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Introduction
Both empirical and theoretical studies show that intensely 
sampled unlinked loci can improve the estimation genetic 
parameters of populations1,2 and resolve conflicts in phyloge-
netic inference.3,4 Whole genome sequencing can be used for 
phylogenomic analyses,5 but it is still unaffordable at large 
scale. Combining next-generation sequencing (NGS) and tar-
get enrichment is one of the efficient ways to collect plentiful 
loci across various taxonomic divergence.6-9 Studies have been 
focused on collecting conserved sequences that can be reliably 
captured across divergent taxa for phylogenomic analysis, 
including ultra-conserved elements (UCEs), anchored ele-
ments,7,10,11 conserved coding, and non-coding regions.12-14 
The targeted sequences are enriched by hybridizing RNA oli-
gonucleotide probes (aka “baits” designed from transcriptomes 
or existing genomes) to homologous regions of the targeted 
taxa, which are subsequently isolated and pooled for sequenc-
ing. Exons are among the most well-studied and modeled parts 
of the genome and are generally more conserved than introns, 
resulting in consistent capture across divergent taxa, and thus 
they have been one of the promising markers for phylogenomic 

studies through target enrichment.8,9,15 However, to date, 
approaches for de novo assembly of exons from short-read raw 
sequence data have not be optimized.

Streamlined pipelines have been developed for UCEs and 
Hyb-seq data, represented by PHYLUCE16 and HybPiper,17 
respectively. PHYLUCE directly inputs the entire set of short 
reads into assembler to assemble them into contigs. Then, con-
tigs are parsed to homologous loci. When dealing with large 
numbers of loci (>10 000), computer memory becomes a major 
limiting factor for simultaneous de novo assembly of raw reads 
pooled across loci. HybPiper is able to extract exonic and 
intronic regions from Hyb-seq data from raw sequence reads, 
but its assembler (multi-cell mode of SPAdes)18 cannot assem-
ble loci with low read depth (<10×). Nonetheless, read depth 
for short loci or for data from capturing divergent taxa tends to 
be low, which may cause problems in read assembly using 
HybPiper.

Another major problem in assembling loci for phylog-
enomic analysis is the challenge of identifying and excluding 
paralogous loci after assembly. Including undetected paralogs 
often leads to discordance between gene trees and species 
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trees.19 Targeting putatively single-copy loci can help to reduce 
the incidence of enriching paralogs.20 However, additional 
checks are still necessary to preclude mistakes in the assem-
blies. Current pipelines either simply ignore verification of 
orthologs21,22 or do not use information from reference 
genomes to check on paralogs. For example, in PHYLUCE, 
each reference sequence of the target loci is compared to the 
assembled contigs. An assembled contig is accepted as ortholo-
gous if it is the only hit for a given locus of reference sequence, 
and also no other target locus has a hit on the same contig. This 
could be problematic because more than one contig has a hit on 
the reference sequence of the target when non paralog exists. 
For example, loci sometimes cannot be fully assembled, which 
could result in multiple contigs. Thus, we would lose some 
orthologous loci if we discard them all. Moreover, the ortholo-
gous copy of the locus may be lost or not enriched in the exper-
iment, so we may mistakenly accept a paralog as the orthologous 
sequence. An alternative approach would be to compare the 
assembled contig to the whole genome that the baits were 
designed from, or a genome of species that is closely related to 
the target taxa, as a reference to evaluate all potential matches 
and determine if it is the orthologous copy of the target locus.

Flanking sequences often are captured through hitchhiking 
in addition to targeted exon regions. Flanking sequences are 
available in the results from most read assembling pipelines for 
exon capture data, but they were seldom incorporated into phy-
logenetic analysis (but see Yuan et al23 and Bi et al24), because 
some flanking regions are too variable to be aligned. Nonetheless, 
discarding all flanking sequences may miss useful data for inves-
tigating population histories or phylogenetic relationships 
between recently diverged taxa. Filtering flanking sequences of 
exonic regions for useful data should be incorporated in the 
pipelines for read assembling designed for exon capture data.

Undetected paralogs, mis-assemblies, or missing data may 
result in poorly aligned regions of sequence alignments. These 
regions could mislead phylogenetic inferences, so data filtering 
should be a crucial final step in read assembly. In commonly 
used pipelines, this step is either absent (eg, HybPiper) or 
sequences are filtered based on simple statistics such as p-dist 
is applied (eg, PHYLUCE). More sophisticate filtering meth-
ods could be developed for controlling the quality of align-
ments, such as removing loci that are randomly aligned.25,26 
Filtering loci based on whether their gene tree agrees with 
widely accepted phylogenetic relationship (eg, known mono-
phyletic groups) or other criteria (eg, fit a molecular clock)27 
may also be helpful.

In order to address problems mentioned above, we designed 
Assexon (assembling exons), a streamlined pipeline to turn 
short reads from exon capture experiments into sequence align-
ments ready for phylogenomic analyses. Assexon has 3 phases: 
data preparation, read assembly, and post-assembly processing. 
In data preparation steps, reads are deduplicated and parsed to 
target loci according to their similarity to the reference loci. 

Parsing reads before de novo assembling can increase efficiency 
of assembling sequences from large read files. In post-assembly 
processing steps, recovered sequences are compared against a 
reference genome to reduce the risk of retrieving paralogs. 
Assexon includes scripts to remove poorly aligned flanking 
sequences and use alignable data in the flanking regions. 
Assexon also comprises filters to select loci with reliable phylo-
genetic signal. We evaluated performance of Assexon by com-
paring it to commonly used pipelines. Assexon is aimed to 
assemble data produced from cross-species exon capture; thus, 
mapping-based targeted assembling pipelines, such as 
Mapsembler28 and TASR,29 are not included in the comparison. 
We selected 3 targeted read assembling pipelines specifically 
designed for cross-species exon capture data, including 
PHYLUCE, HybPiper, as well as a custom exon capture analy-
sis pipeline from Yuan et al,23 abbreviated as “CP” hereafter.

Materials and Methods
Assexon is a suite of scripts written in Perl and wrapping 
around several bioinformatics tools. Assexon consists of 3 parts: 
data preparation, read assembly, and post-assembly processing. 
Read assembly was scripted in modules, so to allow users to 
rerun portions of the pipeline.

The input of Assexon includes paired-end reads in FASTQ 
format, a reference genome, and exon marker sequences that 
are extracted from reference genome and used to design baits 
in FASTA format. The genome sequences are used for identi-
fying paralogs. If sequences of multiple genomes from various 
species are used to design markers, all genome sequences are 
required to be concatenated into a single file. The marker 
sequences are used as a reference during assembly. If coding 
frames of reference are not determined, known protein 
sequences of reference species and an index file are required for 
prediction of coding frames. Known protein sequences of ref-
erence species could be generally downloaded from public 
database like Ensembl.30 Index file is generated from 
Evolmarkers.31 It comprises the name of each reference 
sequence and corresponding known protein sequence ID of 
each reference sequence, which can help to find protein 
sequences of each reference sequence from file of known pro-
tein sequences. On the contrary, known protein sequences and 
index file are not required to be provided if coding frames can 
be determined by alternative approaches, such as using tran-
scriptome data to find the coding frames.

Data preparation

The pipeline starts with trimming low-quality bases and 
sequence adaptors using trim_galore v0.4.1 (http://www.bioin-
formatics.babraham.ac.uk/projects/trim_galore/). Coding frame 
of each marker sequence is predicted and corrected using a Perl 
script (predict_frames.pl). It first checks the translated reference 
sequences of the 3 frames for stop codons and eliminating any 
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frames that contain inappropriately placed stop codons. Known 
protein sequences of reference are retrieved from file of known 
protein sequences and aligned with translated protein sequences 
to find the correct frame. Finally, coding sequences are extracted 
and translated into amino acid sequences using Bio::Seq module 
in Bioperl.32

Read assembly

General pipeline workflow of read assembly is shown in Figure 1 
and detailed implementation is described below.

Remove PCR duplication. Duplicate reads are generated during 
the steps of polymerase chain reaction (PCR) in library con-
struction and exon capture. They are redundant and may lower 

the efficiency of reads parsing and assembly, so it is necessary to 
remove PCR duplication first. Size of input reads from exon 
capture could be large, so de-duplicating entire dataset at once 
may be computationally demanding. First, paired reads are con-
catenated into super-reads and then the first “k” bases of the 
super-reads are taken as prefix. Reads with the same prefix are 
clustered together, which make PCR duplicates not be spread 
over to different clusters. Size of each cluster is around m 
(m = 200 Mb). If the file size of concatenated reads is denoted as 
s, then k is calculated as
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Eventually, each cluster is de-duplicated using “-fastx_uniques” 
command in USEARCH v10.0.240.33 Duplication-free clus-
ters are merged together and restored to paired reads.

Parsing reads to homologous targeted loci. Reads are parsed to tar-
geted loci before assembling. This step could significantly reduce 
the complexity and improve the efficiency of assembly. To avoid 
including low-complexity reads from non-targeted region into the 
assembling process, low-complexity sequences in de-duplicated 
reads and in the sequences of targeted reference are soft-masked 
before parsing, which are done using DUST and Segmasker34,35 
implemented in USEARCH v10.0.240. Subsequently, reads are 
sorted to references with BLAST hit using UBLAST with a 
relaxed e-value of 1 × 10–4. Sorted reads are written to files of 
separated loci in FASTQ format using ubxandp.pl.

De novo assembly. Multiple edges could be connected to the 
same node in assembly graph, which could be resulted from 
gene copies, alleles, or sequencing errors.36 Current assemblers 
like Velvet37 and Abyss38 choose edges with higher read sup-
port or depth. However, read depth tends to be low for short 
loci or when targeted loci of samples are divergent from baits 
in exon capture, so it is hard to choose a correct edge depending 
only on read depth. A conservative assembler is required, which 
does not arbitrarily choose the edge according to read depth, 
but aligns resulting contigs to references and selects the edge 
that has higher alignment score to reference. SGA39 was cho-
sen to assemble reads of each locus into contigs, which is a 
conservative but accurate assembler. It disallows any conflicting 
edges that connect to the same node in the string graph if 
divergence between edges is more than 5%. Graph is separated 
from the nodes that connect with multiple edges. Overlapping 
information between contigs are available from the output of 
SGA, which are used to reconstruct overlapping graph and 
help to reduce conflicting edges in next step. Minimum overlap 
and maximum error rate (denoted as e) allowed between con-
tigs are 25 bp and 0.05, respectively. The “filter” command in 
SGA extracts k-mers (k = 27 in default) from reads and then 

Figure 1. Outline of assembling procedure. (1) PCR duplications are 

removed from trimmed reads using rmdup.pl. (2) De-duplicated reads are 

parsed to homologous loci using ubxandp.pl. (3) Parsed reads are 

separately assembled into contigs using sga_assemble.pl. (4) Contigs 

are elongated and then exons are extracted from contigs with best hit to 

references using exonerate_best.pl and merge.pl. (5) Potential paralogs 

are removed using reblast.pl. (6) Resulting assemblies are aligned using 

mafft_aln.pl. (7) Alignments can be filtered using filter.pl, flank_filter.pl, 

monophyly_test.pl, or clocklikeness_test.pl.
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removes reads with low k-mer frequencies (<3) before assem-
bly, which could induce erroneous edges. We disable this func-
tion for the loci whose file size of input reads are below 500 Kb, 
to avoid loss of these loci due to low read depth.

Further assembly and extract candidate exons. Multiple edges 
could be left in the string graph of the preliminary assembly. We 
need to reduce the conflicting edges and extract candidate exons 
in this step. Contigs are locally aligned to protein sequences of 
references using the “protein2dna” model in the package under 
Exonerate40 to get their positions to the reference and align-
ment score, which are used to determine the short overlap 
between contigs (shorter than 25 bp but longer than 10 bp) and 
reduce conflicting edges. Two contigs are regarded as having 
overlaps if their positions to reference are crossed. However, 
some of the contigs could be accidentally aligned in a crossed 
position, but they are not truly overlapped. It could be too slow 
to find exact overlap for each pair of contigs in the following 
step, if too many pairs of contigs that are not truly overlapped 
are included. To primary screen out false overlaps, k-mers are 
extracted from overlapped region of contigs, and the number of 
matched k-mer is compared with minimum possible number of 
matched k-mer between overlaps with given length. We do not 
know the length of the exact overlap, so we define an “ambigu-
ous overlap,” which is close to the exact one. Ambiguous overlap 
consisted of crossed region, unaligned bases at the end of the 
first contig, and unaligned bases at the start of next contig. Sub-
stitutions, indels, or sequencing error may occur at the both 
ends of contigs, so these bases cannot be aligned to reference. 
We add them into ambiguous overlap because these bases may 
exist in the true overlap. Figure 2 shows the diagram of ambigu-
ous overlap between contigs. We consider that contigs probably 
have true overlap if ambiguous overlaps are longer than 5 bp. 
Then, k-mers (k = 5) are extracted from ambiguous overlaps of 
the contigs. If we denote length of ambiguous overlap and max-
imum error rate allowed between overlapped sequences as l and 
e, respectively, minimum possible number of matched k-mer 
(denoted as “min(m)”) required between them is

min m
l k e l k if min m
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Then, we find exact overlaps from filtered overlaps by compar-
ing the end of first contig with the start of next contig. Overlap 
graphs are reconstructed based on these overlaps and the ones 
extracted from graph files. Conflicted paths are reduced by 
selecting paths with the highest alignment score to reference. 
Only conflicted edges in coding regions can be reduced, because 
they are covered by references, however, conflicted edges in 
flanking regions still remain. We traverse through the graphs 
and retrieve all possible paths that are aligned to protein 
sequences of references with “protein2dna” model. We select 
sequences that are aligned with more than 80% of reference 
sequences and have at least 60% of similarity to references. 
Finally, we only retrieve one of the selected sequences with top 
alignment score as candidate. Part of sequences embedded in 
the alignment boundaries are retrieved as exons and rest of 
them are treated as flanking sequences.

Remove potential paralogs. In order to verify the orthology of 
retrieved sequences, BLASTn is performed to align candidate 
sequences against reference genome using UBLAST. Sequences 
are classified as potential paralogs, if their best BLAST hit do 
not overlap with the targeted regions in the genome, and dis-
carded before downstream analysis.

All steps mentioned above were individually scripted and 
called through a wrapper (assemble.pl). Typically, users could 
run through all phases as a single pipeline, or alternatively, por-
tions of the pipeline can be rerun individually to test various 
parameters. Output from the last step includes 3 FASTA files 
for each locus: coding sequences with and without flanking 
regions, and protein sequences for the coding sequences. Basic 
statistics are summarized including number of bases and reads 
in trimmed and de-duplicated reads, number and percentage of 
enriched loci for each sample. Users can assess performance of 
enrichment through these statistics.

Post-assembly processing

Dataset manipulation and aligning. Assexon includes scripts to 
flexibly manipulate the dataset. A subset of taxa can be extracted 
using pick_taxa.pl, which can also select loci with various levels 
of completeness. If genome sequences of taxa outside of 

Figure 2. Diagram of ambiguous overlap between 2 contigs. Green and black lines represent reference and overlapped contigs. Blue dashed lines 

represent unaligned bases. Substitutions occur at the bases neighboring to the crossed region, so they cannot be aligned to reference. Ambiguous 

overlap consisted of crossed region, unaligned bases at the end of contig 1, and unaligned bases at the start of contig 2 in this diagram.
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targeted samples are available, get_orthologues.pl can be used 
to retrieve orthologous sequences to the reference loci, so 
extracted sequence can be added into files of enriched loci 
using merge_loci.pl. After preparing the datasets, each targeted 
locus is aligned using MAFFT, which is paralleled using 
mafft_aln.pl. Coding sequences are translated and then aligned 
based on protein sequences. Flanking sequences are non-cod-
ing, so sequences with flanks need to be aligned in nucleotide 
with “--non_codon_aln” option.

Data f iltering. Poor alignments could interfere phylogenetic 
inference, so we designed filter.pl to remove badly aligned 
sequences in coding regions. Sequences having long insertion 
or deletions (⩾10 bp) with respect to reference are removed, 
which rarely occur in coding regions. A 50 bp sliding window 
with 25 bp per step is applied to scan alignment subsequently. 
Sequence is discarded if at least one of the sequences across 
windows is distant from the reference (p-dist ⩾ 0.4). Notably, 
entire sequences are removed instead of partial sequences in 
the sliding to keep the intactness of coding region. Finally, only 
alignments having length of at least 100 bp, and sequences that 
cover more than 80% of alignments length are retained.

Poorly aligned flanking sequences are removed using 
flank_filter.pl. Flanks need to be trimmed to similar length, so 
that there is not much missing data at both ends. Flanks are 
trimmed from each ends until at least 5 successive columns 
having more than 50% of nucleotides are found. Sequences 
having short insertions (⩾10 bp) are removed from flanks, 
which could lead to non-homologous alignment and lots of 
gaps in flanks. After cleaning up regions with lots of missing 
data, unalignable data in flanks must be removed. Similar long 
sequences could be inserted in some of the intronic flanks of 
closely related samples.41 Because the length of enriched 
flanking region is limited in the exon capture experiments, it is 
likely that only partial insertions could be enriched in flanks. 
These insertions are too diverged to be aligned with other 
flanking sequences without the insertion, so one must keep 
either the group of sequences with insertions or without inser-
tions. Pair of distant flanks is selected if p-dist between them 
exceeds 0.4. Then, average p-dist of 2 flanks to the rest of the 
taxa are computed. The flank sequences that are more distant 
to the rest of the taxa are removed. We iterate this process 
until there are no pairs of distant sequences in flanking regions. 
Comparing with the coding region, there are more sequences 
that are locally diverged from other sequences in flanking 
region. To aggressively remove those sequences, a stricter win-
dow (20 bp, 10 bp per step) is used to slide through the flanks. 
Sequences are trimmed from the window that is the nearer to 
the coding region to the ends, if at least one sequence across 
window are too diverged from alignment consensus 
(p-dist ⩾ 0.4). Finally, only flanking blocks having at least 65% 
of input taxa and sequences covering at least 65% of the length 
of flanking alignments are possessed.

Furthermore, scripts to screen out loci based on pre-
defined monophyletic groups are provided in Assexon, 
which could be very helpful when users have knowledge 
about studied groups (monophyly_test.pl). It is too rigorous 
to merely pick out loci whose topologies of gene trees strictly 
follow the given monophyletic groups due to stochastic pro-
cess of genealogy. Thus, we build a maximum likelihood 
(ML) tree constrained with pre-defined groups for each 
locus and a ML tree with no constraint. Then, Shimodaira 
and Hasegawa (default) or Approximately Unbiased test 
implemented in PAUP* 4.0a16442 is applied to each locus, 
and we only select loci if there is no significant difference 
between their relaxed ML and constrained ML tree 
(P > .05). Clocklike loci can be selected using clocklike-
ness_test.pl, which computes the likelihoods of ML tree 
with given alignment of each locus when they are con-
strained with molecular clock or without using PAUP* 
4.0a164. Loci are retained if there is no remarkable differ-
ence between likelihoods with and without molecular clock 
constraint (P > .05).

Other scripts. Summary statistics for coding and flanking 
region of each locus and sample can be extracted from align-
ments of coding and flanking regions using statistics.pl. Sum-
marized statistics for the coding region of each locus include 
number of enriched samples, alignment length, GC content, 
percentage of missing data, and average pairwise distance 
among sequences. Summarized statistics for flanking regions 
of each locus include alignment length of flanking region and 
average pairwise distance. Summarized statistics for each 
sample include the number of enriched loci, GC content, and 
average length of the flanking region. Sequencing depth, 
number, and percentage of on-target reads for each sample 
are summarized from alignment between trimmed reads and 
assemblies using map_statistics.pl. Assexon also contains 
scripts to format filtered alignments as input of phylogenetic 
analysis including RAxML43 and ASTRAL.44 Single nucleo-
tide polymorphism (SNP)-based analysis is frequently 
included in most of phylogenomic studies. To extract SNPs, 
first a majority-rule consensus reference (consensus.pl) is 
generated for each alignment, either with or without flanks. 
Then, an automatic workflow (gatk.sh) is used to map 
trimmed reads to consensus references using BWA v0.7.15-
r1140,45 PCR duplicates are marked using Picard MarkDu-
plicates (http://broadinstitute.github.io/picard/) and then 
SNPs are extracted across several samples following the best 
practices of germline short variant discovery recommenda-
tions46-48 using GATK–3.4.0.48 One qualified SNP from 
each loci is randomly selected to meet the assumption of link-
age disequilibrium in phylogenetic analysis and rearranged 
into input of several prevalent SNP-based analysis software 
comprising STURCTURE,49 dudi.pca under R package 
ade450 and BEAST51 using vcftosnps.pl.

http://broadinstitute.github.io/picard/
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Assess the performance of Assexon and other 
pipelines

PHYLUCE, HybPiper, and a custom pipeline (CP) devel-
oped by Yuan et  al were selected. They are commonly used 
pipelines to assemble cross-species gene capture data. 
PHYLUCE was specifically designed to assemble data cap-
tured by baits that are designed based on UCEs. In 
PHYLUCE, first entire read set are assembled into contigs 
and then contigs are aligned with reference sequences to find 
the orthologous sequences of each locus. A contig is accepted 
as orthologous if it is the only hit for the given reference 
sequence. HybPiper was developed for Hyb-seq data, which 
is mostly captured by baits that are designed based on exon 
markers. In HybPiper, first paired reads are parsed to homol-
ogous loci, then reads of each locus is separately assembled. 
Assembled contigs are aligned with reference sequences, and 
Hybpiper identifies the full-length contigs that span more 
than 85% of the length of the reference sequences. A contig is 
recognized as orthologous if it is the only full-length contig 
with given reference sequence. If multiple full-length contigs 
are found, a read depth cut-off is used to choose contig. A 
contig is chosen if its read depth is at least 10 times greater 
than next best full-length contig. If read depths are close 
among full-length contigs, the contig with the highest simi-
larity to reference sequences is chosen. CP was designed to 
assemble exon capture data. Similar to Assexon, CP first 
removes PCR duplication from raw reads and then reads are 
parsed to homologous loci. Each locus is individually assem-
bled using the Trinity assembler52 and then further assembled 
using Geneious v7.1.5 (https://www.geneious.com). An 
assembly process normally includes multiple samples and 
each sample could comprise thousands of loci that need to be 
assembled, while only 2000 to 3000 loci can be assembled 
using Geneious v7.1.5 in a single run. Thus, users need to 
manually run Geneious v7.1.5 multiple times to further 
assemble all sequences. Method to extract exon and identify 
orthologous sequences in CP is almost the same as Assexon, 
except that CP uses Smith-Waterman algorithms to find the 
contig with the highest alignment score to reference. 
Performance of PHYLUCE, HybPiper, and CP to recover 
assemblies from exon capture data will be assessed and com-
pared with the performance of Assexon.

Reads from 2 exon-capture experiments were collected to 
test the performance of Assexon and other pipelines. In 
experiment 1 (test 1), the species used to design baits 
(Lepisosteus oculatus) and the targeted species (Lepisosteus 
osseus) belonged to the same genus. In the other experiment 
(test 2), species used to design baits and targeted species, 
Oreochromis niloticus and Boleophthalmus pectinirostris, were 
from different orders of teleost fishes. Detailed information 
of the datasets is listed in Table 1. The trimmed data without 
adapters and low quality bases are lodged in GenBank with 
accession number PRJNA562564. Single-copy exon markers 
were extracted from annotated genomes of L oculatus, Danio 
rerio, Oryzias latipes, Gasterosteus aculeatus, Tetraodon nigro-
viridis, Anguilla japonica, Gadus macrocephalus, and O niloticus 
using Evolmarkers.31 Baits, in 120-bp length, were designed 
based on 13 843 and 17 817 sequences of L oculatus and  
O niloticus with 2× tiling according to the recommendation 
of manufacturer (MYcroarray, Ann Arbor, Michigan). The 
bait sequences less than 120 bp were padded with thymine at 
3’ end to 120 bp. Biotinylated RNA baits were synthesized by 
MYcroarray. Information of markers and reference sequences 
can be found in Supplementary S2.

Genomic DNA were sheared to 250 bp using Covaris 
(Covaris, Woburn, USA). Sheared DNA (350-500 ng) was 
used to construct libraries. Exon capture was performed fol-
lowing Li et al.12 Custom adaptors with 8 index were used to 
discriminate reads of different samples. These 2 samples were 
pooled with other 98 samples from other projects in equimolar 
quantities for pair-ended sequencing on a Hiseq 2500 platform 
(Illumina, Inc, San Diego, CA, USA).

Raw reads were de-multiplexed to separated files based on 8 
indices using BclToFastq (Illumina, Inc, San Diego, CA, USA). 
Remaining adaptors and low-quality bases were trimmed using 
trim_galore v0.4.1 with default parameter. Then, trimmed 
reads, sequences of reference and genome were fed into 
Assexon, PHYLUCE, HybPiper, and CP. Reads were assem-
bled with default parameters in different tools, except that 
E-value for read sorting in HybPiper was set to 1 × 10–4 to 
keep the same setting as in Assexon and CP. Because CP was 
single threaded, it was run in single thread on a Linux cluster. 
Assexon, PHYLUCE, and HybPiper were executed in 12 
threads on a Linux cluster.

Table 1. Summary statistics of cross-species and cross-order capture data.

SPECIES OF 
SAMPLE

TRIMMED 
READS (BP)a

SPECIES OF 
REFERENCE 
TARGETS (BP)

NUMBER 
OF TARGET 
LOCIb

DIVERGENCE 
TIME (MYR)c

THE CLOSEST 
SPECIES wITH 
GENOME AVAILABLE

Test 1 L osseus 1 659 770 753 L oculatus 13 843 3.2 L oculatus

Test 2 B pectinirostris 915 882 266 O niloticus 17 688 128 B pectinirostris

aThe total base pairs of the reads after removing low-quality bases and adaptor sequences.
bNumber of target loci in reference species.
cDivergence time between the target species and reference.

https://www.geneious.com
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Completeness and accuracy of assemblies in coding region 
was evaluated by comparing them to reference sequences and 
available genome sequences of species that are most closely 
related to targeted samples. Because reference sequences and 
assemblies in coding regions are generally in similar length, 
comparison between reference sequences and assemblies helps 
to evaluate the completeness of assemblies in coding region. 
Because species of genome sequences are the same species as 
targeted samples (in test 2) or very closely related to targeted 
samples (in test 1), its exonic sequences are almost the same as 
the ones in targeted samples. Thus, those genome sequences 
help to evaluate the accuracy of assemblies in coding region. 
Four metrics were extracted from comparison: similarity 
between assembled contig and reference (SAR), similarity 
between assembled contig and genome (SAG), coverage of 
assemblies to reference (CAR), and coverage of assemblies to 
genome (CAG). These metrics were used to divide assemblies 
into 3 classes: recovered, accurately assembled, and perfectly 
assembled. Recovered loci were defined as assemblies having at 
least 60% of SAR and 80% of PRA. A subset of recovered loci 
were considered as accurately assembled, if their aligned exons 
had at least 99% of SAG and 100% of CAG. Perfectly assem-
bled loci were a subset of accurately assembled loci that have 
100% of CAR. In test 1, as there was no existing genome of L 
osseus, sequences of L osseus were compared against the genomic 
sequences of L oculatus. In test 2, sequences of B pectinirostris 
were compared against genomic sequences of B pectinirostris 
from You et al.53

Sequences were recognized as paralogs if they cannot be 
aligned to targeted regions in genomes. For each recovered par-
alog, reference sequence, orthologous sequence to reference in 
targeted species, recovered paralog, and sequence found in 
genome of reference that is orthology to paralog were collected 
and aligned. Phylogenetic trees were reconstructed using 
RAxML under GTRGAMMA model to further prove the 
paralogy between the reference and recovered sequence. 
Paralogy validation was not run in test 1, because no genome of 
L osseus is available.

In order to make precise comparison, assembling procedure 
of the 4 pipelines were further divided into 5 steps including 
removing PCR duplication, parsing reads to homologous loci, 
de novo assembly, extracting exons, and removing potential 
paralogs. Extracting exons and removing potential paralogs 
were performed simultaneously in PHYLUCE and HybPiper, 
so we categorized these 2 steps as “extract exons.” As one of the 
main purposes of fourth step of Assexon (further assembly and 
extract exon) is to extract exons from assemblies, we catego-
rized it as “extract exons,” even it was also aimed for further 
assembly. Peak RAM usage and CPU time of each step was 
accessed separately using custom script (RAM_CPU_time.pl). 
PHYLUCE does not include the step of removing PCR dupli-
cation and parsing reads to homologous loci, and HybPiper 
does not comprise the step of removing PCR duplication, thus 
corresponding total CPU time and peak RAM usage were not 

available. RAM usage and CPU time of the further assembly 
step in CP could not be accessed, because this step needed to 
be manually operated.

Data from a previous study by Jiang et al54 was also used to 
assess the performance of 4 pipelines to provide additional 
independent test. Detailed information of dataset and results 
can be found in Supplementary S1.

Variabilities in original and f iltered flanking regions

In addition, we explored the variation in flanking regions at spe-
cies and population level, and the capability of the script to 
remove poorly aligned flanks was evaluated. Trimmed raw reads 
of gene capture of 5 individuals of Siniperca chuatsi and another 
5 of S kneri were selected from Song et  al.15 Summary of 
sequencing statistics of 10 sinipercids is listed in Supplementary 
Table S1. Orthologous exons with and without flanks were 
recovered using Assexon. Then, they were aligned using mafft_
aln.pl. Poorly aligned coding sequences were filtered using filter.
pl. Unalignable flanks were removed using flank_filter.pl. A 
custom script (block_pdis.pl) was used to calculate p-dist 
between each taxa and average p-dist among all taxa from origi-
nal and filtered flanks. p-dist of flanks were calculated if their 
length was at least 20 bp. Consensus sequence of each locus was 
generated from its filtered alignment with flanks using consen-
sus.pl. Trimmed reads were subsequently mapped to consensus 
sequences. SNPs across 10 individuals of Siniperca were 
extracted from BAM files using gatk.sh. Number of SNPs in 
filtered coding and flanking regions were counted using a cus-
tom script (snp_num.pl). All custom Perl scripts can be found 
in Supplementary S3.

Results
Performance of exon assembly among 4 approaches 
of exon capture

We evaluated performance of exon assembly of Assexon, 
PHYLUCE, HybPiper, and CP by comparing number of 
recovered loci, accurately assembled loci, perfectly assembled 
loci, paralogs, peak RAM usage, and total CPU time.

Number of loci assembled using 4 pipelines. The number of loci 
assembled using 4 pipelines is listed in Table 2. For number of 
recovered loci, approximately 12 000 loci were assembled using 
Assexon (12 064) and CP (11 823) in test 1, which were almost 
twice as many as loci produced using PHYLUCE (6900). The 
number of loci recovered using HybPiper was 9356. As species 
used for bait design and targeted species are phylogenetically 
diverged, number of recovered loci significantly decreased in 
test 2. About 6800 loci were recovered using Assexon (6830) 
and CP (6891), which were almost 3 times more than using 
PHYLUCE (2382). The number of loci in test 2 recovered 
using HybPiper was 4205 loci.

For the number of accurately assembled loci, 9489 loci were 
accurately assembled using Assexon in test 1. Comparing to 
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Assexon, more than 154 loci were accurately assembled using CP 
(9634), which was still near to Assexon. The number of loci accu-
rately assembled using PHYLUCE and HybPiper was 5638 and 
7561 loci, respectively. In test 2, about 5700 loci were accurately 
assembled using Assexon (5783) and CP (5770). Compared to 
Assexon and CP, only about half the number of loci (2304) was 
accurately assembled using PHYLUCE. The number of loci 
accurately assembled in test 2 using HybPiper was 3486.

For the number of perfectly assembled loci, 8684 loci were 
perfectly assembled using Assexon in test 1. Compared to 
Assexon, 499 more loci were perfectly assembled using CP 
(9183). The number of loci perfectly assembled using PHYLUCE 
and HybPiper was 5369 and 7445, respectively. In test 2, 4913 
loci were perfectly assembled using Assexon. Compared to 
Assexon, 375 more loci were perfectly assembled using CP 
(5288). Number of loci perfectly assembled using PHYLUCE 
and HybPiper was 2176 and 3405, respectively. Length distribu-
tion of perfectly assembled loci is shown in Figure 3. Length of 
the most of perfectly assembled loci was centered around 120 to 
300 bp in both tests. Compared to PHYLUCE and HybPiper, 
relatively higher number of loci was perfectly assembled using 
Assexon and CP in this length category.

Paralogs. The number of paralog assembled using 4 pipelines is 
listed in Table 2. In test 1, 3 paralogs were detected from 

assemblies of HybPiper. No paralogs were found from sequences 
produced using other approaches. In test 2, one paralog was 
detected in assemblies produced using PHYLUCE. Two paralogs 
were assembled using HybPiper. None were found in assemblies 
of Assexon and CP. The paralog recovered using PHYLUCE did 
not have BLAST hit with genome of O niloticus, so we were not 
able to get orthologous sequence of O niloticus to this paralog. We 
constructed maximum likelihood trees using 2 loci with enriched 
paralogs. Relationship between references and enriched sequences 
were proved to be paralogy (Supplementary S1, Figure S1).

Peak RAM usage and total CPU time. Peak RAM usage and 
total CPU time of each step were listed in Tables 3 and 4. The 
amount of peak memory usage for Assexon was similar in both 
test 1 and 2. Assexon required only around one fifth of memory 
usage than CP in steps of removing PCR duplication. Assexon 
used the least RAM than CP, but it consumed more RAM 
than HybPiper in the step of parsing reads to homologous loci. 
Assexon used least memory during de novo assembly and 
extracting exons, but required approximately 10 times the 
memory of CP in the step of removing potential paralogs.

Only 2 to 10 minutes were used to remove PCR duplication 
in both tests. Assexon spent most of CPU time in parsing reads 
to homologous loci and de novo assembly, however, Assexon 
required at most one third of CPU time than other method in 

Table 2. Number of recovered, accurately assembled, perfectly assembled loci, and paralogs produced using 4 pipelines in 2 tests.

PIPELINES RECOVERED 
LOCI (%)

ACCURATELY 
ASSEMBLED LOCI (%)

PERFECTLY 
ASSEMBLED LOCI (%)

PARALOGS

Test 1 Assexon 12 064 (87.2) 9489 (68.6) 8684 (62.7) 0

CP 11 823 (85.4) 9634 (69.6) 9183 (66.3) 0

PHYLUCE 6900 (49.8) 5638 (40.7) 5369 (38.8) 0

HybPiper 9334 (67.4) 7561 (54.6) 7445 (53.8) 3

Test 2 Assexon 6830 (38.6) 5783 (32.7) 4913 (27.8) 0

CP 6891 (39.0) 5770 (32.6) 5288 (29.9) 0

PHYLUCE 2382 (13.5) 2304 (13.0) 2176 (12.3) 1

HybPiper 4205 (30.4) 3486 (25.2) 3405 (24.6) 2

Figure 3. Number of perfectly assembled loci at different length categories of 4 pipelines in test 1 (left) and test 2 (right).
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these 2 steps. Assexon used only around 5 minutes to extract 
exons and it is at least 5 times faster than other methods in 
both tests. Assexon was at last 18 times faster than CP in the 
step of removing potential paralogs in both tests. For total time 
of analysis, Assexon used at most half of time than HybPiper, 
half of time than PHYLUCE, and one eighth of times than 
CP in 2 testing runs. Assexon only used 2 to 3 seconds per 
locus to recover sequences from raw reads in average, which 
was the least time used among all pipelines (CP: 20-26 s, 
PHYLUCE: 5-11 s, HybPiper: 4-9 s).

Length of flanking region

The length distribution of flanking sequences recovered using 
4 approaches is shown in Figure 4. The length of flanking 

sequences assembled using Assexon was relatively shorter than 
rest of the methods. In test 1, the longest flanking sequences in 
assemblies from Assexon was 1258 bp, which was much shorter 
than flanking sequences produced using CP (1712 bp), 
PHYLUCE (1848 bp), and HybPiper (2739 bp). With the 
exception of Assexon, length of flanking sequences centered 
around 600 to 800 bp. In test 2, the longest flanking sequence 
in assemblies of Assexon was still the shortest among 4 
approaches, which is 1105 bp. The longest flanking sequences 
recovered using CP, PHYLUCE, and HybPiper were 1658, 
2001, and 1316 bp, respectively. Most of the flanking sequences 
recovered using Assexon and CP centered around 1 to 200 bp. 
Flanking sequences recovered using PHYLUCE and Hybpiper 
were longer, which centered around 200 to 600 bp and 400 to 
800 bp.

Table 3. Peak RAM usage (Gb) of various steps of each pipeline in 2 tests.

STEP ASSExON CP PHYLUCE HYBPIPER

Test 1 Remove PCR duplication 1.2 6.5 NA NA

Parse reads to homologous loci 1.87 2.3 NA 1.0

De novo assembly 0.2 1.2 5.8 1.1

Extract exons 0.1 8.5 0.3 1.0

Remove potential paralogs 2.5 0.2 NA NA

Test 2 Remove PCR duplication 1.1 5.0 NA NA

Parse reads to homologous loci 1.5 1.8 NA 0.4

De novo assembly 0.2 1.2 4.3 1.2

Extract exons 0.3 2.5 0.2 0.3

Remove potential paralogs 2.5 0.2 NA NA

Table 4. Total CPU time (m) of various steps of each pipeline in 2 tests.

STEP ASSExON CP PHYLUCE HYBPIPER

Test 1 Remove PCR duplication 4 10 NA NA

Parse reads to homologous loci 358 1435 NA 1142

De novo assembly 279 1831 2515 775

Extract exons 6 447 2 45

Remove potential paralogs 130 2320 NA NA

Total time 777 6043 2517 1962

Test 2 Remove PCR duplication 2 5 NA NA

Parse reads to homologous loci 258 1441 NA 646

De novo assembly 230 1598 1409 341

Extract exons 4 178 2 20

Remove potential paralogs 92 2800 NA NA

Total time 586 6022 1411 1007
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Variation in flanking regions

The highest p-dist between S chuatsi and Sturisoma kneri was 
0.86, and 2.72% of loci exceeded 0.4. The highest p-dist within 
species was rather close to the p-dist between species. The 
highest p-dist among S chuatsi and S kneri were 0.85 and 0.8, 
respectively, and 1.81% and 3.32% of their p-dist exceeded 0.4. 
In filtered flanking regions, both p-dist between and within 
species were significantly decreased. The highest p-dist 
between S chuatsi and S kneri was 0.41. Both the highest p-dist 
among S chuatsi and S kneri was 0.39. There were 34 572 SNPs 
extracted from alignments between reads from 10 individuals 
of Siniperca and consensus reference of filtered alignments. The 
number of SNPs in coding and flanking region was 14 324 and 
20 251 SNPs, respectively. Comparing to coding region (7 per 
kb), about twice the number of SNPs was found in flanking 
region (15 per kb) per kilo base pairs.

Discussion
Assembly performance of different approaches in 
coding regions

In test 1, Assexon recovered the considerably more loci than 
other approaches, while CP produced slightly more accurately 
assembled loci than Assexon. Higher assembling accuracy of 
CP could be resulted from the Trinity assembler applied in CP, 
which identifies paths supported by paired reads when encoun-
tered conflicted paths in de Bruijn graph. This feature could 
help to produce plausible assemblies. PHYLUCE recovered 
the least number of loci in all classes. In test 2, the percentage 
of recovered loci dramatically decreased as expected, because 
bait design species and targeted sample species in test 2 were 
much more diverged than the pairs in test 1. The genetic dis-
tance between reference and target did not have effect on the 
superior performance of Assexon and CP. They still recovered 
many more loci than HybPiper and PHYLUCE. Assexon and 
CP did not assemble any paralog in both tests. HybPiper left 3 
and 2 paralogs in assemblies of test 1 and test 2, respectively, 
and paralogs in test 2 were ascertained only by tree reconstruc-
tion, which revealed that HybPiper could not effectively detect 
potential paralogs. In test 2, one potential paralog was found in 

assemblies produced using PHYLUCE, while this sequence 
did not have hit with the genome of O niloticus with default 
parameter setting. No hit was found until E-value threshold 
was raised to 6, which suggested that “potential paralog” pro-
duced using PHYLUCE was not a genuine paralog. It may be 
a sequence comprising a motif that could be commonly found 
in the genome. Thus, no paralog was detected from sequences 
assembled using PHYLUCE in our dataset.

Assexon required considerably lower memory usage than 
other methods except in the steps of parsing reads to homolo-
gous loci and removing potential paralogs. These 2 steps 
needed around 2 Gb of RAM; however, it was still manageable 
even for a desktop computer. CP used extraordinary high 
RAM when removing PCR duplication. The strategy of CP 
for removing PCR duplication is responsible for the high 
RAM usage; CP extracts the first 20 bp from paired reads, then 
concatenates them together as keys of hash, and uses hash 
function to remove duplicated reads. Keys extracted from 
entire read set are loaded into the RAM, which leads to high 
RAM usage. CP also consumed high RAM usage when 
extracting exons. CP uses the Smith-Waterman algorithm55 to 
extract exons from assemblies, which relies on dynamic pro-
gramming to find the local optimal alignment between 2 
sequences. The computational complexity of Smith-Waterman 
algorithm is positively correlated with length of input 
sequences, thus inputting long sequences could make CP 
require unacceptably high RAM usage to extract exons. 
PHYLUCE requires high RAM during de novo assembly, 
which is probably due to it input whole read set into assembler 
without any de-duplicating or parsing reads into loci.

Assexon spent the least total CPU time among the 4 meth-
ods, especially in the steps based on BLAST searches and de 
novo assembly. Assexon used USEARCH instead of standard 
BLAST as searching tools. USEARCH accelerated the search-
ing speed using an index on the database that supports rapid 
retrieval of word counts or seeds. PHYLUCE input the entire 
read set into assembler, which substantially increased complex-
ity of assembly, thus, it occupies considerably longer CPU time. 
CP spent the longest CPU time among 4 methods. The Trinity 
assembler applied in CP does help to slightly improve the 

Figure 4. Length distribution of flanking sequences generated by 4 pipelines in test 1 (left) and test 2 (right).
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accuracy of resulting assembly; however, efficiency is impeded 
due to the information of read pair incorporated in the assem-
bling process. Results from testing runs showed that Assexon 
was able to accurately and efficiently extract exons from reads of 
targeted samples across different divergence time.

Assembly performance of different approaches in 
flanking regions

Flanking regions were not specifically targeted, but they could 
be captured by hitchhiking. Length of the flanking regions is 
positively correlated with insertion size of DNA libraries. 
Flanks assembled using methods other than Assexon were 
mainly around 600 to 800 bp in test 1. Captured reads for each 
locus were rather low in test 2 due to deep divergence between 
bait design species and target sample. This depicted the declines 
of length of flanking sequences among all approaches. Flanking 
sequences assembled using Assexon were much shorter in both 
tests due to conservative nature of SGA. Flanking regions 
should be assembled in a conservative way, because its read 
depth is often low in exon capture. Some of the current assem-
blers56-58 choose the edges with higher read depth, while it is 
hard to discriminate true edge from error-induced edge based 
on read depth in flanking region. SGA breaks the graph apart 
from diverged conflict edges, so that uncertain edges in flank-
ing region are not arbitrarily elongated. This guarantees the 
accuracy of assembled flanking sequences.

Implementing methods of different approaches

Assexon and HybPiper are designed in a modular style, and all 
modular can be called using a wrapper script (assemble.pl in 
Assexon and reads_first.py in HybPiper). Such designing con-
cept makes pipeline highly automated but flexible. Users could 
also rerun partial pipeline to adapt various parameters. On the 
contrary, each step of PHYLUCE and CP need to be sepa-
rately implemented, so they are not easy-to-use compared to 
Assexon and HybPiper. After de novo assembling using Trinity, 
resulting contigs of each locus is required to be further assem-
bled using Geneious v7.1.5 in CP. Only 2000 to 3000 loci can 
be assembled using Geneious v7.1.5 in a single run, so it could 
be labor-intensive when hundreds of samples need to be assem-
bled and each sample could have thousands of loci.

Framework of recovering sequences from exon 
capture data

Remove PCR duplication. To obtain minimum amount of DNA 
required for exon capture and sequencing, samples were ampli-
fied before and after enrichment. PCR de-duplication is ignored 
by most of the current pipelines, because duplicated reads are 
collapsed into the same k-mers, or de-duplicated by assemblers. 
Nevertheless, the datasets from exon capture are typically larger 
than Hyb-seq and UCE, so larger amounts of PCR duplicates 

could significantly slower the efficiency of reads parsing and 
increase the RAM usage of de novo assembling.

Parse reads to homologous loci before assembling. Short low-com-
plexity sequences may be naturally included in exons, and thus 
in markers designed to sequence them, and therefore low-com-
plexity sequences from non-targeted regions may be uninten-
tionally captured and possibly incorporated into assemblies. 
Non-targeted low-complexity sequences from non-targeted 
regions could be wrongly parsed to some of the loci, compro-
mising the assembly of these loci. Thus, it is necessary to softly 
mask low-complexity sequences of both the reference and the 
target reads before parsing, so to avoid parsing non-targeted 
reads to the targeted loci. Furthermore, read size of each locus 
was rather small (no more than 9.6 Mb in 2 tests) after parsing. 
Because of this small size, they can be assembled efficiently in 
parallel, reducing computational burden.

De novo assembly. Assembling exon capture data should 
accommodate low read depth, which is frequently occurred in 
short loci or when targeted species diverge from the reference 
used in bait design. However, multi-cell mode of SPAdes 
applied in HybPiper requires at least 10× read depth to initiate 
assembly, which caused loss of large number of loci in both 
tests. Reads can be preliminarily assembled in conservative 
manner and then elongated further according to synteny and 
alignment score between contigs and references to guarantee 
the accuracy of assemblies with low depths.

Detection of paralogs. Comparing retrieved sequence with ref-
erence genome is the most efficient and reliable way to detect 
paralogs, when genome sequences used to design baits are 
available. Genome sequences are generally available for studies 
using UCE and Hyb-seq data, because they are used to design 
bait sets. Genome-free methods can be an alternative approach 
to detect paralogs when baits are not designed based on genome 
in gene capture (eg, baits designed based on transcriptome).59,60 
Nevertheless, none of those approaches above can guarantee 
orthology if different members of duplicated genes were 
absent.61 This pattern may frequently occur if whole-genome 
duplication events happen before speciation followed by grad-
ual gene loss.62

Post-assembly processing. Assexon includes scripts to harvest tar-
geted exons from existing genomes, add or delete taxa from 
dataset, align sequences, clean poorly aligned coding and flank-
ing sequences, summarize basic statistics, and reformat dataset 
for phylogenetic analysis in post-assembly processing phase, 
some of those functions are also found in PHYLUCE and 
HybPiper. Assexon additionally offers 2 scripts to select loci 
with desirable properties, which may help to remove problem-
atic loci, such as loci including undetected paralogs. The mono-
phyly_test.pl can be used to filter loci based on pre-defined 
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monophyletic groups that any loci that do not agree with the 
assumption are probably error-prone (eg, undetected paralogs, 
insufficient length). The clocklikeness_test.pl can be used to 
select clocklike loci from dataset. Studies by Kuang et al27 and 
Doyle et al63 suggested that clocklikeness is a useful criterion for 
data filtering. Problematic loci, including potentially paralogous 
sequences, could deviate from a molecular clock and very con-
siderably in branch length. Filtering out non-clocklike loci 
would thus be helpful way to detect problematic loci, especially 
when no prior knowledge about topology of the group is known.

Variation in flanking regions

Extremely high variation was detected from flanking regions 
of alignments of S chuatsi and S kneri. The highest p-dist 
between flanking sequences from 2 species exceed 0.8, and the 
highest p-dist among flanking sequences of the same species is 
above 0.8 as well. p-dist of about 2% to 3% of the flanks is 
greater than 0.4. This suggests that small fraction of flanks 
could be too variable to be aligned, even for sequences from the 
same species. Maximum p-dist among flanks were decreased to 
around 0.4 after filtering, which suggested that extremely una-
lignable flanks were removed. The number of SNPs per kb in 
filtered flanks was almost twice as many as the ones in coding 
regions, which indicated rich variabilities in flanking regions. 
The data retrieved from the flanking regions may be helpful to 
resolve phylogenetic relationships at shallow depths.

Conclusions
We developed Assexon, a pipeline for assembly of exon capture 
data. It can be used to accurately and efficiently assemble reads 
from exon capture across different phylogenetic divergence. 
Several post-assembly processing scripts were provided to filter 
out spurious sequences in coding and flanking regions, and fil-
ter and format alignments for downstream analysis. The pipe-
line has been tested on Linux and Mac OS X and is freely 
available under a GPLv3 license.
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