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The neural underpinnings of decision-making are critical to understanding and predicting
human behavior. However, findings from decision neuroscience are limited in their
practical applicability due to the gap between experimental decision-making paradigms
and real-world choices. The present manuscript investigates the neural markers of
buying decisions in a fully natural purchase setting: participants are asked to use their
favorite online shopping applications to buy common goods they are currently in need
of. Their electroencephalography (EEG) is recorded while they view the product page
for each item. EEG responses to pages for products that are eventually bought are
compared to those that are discarded. Study 1 repeats this procedure in three batches
with different participants, product types, and time periods. In an explorative analysis,
two neural markers for buying compared to no-buying decisions are discovered over
all three batches: frontal alpha asymmetry peak and frontal theta power peak. Occipital
alpha power at alpha asymmetry peaks differs in only one of the three batches. No
further significant markers are found. Study 2 compares the natural product search
to a design in which subjects are told which product pages to view. In both settings,
the frontal alpha asymmetry peak is increased for buying decisions. Frontal theta peak
increase is replicated only when subjects search through product pages by themselves.
The present study series represents an attempt to find neural markers of real-world
decisions in a fully natural environment and explore how those markers can change
due to small adjustments for the sake of experimental control. Limitations and practical
applicability of the real-world approach to studying decision-making are discussed.

Keywords: decision-making, purchase choice, online shopping, ecological validity, EEG, time-frequency analysis,
frontal alpha asymmetry, frontal theta

INTRODUCTION

The question of how humans weigh up alternatives and choose between options is of widespread
interest, both for multiple academic disciplines and in the praxis. To understand, predict, and
influence human behavior, we need to gain deeper insights into the principles and processes
underlying decision-making. While thinkers of all times have wondered about the nature of
human decisions, it is a much more recent development that scientists approach the decision-
making process empirically, focusing not on how we theoretically should but how we actually
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do make decisions [refer to Bradley (2018) on philosophical and
Takemura (2004) on behavioral decision theory].

To ensure sufficient experimental control, decision scientists
most commonly investigate the characteristics of simple
decisions, that is, choices with a limited number of alternatives
and a limited number of outcomes that follow the decision in
a deterministic fashion or with predefined probabilities (refer
to Houser and McCabe, 2014). Typical experimental decision-
making tasks are, for example, two alternative forced choice
tasks, which can be used to manipulate and model evidence
accumulation toward the final decision (e.g., Smith, 1982; Ratcliff
et al., 2018; Van Maanen et al., 2021), gambling tasks, which
allow researchers to study how humans optimize their choice
behavior through trial-and-error learning of reward structures
(e.g., Toplak et al., 2010; Chiu et al., 2018), or social decision-
making tasks, which investigate how humans interact and
compete in decision-making (e.g., Weber et al., 2004; Rilling and
Sanfey, 2011). There is a substantial amount of work devoted to
methods and process models for describing the many types of
choices that come from such standardized paradigms (refer to
Johnson and Ratcliff, 2014 for an overview).

While empirical models of simple decision-making have
certainly increased our understanding of the nature of human
choice behavior, they suffer from one fundamental flaw: They
are based on experiments constructed to manipulate and explain
particular aspects of the decision process in an otherwise
controlled situation. However, human decision strategies are
highly volatile in response to small changes of contextual
factors (e.g., Keren and Willemsen, 2008; Koop and Johnson,
2011; Evans and Brown, 2017; van Hoorn et al., 2019),
which can result in increasingly specific models being fit to
increasingly specific standardized decision situations. Relating
these models to practical everyday life decision-making devoid
of any experimental protocol, however, can be challenging (e.g.,
refer to Houser and McCabe, 2014).

To understand the biological underpinnings of decision-
making, cognitive neuroscientists adapt established experimental
paradigms from the behavioral sciences to investigate which
brain mechanisms are related to decision behavior. This research
has given interesting insights into brain areas and processes
underlying important aspects of making a choice. For example,
the ratio between left and right frontal activation represents an
approach or an avoidance signal that can guide our actions (Smith
et al., 2017; Reznik and Allen, 2018), dopaminergic neurons
in the midbrain, and their connection to the orbitofrontal
cortex exhibit signaling properties that can be directly related
to the subjective value of decision alternatives (Padoa-Schioppa
and Cai, 2011; Schultz, 2013; Rich and Wallis, 2016), and
neural response patterns in the dorsolateral prefrontal cortex
are crucial for the weighing up and integration of decision
alternatives (Krawczyk, 2002; Lin et al., 2020; Vaidya and
Fellows, 2020). Such findings combined with knowledge about
neural signaling on the molecular level further inform and put
practical constraints on behavioral models of decision-making
(Johnson and Ratcliff, 2014). Recent decision science further
shows strong advances in the development of computational
models, which go far beyond original simplistic algorithms

and are more and more able to account for complex decision
scenarios and adaptive learning of appropriate choice behavior
(Collins and Shenhav, 2022).

Research on the neural building blocks of decision-making
is essential to help us understand the decision process from a
biological, behavioral, and economic perspective. However, to
date, its practical applicability has been limited by traditional
experimental setups being too far removed from real-life
decision-making. For complex real-life decisions, there are too
many alternatives; time is too short and human cognitive capacity
is too limited to assign all relevant subjective values, weigh
up all options, and follow a particular conscious strategy. This
may explain why economics, a field with an obvious interest in
understanding real-life choices, initially showed little interest in
the psychological and neurobiological attempts to understand
human decision-making and stuck with a normative (“How
should we make decisions?”) rather than a descriptive (“How
do we make decisions?”) approach (Caplin and Glimcher, 2014).
However, when applied to real-world judgments, economists
discovered that models based on the optimal option often
fail to hold true, since people behave surprisingly irrational
in many situations (Tversky and Kahneman, 1974; Kahneman
and Tversky, 2013; Tomer, 2015). Especially in the field of
economics, decisions are often based on cognitive biases rather
than rationality, for example, determining perceived value and
thereby buying choices via inherently unrelated aspects like
price (Victor and Dominic, 2021). With psychologists’ and
neuroscientists’ increasing motivation to understand complex
real-world decision problems and economists’ recognition that
human behavior cannot fully be explained based on rationality,
the two fields grew closer together, resulting in the birth of a new
discipline termed neuroeconomics (Caplin and Glimcher, 2014).

Since the emergence of neuroeconomics, a lot of remarkable
work has been done to shed light on decision-making with
more realistic scenarios in mind. Here, methods of neuroscience
are being used to get a direct understanding of how people’s
economic and consumer behaviors are impacted by the way
services and products are presented [refer to Sánchez-Fernández
et al. (2021) for an overview over history, methods, and findings
of consumer neuroscience]. It has been shown that established
brain markers of decision-making impact economic choices.
For example, the activation ratio between the left and right
frontal hemispheres is correlated with how well advertisements
are received (Ohme et al., 2010), signaling of subjective value
via dopamine neurons is related to price sensitivity (Schelp
et al., 2017), the orbitofrontal cortex is crucial for comparing
subjective values in economic decisions (Padoa-Schioppa and
Conen, 2017), as well as adding the factor of a social norm to the
decision process (Apps and Ramnani, 2017), and the dorsolateral
prefrontal cortex has been related to different cognitive biases,
which have proven crucial for economic choices (Bogdanov et al.,
2017; Ballard et al., 2018).

The neurophysiological method of electroencephalography
(EEG) is particularly useful for investigating complex decision
situations in real-life decision scenarios [refer to Ayaz and
Dehais (2021) for a recent overview of recording human
brain function in everyday life situations]. While its spatial
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resolution is inferior to neurocognitive methods like functional
MRI (fMRI), it can track the neural response to environmental
stimulation by measuring millisecond-scale electric fluctuations
at the scalp. This is important to grasp the flexibility of real-world
decision environments and identify crucial points associated
with specific phases of the decision process (e.g., Van Maanen
et al., 2021). Furthermore, the decomposition of the raw EEG
signal into slow and fast wave components allows for distinct
identification of metrics related to differential cognitive processes
(refer to Cohen, 2014). EEG-based decision-making research
found frontal asymmetry within the alpha band to be related to
approach and avoidance behavior (Harmon-Jones, 2003; Ohme
et al., 2010; Rollwaage et al., 2017), an increase of midfrontal
theta, alpha, and beta as a response to gains rather than losses
(Marco-Pallerés et al., 2008; Cohen, 2016), beta as signaling
unexpected outcomes that can lead to an adjustment of future
decisions (HajiHosseini et al., 2012; Marco-Pallerés et al., 2015;
Yaple et al., 2018), and frontal theta to be related to explorative
search, as well as decisions under uncertainty (Cavanagh and
Frank, 2014; Demeter, 2016).

Although the field of neuroeconomics produced many
promising findings, including insights into EEG markers of
complex choice behavior, most real-world scenario research
still puts experimental control before ecological validity. For
example, even in decision-making simulations that aim to be
realistic, choice options are typically limited and can be learned
by participants over the course of the experiment, participants’
focus is steered toward one or a set of clear guidelines on
which basis the decision should be made, and certain outcomes
revealed to the participant at some point in the experiment
are measured as success, failure, or some other standardized
criterium (Busemeyer et al., 2006; Davis et al., 2011; Newell
and Lee, 2011; Padoa-Schioppa and Conen, 2017). This degree
of experimental control is justified when trying to figure out
which exact aspect of the decision process certain neural response
markers are related to. This is because in a messy real-world
setting without set alternatives, guidelines, and decision criteria,
it can be difficult if not impossible to draw clean empirical
conclusions on the concrete underlying reasons behind observed
effects. However, the focus on experimental control leads
to decision-making environments that are hardly comparable
with real-life decision-making and pose serious challenges for
economists to put findings into practice (Houser and McCabe,
2014). Therefore, for a field as practically relevant as decision-
making, an additional research program is necessary, which
does not focus so much on a detailed mechanistic explanation
of neural decision markers but allows for a more general
understanding of response patterns related to certain kinds of
decisions in real-world scenarios.

With the goal of a more practical approach to decision
science in mind, the present work emerged from the question:
“Can we, in a maximally ecologically valid setting, find markers
of brain activation that are associated with certain types
of decisions?” To create such an ecologically valid setting,
we set out to distinguish between two simple but realistic
choices: buying or not buying, without attempting to control
presented stimuli or human behavior. EEG was used to measure

neurophysiological responses, while participants made buying
choices in a natural online shopping setting, browsing their
favorite shopping application and making real buying choices
in the same way they do when shopping at home. EEG was
the measure of choice because of its discussed high temporal
resolution, which in the present study series is particularly
important as no predefined time points of interest could be
determined, and its flexibility, allowing for a natural shopping
experience. The metrics identified in an exploratory search over
different frequency bands and common EEG markers of choice
behavior are discussed in the context of previous findings on
neural mechanisms of decision-making and may be explored
further in both naturalistic and controlled studies on buying
choices. The present research should be understood as an attempt
to explore the possibility of discovering robust ecologically valid
markers of decision-making with direct practical applicability, in
that they can be used to distinguish between different real-world
choice scenarios.

STUDY 1

The goal of Study 1 was to explore EEG responses related
to the decision of buying an item in an online shopping
environment. The study was designed to test participants’ real-
life internet buying behavior with high ecological validity. The
participants were asked to use their personal mobile phones for
browsing through specific categories of items in their online
shopping application of choice. They were asked to simply
browse naturally as they would at home and buy whatever
they felt like buying on their private account. As a buying
incentive, they would get a discount on all purchases. During
the entire browsing and purchase process, EEG was recorded.
EEG markers associated with certain aspects of decision-making
have been identified across multiple EEG frequency bands and
areas (e.g., Marco-Pallerés et al., 2008, 2015; Davis et al., 2011;
Cohen, 2016), and the present study inherently lacked control
of any specific aspect of the decision process. Therefore, the
analysis was exploratory testing for differences over all 64
scalp electrodes in the theta (4–7 Hz), alpha (8–12 Hz), beta
(14–20 Hz), and gamma (25–45 Hz) bands. We additionally
tested differences in frontal alpha asymmetry based on findings
of asymmetric brain responses, specifically in the alpha band
being related to approach and avoidance behavior (Harmon-
Jones, 2003; Ohme et al., 2010; Rollwaage et al., 2017). To
show replicability of the exploratory results, the study was
conducted in three batches during different time periods and
with differing product items and participant groups. General
instructions, recording, and analysis methodology, however,
remained unchanged throughout all three batches.

Study 1 Methods
Participants
Thirty female volunteers (mean age: 25.97 ± 4.88) participated
in the first study batch for payment of U100 per hour and
a 20% buying incentive for purchases up to U150. All the
participants responded in a previously applied pre-screening
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questionnaire that they currently have the intention to buy cream
and lotion products.

Sixty-two female volunteers (mean age: 26.95 ± 4.55)
participated in the second study batch. The second study batch
was divided into two sub-batches being recorded during two
popular Chinese sales days, November 11 with 11 participants
and December 12 with 51 participants. Participants from
November 11 received a payment of U100 per hour and a 10%
discount on purchases up to U50. Participants from December 12
received U75 per hour and a 20% buying incentive for purchases
up to U400. The latter further agreed in advance to spend at least
U180. All the participants reported a purchase history of more
than 1 make-up product per month.

Forty-six female volunteers (mean age: 29.3 ± 6.09)
participated in the third study batch for no fixed compensation,
but a 30% buying incentive for purchases up to U350. All the
participants reported a purchase history of more than 1 make-
up product per month and an income of more than U8,000 per
month. They agreed in advance to spend at least U300.

All the participants were naïve to the purpose of the study,
had normal or corrected-to-normal vision, and had no history
of neuropsychological diseases. After the written and verbal
explanation of the task, procedure, and measurement, the
participants gave their written consent.

Procedure and Analysis
Data collection took place at the EEG laboratory of Brain
Intelligence Neuroconsulting Ltd. The participants were sat
in an electrically shielded room. Their phones were used for
accessing online shopping websites. Each study session lasted
less than 1.5 h, with half an hour for setting up the equipment
and up to 1 h of free browsing. Eye movements and a video
of the participant’s field of vision were recorded using SMI
eye tracking glasses (SensoMotoric Instruments GmbH, Teltow,
Germany), which allow the tracking of eye movements during
natural exploration of the environment. EEG was recorded with
an EasyCap system (EasyCap GmbH, Herrsching-Breitbrunn,
Germany). The EEG cap consisted of 64 Ag/AgCl electrodes at
standard locations of the international 10/10 system, the ground
electrode at position AFz, the reference electrode at position CPz,
and one external electrode placed under the right eye. Impedance
for each electrode was kept below 50 µ�. The signal was digitized
at a rate of 500 Hz and re-referenced offline to the average over
all non-rejected measurement electrodes.

After electrode mounting, 1 min of resting-state activation was
recorded, during which the participants sat still with their eyes
open. Then, the participants were asked to take out their phones
and open their preferred online shopping application. They were
instructed to spend as long as they like browsing through the
application in search of a particular type of product and buy what
they liked using their own money (minus the buying incentive).

Matlab R2017B (The MathWorks, Natick, MA, United States)
and the Matlab-based software package Fieldtrip (Oostenveld
et al., 2011) were used for data analysis. The EEG signal was
filtered with a 0.5 Hz highpass and 48 Hz to 52 Hz bandpass
filter. The EEG recording was segmented into episodes according
to the viewing of each product page. Artifacts were rejected via

visual inspection. Rejected channels were interpolated using the
average of their neighboring channels weighted by distance. To
remove eye artifacts, principal component analysis with a logistic
infomax ICA algorithm was used (Makeig et al., 2002). Given
the participants were browsing the application freely, the viewing
time for each product page varied naturally. The episodes were
separated into two conditions: product pages of products that
were purchased within the experimental session or put in the cart
for possible later purchase and those of products that were not
purchased. The reasoning behind making one condition out of
bought products and those put into the cart was that both types
reflect the general intention, eventually leading to purchase as
opposed to simply discarding the item. Each episode’s EEG signal
was transformed into its time-frequency representation using
complex Morlet-wavelet convolution with seven wavelet cycles
between 4 and 100 Hz over all channels. The frequency transform
was clustered into four frequency bands of interest: theta (4–
7 Hz), alpha (8–13 Hz), beta (12–20 Hz), and gamma (30–45 Hz).
Furthermore, frontal alpha asymmetry was calculated as the log
difference between alpha power in left-frontal (F1, F3, F5, F7,
FC1, FC3, FC5, and FT7) and right-frontal (F2, F4, F6, F8, FC2,
FC4, FC6, and FT8) channels (Smith et al., 2017). The peak points
of each frequency band over all channels and the peak of frontal
alpha asymmetry were identified for each episode. For the direct
comparison of buy and no-buy trials, the time span of ±300 ms
around the peak was used. Episodes with less than 300 ms around
the peak points were removed from their respective comparison
analysis. The remaining buy vs. no-buy episodes were averaged
subject-wise. Buy vs. no-buy was compared across subjects based
on the full 600 ms (i.e., 300 sampling points) by 64 channel matrix
of peak time spans using a permutation-based test (Maris and
Oostenveld, 2007) with 500 random permutations, with a cluster
significance level of 0.05.

Difference Between Batches
Beyond the participants, there were only few differences between
batches. In batch 1, the product type of interest was cream and
lotion products; in batches 2 and 3, it was general cosmetics
products. Furthermore, each batch was recorded over a short
period of time, but there was a larger time difference between
batches (August 2019, November/December 2019, January 2020),
leading to naturally varying contents in the online shopping
applications (i.e., the pool of material that can be explored) for
the three different studies. Apart from this, study procedure and
analysis were equivalent across all three batches of Study 1.

Study 1 Results
Behavioral Results
In batch 1, the participants visited an average of 10.70
(±8.79) product pages. The mean viewing time of a page was
37.73 s (±22.21). On average, the participants bought 24.68%
(±24.9) of the viewed products and put 14.21% (±16.55) into
the shopping cart.

In batch 2, the participants visited an average of 14.40 (±9.99)
product pages. The mean viewing time was 33.66 s (±21.73).
About 21.00% (±18.95) of the viewed products were bought on
average and 11.10 (±14.46) put in the shopping cart.
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Finally, in batch 3, the participants viewed an average of
12.71 (±9.00) product pages for a mean viewing time of 35.80 s
(±25.92). On average, the participants bought 22.91% (±19.59)
of the viewed products and put 10.09% (±13.68) into the
shopping cart. An overview of buying behavior and viewing time
in Study 1 is shown in Figure 1.

Electroencephalography Results
The EEG data were cut at the beginning and ending of each
product page viewing, and the resulting trials were divided into
those products that were finally bought or put into the shopping
cart for later purchase (=“buying trials”) vs. those that were not
bought (=“no buying trials”). Product page viewings naturally
varied in duration and content of the stimulation; therefore,
time points of interest through which trials of one type can
be averaged and compared had to be defined. As frontal alpha
asymmetry (FAA) is a typical measure of approach (Smith et al.,
2017) related to choice decisions (Harmon-Jones, 2003; Ohme
et al., 2010), trials were first compared around their FAA peak
(right alpha power higher than left – approach) and trough
(left alpha power higher than right – avoidance). In batch 1,
there was a significant difference between buying and no-buying
trials, with an increase in alpha asymmetry peaks for buying
between 200 ms before and 100 ms after the peak (as shown in
Figure 2A).

Next, an exploratory search of differences in EEG power bands
at (1) respective power peaks and (2) FAA peaks was conducted.
For (1) respective power peaks only theta power showed a
significant increase, most pronounced across frontal channels (as
shown in Figure 2B). This increase was significant with cluster
correction (p < 0.05) for at least 20% of time points in a frontal
cluster consisting of the channels AF3, AF4, AF8, FPz, F1, F2,
F4, F6, Fz, FC1, FC2, and FC4 and a smaller occipital cluster
consisting of the channels O1, O2, Oz, POz, Pz, P2, and P4. For
(2) FAA peaks, the only frequency band that showed significant
differences between the buy and no buy trials was alpha power
with a decrease for buying over occipital electrodes (as shown in
Figure 2C). This decrease was significant for more than 20% of
the time over the channels PO7, P3, P5, P7, CP5, and CP3.

Batch 1, therefore, revealed three significant differences
between buying and no buying decisions, an increase in FAA
at FAA peaks, an increase in frontal theta at theta peaks, and a
decrease in centro-occipital alpha at FAA peaks. For batches 2
and 3, the same exploratory analysis was repeated. Significantly
increased FAA for buying decisions could be replicated for all
batches, in batch 2, between 100 and 150 ms after the FAA peak;
in batch 3, between 100 ms before and 100 ms after the peak (as
shown in Figure 2A). The increase in frontal theta at theta peaks
could as well be seen in all three batches; however, in batches
2 and 3, it did not survive cluster correction (p > 0.05 for all
sampling points, as shown in Figure 2B). The same was true for a
decrease of occipital alpha at FAA peaks (as shown in Figure 2C).
The increase in FAA for buying trials was significant over all
batches taken together from 200 ms before to 200 ms after the
FAA peak (as shown in Figure 3A), as was the frontal increase
in theta power at theta peaks (p < 0.05 for more than 20% of
sampling points) in a frontal cluster consisting of the channels
AF7, F1, F2, F4, Fz, FC2, FC4, Cz, and Fz (as shown in Figure 3B).
The difference in occipital alpha at FAA peaks was not significant
with all three batches taken together (as shown in Figure 3C).
No significant difference in any other frequency band was found
at FAA peaks or at respective frequency power peaks in any of
the batches individually as well as in all batches taken together.
People bought or considered buying (put into the cart) less of
the viewed product pages than they discarded (average of buy or
cart decisions = 34.24 ± 2.29%). To ensure that the number of
trials averaged for each subject to compare buying and no-buying
EEG responses did not bias the results, we reran the analysis
of all batches combined, adjusting trial numbers by randomly
removing trials until the number of buy and no-buy was equal for
each subject. With equal buy and no buy trial numbers for each
subject, the results (as shown in Figure 4) were in line with what
we found when including all trials – the increase in FAA remained
significant from 150 ms before to 150 ms after the FAA peak; theta
power was significantly higher (p < 0.05 for more than 20% of
sampling points) for buying trials at the theta peak in a frontal
cluster consisting of channels AF4, Fz, F1, F2, F4, FC1, FC2, FC4,
Cz, C1, and C3, and the tendency of decreased alpha power for

FIGURE 1 | Behavioral results in Study 1. (A) Number of viewed and bought products (B) viewing time.
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FIGURE 2 | Differences between buying and no-buying trials in Study 1 divided into batches, (A) increased frontal alpha at frontal alpha asymmetry (FAA) peaks, (B)
increased frontal theta at theta peaks, and (C) decreased occipital alpha at FAA peaks.

buying at the FAA peak was still present, but, when correcting for
multiple comparisons via cluster correction, no cluster showed a
significant difference between buying and no buying.

Study 1 Discussion
The present explorative analysis revealed three markers
significantly correlating with real-world buying decisions in
an online shopping environment: an increase in FAA peak, an
increase in frontal theta peak, and a decrease in occipital alpha at
FAA peaks. FAA peak increase and frontal theta increase could
be replicated across all three batches together, FAA peak also for
each batch separately.

FAA peak significantly differed for buying versus no-buying
choices in each of the 3 analyzed batches, both individually and
taken together. FAA is an EEG metric associated with approach
and avoidance behavior [as shown in Harmon-Jones et al.
(2010)]. It is calculated as the log difference between right frontal
and left frontal alpha power – with positive values indicating
a tendency toward an approach and a positive emotional state,

while negative values indicate a tendency toward avoidance and
a negative emotional state. As increased alpha power is related
to cognitive idling or sensory suppression of external stimulus
input (Klimesch et al., 2007; Mathewson et al., 2011), this can
be interpreted as increased left frontal activation being related
to approach and increased right frontal activation being related
to avoidance. The FAA was initially considered a trait or long-
term state variable, indicating subjects’ general affective tendency
and serving as a marker for affective diseases like depression.
However, in recent years, it has also been frequently tested as a
state variable as shown in Smith et al. (2017) for an overview.
That is, some studies found that the FAA can also be related
to trial-by-trial variations in stimulus input, indicating subjects’
affective stance toward the stimulus at hand (Harmon-Jones,
2003; Hu et al., 2017; Zhao et al., 2018). This has as well been
shown in an economic context (Ohme et al., 2010; Ramsøy et al.,
2018). However, in the present study, the timing of stimulus
presentation was not controlled, as the subjects could freely
search through web pages of interest. Therefore, not every point
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FIGURE 3 | Differences between buying and no-buying trials in Study 1 with all batches combined, (A) increased frontal alpha at FAA peaks, (B) increased frontal
theta at theta peaks (left: raw, right: masked by cluster corrected p-level < 0.05), (C) decreased occipital alpha at FAA peaks (left: all values, right: masked by
cluster-corrected p-level < 0.05).

FIGURE 4 | Differences between buying and no-buying trials in Study 1 over all batches with subject-wise adjustment of trial numbers (A) increased frontal alpha at
FAA peaks, (B) increased frontal theta at theta peaks (left: raw, right: masked by cluster corrected p-level < 0.05), (C) decreased occipital alpha at FAA peaks (left: all
values, right: masked by cluster-corrected p-level < 0.05).

in time may be important for choice behavior. Rather, certain
decision-guiding points of interest need to be identified. This may
explain why not mean but peak FAA during product viewing is
related to the choice of buying this same product. That is, the
FAA peak reveals the maximum approach behavior a product
page triggers, which may be more relevant for overall product
perception than the average over the entire viewing duration (e.g.,
Do et al., 2008).

Frontal theta peak was repeatedly increased during buying
decisions, significant over all three analyzed batches, but not for
each individually. Frontal theta power has been associated with
cognitive control, action monitoring, exploration of alternatives,
and decisions under uncertainty (Cavanagh and Frank, 2014;

Cohen, 2014; Demeter, 2016). This combination of functions
fits very well with the requirements of a natural decision
environment. It goes beyond a choice between a limited number
of alternatives and includes the development of an – implicit or
explicit – strategy on how to search within the realm of infinite
options and at what point to stop the search and arrive at a
decision. In an economic setting, frontal theta has been related
to goal conflict in monetary choices (Neo et al., 2020). Again, this
suits the idea that a practically infinite number of opportunities,
increasing the risk associated with buying any one item and
thereby foregoing all others, leads to frontal theta, playing a role
in the binary choice of buying or not buying. Like for FAA, it is
not the mean but the peak value that is of interest, as the choice is
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not reflected by the entire viewing duration but by decision points
(Do et al., 2008).

Occipital alpha at FAA peaks is the third and only further
metric that showed a significant change due to buying, however,
not repeatably. Occipital alpha is related to the processing –
and suppression – of external stimulus input (Rohenkohl and
Nobre, 2011; Van Diepen et al., 2013). Alpha troughs represent
periods of heightened attentiveness toward sensory stimulation
[as shown in Klimesch et al. (2007)]. In the first batch of Study
1, we found decreased alpha power at FAA peaks, which may
reflect a combination of a strong approach tendency and high
sensory attention to be related to buying decisions. However,
as only one of the three batches showed a significant decrease
under cluster correction, the present findings do not confirm this
marker’s general involvement in the buying decision process. The
question under which conditions it can be found and its possible
role in the purchase choice needs further clarification.

All three markers found to be related to buying choices in
the present study are EEG metrics, which have been previously
related to decision processes (e.g., Klimesch et al., 2007; Cohen,
2014; Smith et al., 2017). The present results, due to the lack
of experimental control, may not be able to add anything to
the detailed neural processes they are representing. However,
they do make the important point, that these markers robustly
show up in real-world buying scenarios, despite large variations
in participants, products bought, and overall stimulus material.
This makes them interesting candidates for practical applications,
allowing us to differentiate between different choice options
on a neural level. Given the robust appearance of two of the
present three markers in realistic online buying choices, despite
situational variations, it is now interesting to see whether they
appear in any kind of buying decision, independent of situational
confinements. The second study gives insights into this question
by investigating the appearance of the present markers when
sacrificing some of the shopping setting’s ecological validity by
adding additional elements of experimental control.

STUDY 2

Following three repetitions of Study 1, which demonstrated an
intriguing degree of repeatability in the EEG response pattern to
buying decisions despite low experimental control, Study 2 was
set out to test whether EEG markers would remain the same when
making a small, but a critical adjustment to the paradigm, moving
it further into the direction of experimental standardization.
Participants now were asked to complete 2 tasks – a free search
and a controlled choice task. For the free search, they were asked
to search through three predefined store pages, only looking at
the product pages they were interested in and buying whatever
they pleased. This first task can, therefore, be understood as
another replication of Study 1, with the only difference that
store pages containing the products were controlled – so the
pool of possible product pages was not practically infinite. For
the controlled choice, after completion of the free search, the
participants were given six different products, two on each
of the predefined store pages, that they were instructed to

view in sufficient detail to take in all the information. All the
participants viewed the same six products, except if they had
already explored them during the free search; in which case,
unique substitute goods were used. The viewing sequence was
randomized. For each of the fixed products, the participants
could decide whether they wanted to purchase the product or
not. The controlled choice task, therefore, employs decisions
in which the elements of choice are predefined, as is often
done for the sake of experimental control. Note that, again, all
purchases – both in the free search and controlled choice – were
actual purchases.

Study 2 Methods
Participants
About 58 volunteers (29 males, mean age: 28.49 ± 3.93)
participated in Study 2 for a payment of U200 per hour and a
buying incentive between 30 and 70% for up to U350, increasing
stepwise with the amount of money spent. All the participants
were told beforehand which kind of products they would be
looking at and agreed to spend more than U160 buying at least
three products of their own choice. All the participants were
naïve to the purpose of the study, had normal or corrected-
to-normal vision, and had no history of neuropsychological
diseases. After the written and verbal explanation of the
task, procedure, and measurement, the participants gave their
written consent.

Procedure and Analysis
The procedure and analysis were similar to Study 1. Rather than
cosmetics products, general hygiene products of no particular
interest, but needed by everyone, were used. More specifically,
all the subjects were shown store pages with toothpaste products,
males were shown shaving products, and females were shown
female sanitary products. As replication of the findings from
Study 1 was intended, only peak points of metrics that have
shown relevant in the comparison between buying and no-buying
decisions were analyzed, i.e., frontal alpha asymmetry, theta
power (4–7 Hz), and alpha power (8–13 Hz). Free search and
controlled choice trials were analyzed separately to test whether
replication of the fully ecologically valid results is possible in
either case, i.e., with (a) predefined store pages and (b) predefined
products to look at, eliminating the element of natural search.

Study 2 Results
Behavioral Results
In the free search condition, the participants viewed an average
of 13.13 (±10.72) product pages from the three predefined store
pages. The mean viewing time for each page was 27.46 s (±24.44).
On average, they bought 19.19% (±17.79) of the viewed products
and put 8.69% (±11.72) into the shopping cart. In the controlled
choice condition, each participant viewed six predefined product
pages, two from each store page. They bought 8.65% (±10.33) of
the viewed pages. As the buying decision had to be made right
after viewing, no items were put in the cart. The average viewing
duration was 27.45 s (±24.44). Figure 5 shows an overview of all
behavioral results in Study 2.
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FIGURE 5 | Behavioral results in Study 2. (A) Number of viewed and bought products (B) viewing time.

Electroencephalography Results
Study 2 was set out to first replicate the findings of Study 1
with additional participants, different kinds of products, and
uniform storefront starting points for everyone. Additionally,
the controlled choice condition was added to investigate how
standardization of the decision scenario can change neural
responses. Here, the participants were told, rather than freely
chose, which product pages to look at. In Study 2, the analysis
was not exploratory, but only the three metrics identified to differ
between buying and no-buying trials in Study 1 were analyzed.
For the free search, the significant increase in FAA for buying
trials could be replicated between 200 ms before and 300 ms after
the peak (as shown in Figure 6A). Also, the significant increase of
theta power at theta peaks could be replicated over a large fronto-
central and occipito-central cluster (p < 0.05 for more than 20%
of sampling points), consisting of the EEG channels AF3, AF4,
Fz, F3, F2, F5, F7, FC3, Cz, C1, C2, C3, O2, PO3, PO4, PO7,
TP7, T7, P7, and P8, respectively (as shown in Figure 6B). The
decrease of occipital at alpha trough was not replicable (as shown
in Figure 6C). For controlled search, only the increase in FAA
at buying-trial FAA peaks could be replicated between 100 ms
before and 100 ms after the FAA peak (as shown in Figure 6A);
Figures 6B,C) show the failure to replicate even the general
pattern of previously found differences in frequency power.

Study 2 Discussion
The analysis of the second study was not exploratory but based
on the three markers found in Study 1. The FAA peak increase
remained significant both with a free search on predefined store
pages and with controlled choices, that is, fixed products to look
at and decide on. The significant theta peak increase could be
replicated only for the free search condition. The occipital alpha
decrease was not replicable in either condition.

Reviewing the proposed function of frontal alpha asymmetry,
as an approach and avoidance signal [as shown in Harmon-Jones
et al. (2010)], its robustness over each of the five batches of buying
decisions is not surprising. One would assume that any decision,
both in a controlled laboratory setting as in a realistic setting,
would be at least partially based on approach or avoidance, or put
differently, positive or negative emotions regarding the product at

hand. A laboratory condition that may remove the involvement
of such a metric may be the introduction of uninvolved choices;
for example, if subjects are simply asked to respond to stimuli
in a forced choice manner without any personal consequences to
their choices (e.g., Smith, 1982; Ratcliff et al., 2018; Van Maanen
et al., 2021). In this case, approach and avoidance may not
differ much between decision alternatives; thus, frontal alpha
asymmetry may not be an important marker. Here, choices
in all five batches, including the controlled choice condition,
were genuine buying decisions, with subjects spending their own
money and receiving the product. Approach and avoidance may,
therefore, have served as a natural guiding principle in each batch
of the present study series. It is up to future studies to further
clarify the role of FAA in real-world decisions by testing whether
the FAA marker remains present when buying choices only reflect
hypothetical purchases.

No evidence of theta increase could be found in a controlled
choice setting without a self-motivated product search. As
discussed, frontal theta is a metric related to explorative search
strategies, uncertain choice settings, and decision scenarios
involving conflicting goals (Cavanagh and Frank, 2014; Cohen,
2014; Demeter, 2016; Neo et al., 2020). This combination of
functions may explain why it is only involved in buying decisions
in which individuals are themselves responsible for the product
search, having to explore different options, deciding when to
stop searching and choosing in a self-guided manner between
different alternatives.

The fact that free search requires more selective attention
and suppression of sensory input than controlled stimulus
presentation may explain why alpha power at alpha asymmetry
peaks is only found in the free search and not in the controlled
choice paradigm [as shown in Klimesch et al. (2007) for the role of
occipital alpha in selective attention]. However, this metric could
only be seen in one of the five batches of interest, so whether and
how it is related to the natural decision process would have to be
investigated by future studies.

Most importantly, the findings of Study 2 demonstrate that the
neural metrics identified for realistic buying scenarios are easily
disturbed due to the introduction of elements of experimental
control, despite their robustness against the low-level stimulus
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FIGURE 6 | Differences between buying and no-buying trials in Study 2 for free and controlled search, (A) increased frontal alpha at FAA peaks, (B) increased frontal
theta at theta peaks, and (C) decreased occipital alpha at FAA peaks.

and setting changes. Anything that makes the decision process
unrealistic may change the neural processes and strategies
involved in a fundamental way, leading to different output
markers. In other words, even if highly controlled experimental
studies can give unique insights into the neural correlates of
very specific elements of the decision process, these correlates
cannot easily be transferred to a real-life setting. The practically
crucial question of which markers of choice behavior we can
find and replicate in a naturalistic setting is, therefore, interesting
in its own right and needs to be investigated in different, more
ecologically valid ways.

GENERAL DISCUSSION

The present study series investigated neural responses to binary
purchase choices in a natural online shopping setting. To assess
the replicability of observed buying choice correlates despite
varying sensory input and temporal patterns, the initial study
was repeated three times with varying sets of participants,
incentives, products of interest, and sales offers. In a follow-up
study, it was examined whether the observed markers remain
robust when adding a crucial element of experimental control,
that is, controlling stimuli via predefined product pages as
opposed to free search.

Three markers of real-world decision-making could be
identified. Differences in FAA were robust across all decision
comparisons. The increased frontal theta peak for buying was
found repeatedly in Study 1 and, again, in Study 2 with free
search. Without the free search element, however, no increase
in frontal theta peak remained. The occipital alpha decrease
was only found to be significant in one of the five batches,
although tendencies remained in the other free search batches.
Most importantly, the present results show that we can determine
robust neural markers of decision-making, present in real-
world contexts. Identifying such markers for different real-world
scenarios of interest is of direct practical relevance, allowing us
the distinction of different decision tendencies and strategies
based on brain responses toward the stimuli in question.
While the strength of controlled experimental studies lies in
determining exactly which aspect of the decision process a certain
marker is related to, studies of the present kind can tell us what
we should actually expect to find in real-life situations.

Inferences in the present study are based on replicability –
or lack of replicability – of findings over similar but, by no
means, equivalent batches. Batches differ in participant age,
socioeconomic status, buying incentives, and products of choice.
The batches of Study 1 also differ in buying motivation, as
batch 2 was recorded during popular Chinese sales days, in
which product prices are strongly reduced. Many people wait
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to make their purchases on these days, which may result in
a more focused and targeted search strategy reflected by the
highest number of searched pages and shortest viewing time in
this batch. Furthermore, in Study 1, all the participants were
female, as the focus was on cosmetic products, but gender was
balanced in Study 2, with both common and gender-specific
products. All of these differences could explain variations in
EEG responses between batches. However, the replicability of
frontal alpha asymmetry peak increase across all batches, and
both studies display overall systematic similarities regarding the
decision process. Furthermore, we repeatedly find an increase of
theta in batches 1–3 of Study 1 and the free search of Study 2,
while it could not be replicated in the controlled search of Study
2. Batches 1–3 differ just as much from each other as they do from
Study 2, but controlled and free search in Study 2 used exactly the
same participants. This speaks for the fixing of the product pages
to be a reason for the lack in theta increase.

Arguably, more problematic than differences between batches
are uncontrolled variations in the characteristics of buying and
no-buying trials. Those can and do cause comparison trials over
all batches to differ in systematic ways other than the purchase
decision. One difference is that the subjects generally discarded
more products than they decided to buy or put into the cart,
leading to unequal trial numbers. To determine that none of
the found metrics is based on this bias, the analysis of Study
1 has been repeated, adjusting trial numbers to be analyzed
by randomly choosing the same number of no-buying trials as
there are buying trials for each subject. Both the difference in
frontal alpha asymmetry (albeit for a slightly shorter time span)
and the difference in frontal theta power (to the same extent
as with unequal trial numbers) remained significant. Also, the
non-corrected pattern of a decrease in occipital alpha did not
change. Another difference between the buying and no-buying
trials is the duration of time spent on product pages, which
is, in each of the five batches, significantly longer for bought
or put-in-cart product pages than discarded ones (p < 0.05).
Note that the time spans compared in the EEG analysis were
always equivalent – 600 ms around the respective metric of
interest. Nonetheless, the difference in the base duration from
which the analysis time span is selected may introduce a bias,
which cannot be controlled, given we can only imply from the
data which points are the decision points of interest. Certainly,
there will be other systematic differences between buying and
no buying trials, such as the appearance of the product pages or
type of products, which are stimulus characteristics that influence
the buying decision itself but may also lead to different EEG
responses, which have nothing to do with the decision process
itself. Therefore, comparing real-world decision data to findings
from standardized experiments is certainly important, as only
a sufficient degree of experimental control is able to identify
exactly which aspect of the decision, or other cognitive processes,
a neural marker is related to. The literature on neural markers
found in the present study clearly suggests a relation to the
decision process itself.

Identifying and understanding neural markers of everyday
life decision making can help us understand the processes
and motivations underlying human decisions from basic daily

activities like food, activity, or purchase choices to bigger life
decisions without the need to rely on subjective self-reports. Self-
reports are not only difficult to obtain but also, at best, incomplete
and, at worst, outrightly misleading, given our limited insights
into what the true triggers for our actions are (e.g., Hilbert,
2012; Johnson et al., 2013) and flawed memory on temporally
prolonged actions like arriving at a decision (e.g., Schacter et al.,
2011). Neural responses, on the other hand, can give millisecond
resolution insights into how decisions evolve, if only we can
interpret them correctly. Current studies in behavioral decision
sciences show that, in order to generalize laboratory findings
to practical choices, it is important to identify the elements
particular to real-world decision-making and investigate how
they influence the overall decision process (Gonzalez et al., 2017;
Prezenski et al., 2017). In order to identify such elements, we need
ecologically valid studies like the present one.

The ambivalence between ecologically valid and standardized
experiments on decision-making is not an all-or-nothing
endeavor. To isolate particular aspects of the decision process
carefully planned and standardized decision paradigms, which
allow for the comparison of conditions that differ in only the very
aspect of interest, are necessary. To understand, however, which
kind of neural responses we can expect in real-world decision-
making and how to interpret them in this respect, we need natural
choice settings. Different balances and elements of freedom and
control need to be explored and integrated to get a full picture of
the neural side of the decision-making process. Studies such as
the present one, allowing for fully naturalistic settings, are crucial
to take findings from decision neuroscience out of the laboratory
and make them usable for a better understanding of real-world
decision scenarios.
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