.05).
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differ from zero in the full mediationmodel [B < 0.01; 95%CI: (0.00,
0.01)], both the direct effect [Bdirect effect = 0.20; 95% CI: (0.06, 0.34)]
and the total effect [Btotal effect = 0. 23; 95% CI: (0.09, 0.37); Fig. 5C]
of NE on anxiety symptoms were significant. Moreover, average SSE
significantly mediated the relationship between NE and follow-up
anxiety symptoms, as indicated by a significant indirect effect
[Bindirect effect = 0.024; 95% CI: (0.003, 0.059); Fig. 5B]. This suggests
that while NE alone may predict future anxiety symptoms, accuracy
impairments resulting from hyperreactive updating and defensive
pessimism function as a potential pathway through which NE
might predict such long-term increases in anxiety.
Last, to better understand how average SSE was related to anxiety

symptoms at follow-up, we visualized average anxiety scores at
follow-up for participants with high versus low NE (top and
bottom quartiles) and average SSE in the top versus bottom 50%
(i.e., median split). This visualization confirms that high-NE indi-
viduals with higher average SSE values reported the highest anxiety
symptoms at follow-up (Fig. 5D). Together, this suggests that the
learning differences that we observed in high-NE individuals, spe-
cifically hyperreactive updating and defensive pessimism, are not
only early markers of psychopathology but also lead to impaired ex-
pectation accuracy, which, in turn, predicts future anxiety symp-
toms in those with elevated NE.

DISCUSSION
RL work suggests that organisms use PEs to fine-tune their expec-
tations for the environment and accurately prepare for what is likely
to come (13, 101–103). Recent computational models formalizing
the PE learning process reveal variability in the way humans learn
from PEs (24, 27, 32). However, no studies to date have investigated
whether such variability is present in the way humans learn from
salient events in everyday life. We used a high-stakes, naturalistic
situation to test whether individuals learn from unexpected and
self-relevant outcomes. Unlike laboratory-based tasks that require
hundreds of trials, we demonstrated in this high-stakes setting
that individuals use PEs to form accurate expectations about
future exam grades within just four trials. In line with some prior
work (29, 34, 41), we also found evidence in support of a general
optimism bias in expectation updating, whereby, in aggregate, indi-
viduals preferentially discounted negative relative to positive PEs
during learning. Moreover, we found that these learning effects
vary as a function of a personality profile linked to the development
of anxiety disorders. These findings build on a growing literature
investigating ecological human learning (95, 96, 104) and under-
score the importance of using real-world data both to develop eco-
logically valid theories of human behavior (105) and to improve
etiological models of psychopathology.

Fig. 5. Differences in learning outcomes mediate the relationship between NE and the long-term development of anxiety. (A) Mediation path diagram with path
coefficients—average SSE mediated the relationship between NE at baseline and anxiety symptoms at follow-up (Sxt; n = 191). (B) The indirect effect of NE on anxiety
symptoms via average SSE was different from zero, as indicated by 95% confidence intervals for 12,000 draws from the posterior distribution. (C) The total effect of NE and
average SSE on anxiety symptoms was also different from zero. (D) Larger impairments in learning outcomes, quantified as the average SSE in prediction over a given
participant’s exams, predicted increases in anxiety symptoms 6 to 36months later andmore so for individuals with elevated NE at baseline. Left includes participants with
average SSE scores below the median, and right includes participants with average SSE scores above the median.
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To achieve more accurate models of the world, individuals must
update their expectations for the future in accordance with two key
features of PEs: the valence (i.e., whether an outcome was better or
worse than expected) and the magnitude (i.e., the degree of surprise
associated with an outcome) (1, 12–14). While research in the lab-
oratory implicates PE valence and magnitude as drivers of expecta-
tion updating (23, 27, 43), we extend these findings to a naturalistic
context by demonstrating that PE valence and magnitude are also
primary drivers of expectation updating following personally mean-
ingful events in daily life. Moreover, our findings indicate that the
same PE learning mechanisms observed in highly controlled labo-
ratory settings enabled individuals to develop more accurate expec-
tations over just four real-world trials.
An important disparity between value-based RL and motivated

belief updating literatures involves the necessity of forming accurate
expectations. Value-based RL tends to assume that accurate predic-
tions are central (12–14), whereas individuals tend to hold optimis-
tic and often inaccurate motivated beliefs (34–37, 39). However,
while value-based RL tasks commonly use low-stakes learning
signals, motivated belief tasks use personally meaningful signals,
which may be more open to interpretation (34). Here, using unam-
biguous exam grade PEs, we specifically tested whether individuals
update more optimistically or more rationally following unambigu-
ous but still ego-relevant outcomes. Investigating PE-based learning
in this naturalistic setting enabled us to bridge the gap between
lower-order, value-based expectation updating in RL and higher-
order, self-relevant belief updating. Overall, we found evidence of
a general asymmetry in how much individuals updated their expec-
tations following positive versus negative PEs. Consistent with sug-
gestions that humans display positivity biases in belief updating (15,
26, 28–30, 41), our group-level results indicated that participants
discounted negative PEs and learned preferentially from positive
ones. Given that exam grade expectations contain signals pertaining
to self-relevant dimensions such as intelligence and ability, the
emergence of optimistic updating in this setting underscores the
role of motivated reasoning as a driver of biased updating (34, 35,
37, 38). However, there are likely contexts in which learning rates
are higher for positive PEs and others in which learning rates are
higher for negative PEs. Negative life events may be more impactful
than positive ones (106), and in some contexts, this is undeniable.
Highly salient negative PEs, such as traumatic events, can engender
one-shot learning, resulting in massive changes to higher-order
beliefs and, in some cases, posttraumatic stress disorder (97, 107).
Thus, a simple “one-size-fits-all” account of learning rate asymme-
tries is unlikely to approximate the real-world PE learning process.
Future learning studies in naturalistic contexts are needed to under-
stand the contextual moderators of valence-based updating
asymmetries.
While learning rates commonly vary within and between

persons (17, 18, 23, 42), individual differences in learning rates
have been linked to internalizing disorders (15, 18, 20, 57, 58, 63,
108), and it has been suggested that such individual differences
may contribute to psychopathology development (18). We found
that NE, a personality trait that predicts the development of inter-
nalizing disorders (67, 75, 80, 99), modulated real-world, high-
stakes PE learning, such that individuals with elevated NE
updated their expectations at greater rates than those with lower
NE and made irrational negative updates congruent with defensive
pessimism. Over time, our findings highlight how inaccurate

expectations resulting from these learning differences may predict
the development of long-term anxiety symptoms in vulnerable in-
dividuals with elevated NE. Together, these results extend and chal-
lenge extant work implicating differences in learning rates in fully
developed psychiatric disorders (10, 58) and suggest differences in
learning that may emerge from maladaptive beliefs and ultimately
predict the development of anxiety in higher-NE individuals.
Clinical theories linking RL to psychopathology emphasize indi-

vidual differences in PE learning as a mechanism that yields inac-
curate expectations for the future, which, in turn, may promote
distress and impairment in daily life (18). Although individuals
with elevated NE in our sample did not score differently on
exams, they reported significantly lower expectations on average,
consistent with defensive pessimism (52, 109–111), and, critically,
were less accurate predictors of their exam grade performance.
Thus, we hypothesized that impaired expectation accuracy in
higher-NE individuals resulted from differences in expectation up-
dating rates relative to their lower-NE counterparts.
While individuals with elevated NE tended to make larger

updates to expectations, indicative of a general sensitivity to PEs,
they did not exhibit different valence-based updating asymmetries
—learning differences commonly observed in depressed (53, 54)
and anxious individuals (10, 20, 58). Nonetheless, individuals
with elevated NE were less accurate after making negative updates
to their expectations, which was due to a defensively pessimistic ten-
dency to make negative updates that did not respect the valence of
prior PEs. Critically, for high-NE individuals, we found that accu-
racy deficits were most pronounced following small PEs. While
further research is necessary, this may suggest that this defensively
pessimistic bias is more likely to occur when PEs are small and thus
represent more ambiguous learning signals, as some prior work
suggests (34). The fact that higher-NE individuals did not exhibit
differences in accuracy after experiencing large PEs may support
this idea. Following large PEs, participants paid similar respect to
the signal strength of PE learning signals, perhaps because larger
PEs are more difficult to ignore (34), and failure to learn from
them might portend similarly large PEs and greater uncertainty
in the future.
While additional follow-up work is warranted, defensive pessi-

mism, combined with the tendency to overlearn from PEs, may
result from an increased sensitivity to events that are perceived as
unpredictable—a cognitive trait that predominates in clinical
models of NE (82, 112). It may be that individuals with elevated
NE possess a greater sensitivity to PEs and thus a lower threshold
for tolerating unexpected outcomes, regardless of their valence
(113). Moreover, given a learning history rich in negative PEs, de-
fensive pessimism may be a conditioned adaptation aimed at miti-
gating the impact of such events in the future. Thus, the learning
differences we observed in individuals with elevated NE support
the notion that a greater sensitivity to unpredictability might
confer sensitivity to PEs and bias the way information is weighted
during learning.More broadly, the present findings suggest that risk
for anxiety might emerge from how higher-NE individuals update
their expectations, ultimately leading to pessimistic, inaccurate
models of the world.
However, this study is not without limitations. Because the order

of midterm exams was not randomized between participants, we
cannot rule out the possibility that improving accuracy over time
was an outcome of latter exam grades being easier to predict and
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not just PE-based learning. Future investigations should rule out
such a possibility by replicating our analyses across a range of aca-
demic classes with greater variability in the content and timing of
exams. Furthermore, this type of naturalistic learning study should
be replicated in a nonstudent sample to ensure that the effects are
not limited to this single unique context.
In conclusion, we provide evidence of PE-based learning in a

real-world, high-stakes context that can be observed over just a
handful of trials. In aggregate, individuals displayed greater updat-
ing after positive relative to negative PEs, consistent with the role of
motivated reasoning in optimistic updating. However, individuals
with a personality phenotype linked to anxiety disorders displayed
key differences in learning, which caused them to be more inaccu-
rate in their expectations and, in turn, predicted long-term increases
in anxiety symptoms. Given such a diathesis (114), we hypothesize
that a conditioned aversion to negative and unpredictable events
would lead a person to develop a pessimistic and inaccurate
model of the world, which may predict risk for anxiety.

MATERIALS AND METHODS
Participants
Participants were 740 undergraduate students recruited from chem-
istry classes at the University of Miami between August 2019 and
December 2020. Prior to enrollment, participants provided in-
formed consent per study protocol approved by the Institutional
Review Board at the University of Miami (IRB# 20180529). Over
three semesters (fall 2019, n = 187; spring 2020, n = 315; fall
2020, n = 436; with 198 students enrolled in more than one semes-
ter), students in three different chemistry courses (general chemis-
try, organic chemistry 1, and organic chemistry 2) participated in a
semester-long EMA study that assessed exam grade expectations for
the four to five midterm exams in each class (Fig. 1). Given that
exams occurred in a real-world university class, the order of
exams was not randomized, but exams were free to vary in
content between cohorts.
Exclusion criteria
Participants who did not participate sufficiently in EMA sampling
(i.e., provide grade predictions for at least two consecutive exams)
were excluded from the final analysis sample (n = 115 participants
excluded). This yielded a final analysis sample of 625 participants.
Demographic characteristics for the full sample and the final anal-
ysis sample are presented in Table 2.

Experimental design
Initial laboratory sessions
At the start of academic semesters, students interested in the study
participated in an initial laboratory session during which they pro-
vided informed consent and authorized the study team to access
their exam grades from course professors. Specifically, before
exam grades were posted for students to view, chemistry professors
provided the study team with the exam grades of study participants.
Participants provided contact information for the distribution of
EMA surveys and were informed that surveys would be distributed
to their mobile phones via text messages [short message service
(SMS)] containing Uniform Resource Locator (URL) links to the
Qualtrics online survey platform (115). Thus, all participants were
required to have a cell phone capable of internet access and receiv-
ing text messages. To incentivize the completion of EMA surveys,

participants were compensated with course extra credit proportion-
al to their EMA completion rates.
Baseline questionnaire battery. During the initial laboratory visit,

participants completed a baseline questionnaire battery that as-
sessed demographics, personality traits, and psychopathology
symptoms, including generalized anxiety. Individual differences
in NE were derived from participants' scores on the Big-Five Inven-
tory, Extra Short Version (BFI) (116), and baseline anxiety symp-
toms were derived from the participants’ scores on the GAD-
7 (100).
Assessment of exam grade expectations
Within 15 to 30 min of the end of each midterm exam period, re-
searchers sent a SMS to participants requesting that they report the
grade they expected to receive on that exam. Grade expectations
were entered into a survey text box. Only numeric responses
between 0 and 100 were accepted, and participants were automati-
cally prompted to reenter their expected grade if their response was
not within this range.
Release of midterm exam grade outcomes
After receiving exam grades from chemistry professors, participants
were notified via SMS that their grades were ready to be viewed
before being posted on the course website. To view exam grades,
participants clicked on the URL that they received, which led
them to a webpage requesting that they enter their contact informa-
tion (i.e., last name and cell phone number). This information was
automatically cross-referenced with our participant database, and
participants were redirected to a webpage containing their exam
grade (e.g.,“You received a 65 on the most-recent chemistry exam”).
Measurement of longitudinal anxiety symptoms
Anywhere from 6 to 36months after participating in this study, par-
ticipants who consented to be contacted in the future were offered a

Table 2. Demographic characteristics of full sample and analysis
sample. Note that participants who did not complete EMA surveys
(n = 115) following at least two exams were excluded from the final
analysis sample.

Demographic Full
sample

Analysis
sample

n 740 625

Gender (%)

Female 74.19 75.36

Male 25.81 24.64

Race (%)

White or Caucasian 66.62 69.28

Black or African American 10.27 9.12

Asian or Asian American 12.43 12.16

Native American 0.41 0.16

Native Hawaiian or Pacific
Islander

0.14 0.16

Multiracial 7.70 7.20

Other 2.43 2.08

Ethnicity (%)

Non-Hispanic 71.62 71.52

Hispanic/Latino 28.38 28.48
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financial incentive (Amazon gift card) to complete a follow-upmea-
surement of their current anxiety symptoms. Similar to the baseline
questionnaire battery, follow-up anxiety scores were measured
using the GAD-7.

Preprocessing and calculation of learning variables
Outcome and prediction-related variables
Exam grade PEs. Exam grade PEs were computed as the differ-

ence between participants’ expected grades for an exam and the
actual grades they received on that exam

PEij ¼ Oij � Eij ð1Þ

where i denotes observations for a given participant, j denotes ob-
servations for one of the exams, E represents an exam grade expec-
tation, and O represents the exam grade outcome that one received.
Indices of learning
Expectation accuracy. We hypothesized that learning would man-

ifest as an increase in the accuracy of exam grade predictions over
the four to five exams. To determine whether participants learned
over the semester, we operationalized the outcome of learning as the
expectation accuracy, using the unsigned PE [i.e., magnitude of sur-
prise (14)]. We subtracted unsigned PEs from 100 to invert the sign
such that greater accuracy corresponded to higher values of the var-
iable

Accuracyij ¼ 100� j Oij � Eij j¼ 100� j PEij j ð2Þ

Expectation updates (between exams). Improvements in expecta-
tion accuracy, the outcome of learning, require changes in one’s ex-
pectations, which constitute the process of learning. We computed
between-exam changes in expectation, termed expectation updates
(∆E), as the difference between grade expectations for consecutive
exams

DEij ¼ Eij � Eij� 1 ð3Þ

Average error in prediction (average SSE). To quantify individual
participants’ relative ability to accurately predict their exam grades
over time, we computed a metric representing their average error in
prediction as the sum of squared errors in prediction, normalized by
the number of observations included in the calculation (i.e., the
number of exams for which a participant reported a PE)

Average SSEi ¼
Xn

j¼1
PEij2

 !

� 1=n ð4Þ

To ensure the reliability of average SSE estimates, average SSE
was only calculated for participants who reported predictions
(and thus PEs) for at least four exams.

Statistical analysis
Statistical analyses were conducted using the R programming lan-
guage (117). Distributions of all variables were assessed for normal-
ity, and descriptive statistics for each variable were extracted before
statistical modeling. Given the hierarchical structure of the dataset
(i.e., exams within participants and within cohorts), we used mul-
tilevel regression models to account for participant-specific and
cohort-specific effects. All linear mixed-effects models were speci-
fied and evaluated using the “lme4” package in R (118), and Baye-
sian mixed-effects regression models were evaluated using the

“brms” package (119). To ensure accuracy in our estimation of
learning effects, PEs and expectation updates greater than 50 or
less than −50 were censored before testing learning models. This
resulted in 30 observations being excluded from our dataset. Cen-
soring these outlying observations from our analyses did not alter
the learning effects described in the following (i.e., in Eqs. 5 and 6).
Moreover, logistic regression results suggest that this censoring was
unrelated to participants’NE scores [BNE = 0.96 (0.154), P = 0.533].
Learning from exam grade PEs
Do grade expectations become more accurate over time? To test

whether participants’ grade expectations became more accurate
(constituting evidence of learning), we specified a linear mixed-
effects model in which expectation accuracy was regressed onto
trial number ( j )

Accuracyij ≏ jþ ð1 j cohort=iÞ ð5Þ

where j represents exam, i defines individual participants as
random-effects levels, and the term “cohort” accounts for the de-
pendencies between participants who participated within the
same semester (i.e., cohort). We hypothesized that over the course
of the semester, as experience taking exams accrues, participants
become increasingly accurate in their exam grade expectations.
Do PEs drive updates to expectations? In RL frameworks, PEs

function as learning signals to update expectations in order to
derive a more accurate model of the world (12, 13, 101, 120). We
thus tested whether a PE on one exam predicted changes in exam
grade expectations on the next exam

DEij ≏ PEij� 1 þ DOij þ ð1 j cohort=iÞ ð6Þ

We hypothesized that exam grade PEs would be positively asso-
ciated with updates to exam grade expectations, which would
support the hypothesis that PEs function as learning signals. We
consider the parameter estimate for the PEij − 1 term to be similar
to a learning rate (12), representing the magnitude of an expectation
update given a PE.
Because individual students’ exam grades fluctuate over the se-

mester, expectation updates will vary not only because of learning
but also because of changes in the difficulty ofcourse material or
course engagement. To account for this, in all models, we confirmed
that PE learning is present when accounting for within-participant
changes in grades between exams (ΔOj =Oj + 1−Oj). As a follow-up
test, we conducted a model comparison to rule out alternative ex-
planations for updates to exam grade expectations. Competing
models included combinations and subsets of the following set of
linear regressors: grade PE, grade expectation, and change in
grade (ΔO). Thismodel comparison indicated that amodel contain-
ing both grade PE and change in grade predictors yielded the best fit
to the data and was thus the foundation for subsequent models pre-
dicting expectation updating.
Do updating rates differ by PE valence? Because existing work in-

dicates that learning rates differ between positive and negative PEs,
we specified an additional multilevel model in which separate terms
representing PE valence (categorical variable) and PE magnitude
(continuous variable; i.e., unsigned PE) were added to a model
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predicting expectation updates

DEij ≏PE valenceij� 1 � PE magnitudeij� 1 þ DOij

þ ð1 j cohort=iÞ
ð7Þ

Individual differences in NE
Does NE predict variability in learning outcomes? We initially

tested whether NE predicted differences in the outcome of learning:
expectation accuracy. To address this question, we specified a uni-
variate mixed-effects model in which expectation accuracy was re-
gressed onto participant-specific NE scores

Accuracyij ≏ NEi þ jþ ð1 j cohort=iÞ ð8Þ

where NEi represents individual participants’ NE scores measured
using the BFI at baseline. The exam index j was included as a covar-
iate to account for trends in expectation accuracy over time.
Does NE predict variability in PE-based learning (i.e., updating

rates)? To test whether individuals with elevated NE demonstrated
systematic differences in PE-driven learning, we first tested whether
NE moderated the impact of PE on changes to expectation. As
above, we included change in grade as a covariate

DEij ≏ PEij� 1 �NEi þ DOij þ ð1þNEi j cohort=iÞ ð9Þ

This model included a random slope for NE to account for
between-participant differences in the relative impact of NE on ex-
pectation updating.
Does NE generate differences in learning outcomes by way of

differences in expectation updating? To test whether the process of
PE-driven learning resulted in less accurate expectations for indi-
viduals with elevated NE, we tested a linear mixed-effects model
in which expectation accuracy at the next exam was predicted by
the interaction between NE and expectation updates. As in the pre-
ceding models, we controlled for trends in expectation accuracy
over time

Accuracyijþ1 ≏ NEi � DEij þ jþ ð1 j cohort=iÞ ð10Þ

Does NE predict valence-dependent asymmetries in expectation
updating?We then tested whether changes in expectation as a func-
tion of NE differed by PE valence (i.e., positive versus negative PEs).
We specified a linear mixed-effects model in which changes to ex-
pectations were predicted by a three-way linear interaction between
PE magnitude, PE valence, and NE

DEij ≏PE magnitudeij� 1 � PE valenceij� 1 �NEi þ DOij

þ ð1þNEi j cohort=iÞ
ð11Þ

Do individuals with elevated NE learn differently from PEs of
varying magnitude and valence? We lastly tested what might be
driving differences in expectation accuracy among high-NE indi-
viduals. It may be that individuals with higher levels of NE
became less accurate due to small or large PEs or positive versus
negative PEs. To evalutethese possibilities, we regressed expectation
accuracy at exam j + 1 onto terms representing the PE magnitude
and valence at exam j. In separate two-way interactions, NE was
specified as a moderator of PE valence and magnitude terms to de-
termine whether individual differences in NE predicted variability

in accuracy following PEs of differing magnitude and valence

Accuracyijþ1 ≏PE magnitudeij �NEi þ PE valenceij �NEi

þ jþ ð1þNEi j cohort=iÞ
ð12Þ

This model enabled us to determine whether the effects of PE
valence and magnitude on the accuracy of updated expectations
varied as a function of individual differences in NE.
To visualize the predicted effects from the model depicted in Eq.

11, a categorical variant of this model was formulated in which PEs
were decomposed into dichotomous groups representing small (i.e.,
less than 10 points) versus large PEs (i.e., greater than or equal to 10
points) and positive versus negative PEs. As in Eq. 11, we specified
separate two-way interactions between NE scores and the dichoto-
mous PE magnitude and PE valence variables, respectively.
Do differences in learning outcomes mediate the relationship

between NE and the long-term development of anxiety symptoms?
Last, we tested whether differences in learning and, notably, resul-
tant impairments in learning outcomes might act as a mechanism
that drives the development of anxiety symptoms in individuals
with elevated NE. To test this theoretical model, we formulated
and fit a Bayesian regression in which participants’ average SSE
mediated the causal path from NE to anxiety symptoms at a
latter follow-up time point (anywhere from 6 to 36 months after
the study period). Participants (n = 364) provided follow-up
anxiety symptom scores, of which 191 participants had sufficient
data to be included in the analyses (i.e., predictions for four or
more exams). While some participants provided data at multiple
follow-up time points, we strictly analyzed the change in symp-
toms from a participant’s baseline to their last (i.e., most recent)
response. Anxiety symptoms assessed at the beginning of the
study period (i.e., at baseline) were included as a control
variable, as was the relative duration between the end of the
study and the time point when follow-up symptom measures
were collected. This mediation model was built from two constit-
uent submodels

Sxit ≏ Average SSEi þ Sxibaseline þ NEi þ t ð13Þ

Average SSEi ≏ NEi ð14Þ

To understand the effects of NE and average SSE on follow-up
anxiety symptom scores, before accounting for the potential medi-
ating effect of average SSE, we tested the models in Eqs. 13 and 14 in
separate linear regressions. To estimate the mediation effect of
average SSE, these models were then jointly evaluated in a Bayesian
regression. To determine whether effects in the Bayesian mediation
model were significant, we took 12,000 draws from the posterior
distributions and computed 95% confidence intervals for each
parameter.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S4
Tables S1 to S4
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