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Abstract

Many template-based modeling (TBM) methods have been developed over the recent years that allow for protein structure
prediction and for the study of structure-function relationships for proteins. One major problem all TBM algorithms face,
however, is their unsatisfactory performance when proteins under consideration are low-homology. To improve the
performance of TBM methods for such targets, a novel model evaluation method was developed here, and named MEFTop.
Our novel method focuses on evaluating the topology by using two novel groups of features. These novel features included
secondary structure element (SSE) contact information and 3-dimensional topology information. By combining MEFTop
algorithm with FR-t5, a threading program developed by our group, we found that this modified TBM program, which was
named FR-t5-M, exhibited significant improvements in predictive abilities for low-homology protein targets. We further
showed that the MEFTop could be a generalized method to improve threading programs for low-homology protein targets.
The softwares (FR-t5-M and MEFTop) are available to non-commercial users at our website: http://jianglab.ibp.ac.cn/lims/
FRt5M/FRt5M.html.
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Introduction

Template-based modeling is defined as modeling of protein

structures based on already determined structure templates, and it

is currently the most powerful prediction method. To build a

structure model for a target sequence, the TBM method usually

follows four steps: identification of structural templates, alignment

of the target sequence to structural templates (or sequence-

structure alignment), model building, and model quality evalua-

tion. In recent years, various TBM programs were developed for

the first two steps [1,2,3,4,5,6,7,8,9,10]. In addition, powerful

model building tools were developed, including MODELLER and

SWISS-MODEL [11,12]. Lastly, a wide range of tools was

developed for the last step, the model quality evaluation

[13,14,15,16,17,18,19,20,21,22,23,24].

Whilst TBM methods are now widely used for protein structure

prediction and structure-function relationship studies, their low

performance for low-homology proteins still presents a bottleneck.

The underlying reasons behind the bottleneck can be complicated,

and include issues like incorrect template selection and sequence-

template alignment, modeling errors, or a biased scoring function,

to name a few. All together, these errors ultimately result in the

failure of generating high-quality models, even in the presence of

good templates in the template library at use.

Our previously developed TBM method FR-t5 [7], which has

comparable performance to the state-of-the-art fold recognition

methods, faces the same problem. In FR-t5, the targets in the

dawn region (defined as proteins that have an optimal Z-score ,

6.0), the ranked 1st models in FR-t5 are always of native-unlike

topology for the target sequence, even though native-like models

exist in the searching space. These proteins in dawn region are

low-confidence targets for FR-t5, which included a significant

portion of low-homology proteins. In consideration of more

conserved features derived directly from a structure model, model

evaluation method could provide an avenue to improve the

performance of TBM in the dawn region. Here we report a novel

model evaluation method called MEFTop that combines tradi-

tional features with two groups of newly introduced structural

features. The obtained testing results indicate that these novel

structural features contribute significantly to the improvement of

MEFTop performance in the dawn region. We further show that

MEFTop could be combined with FR-t5 and other threading

programs to improve the low-homology protein modeling.
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Results

In this section, we will first show the performance improvement

of MEFTop for protein targets in the dawn region. Then, we will

analyze the contribution of newly introduced structural features in

MEFTop. Thirdly, we will explore how the FR-t5-M, the

combination of MEFTop with FR-t5, improves modeling for

targets in the dawn region and test its performance on CASP10

targets. Finally, we will demonstrate the application of MEFTop to

some other threading algorithms such as RaptorX [10] and

SPARKS-X [9].

The Performance of MEFTop in the Dawn Region
To evaluate the robustness of MEFTop, a 5-fold cross-

validation was carried out on the training set SCOP1.75-Z6.

The average and standard deviation of the percentage of native-

like Top1 models (Top1%) (see Methods section for details) was

46.84%62.55%, which indicates stable performance of MEFTop

for targets in the dawn region. The performance of MEFTop was

further tested on the data set (SCOP1.75–500) which included 110

proteins in dawn region. The Top1% selected with the P-score of

MEFTop was compared to that selected with the Z-score of FR-t5.

As shown in Figure 1A, we found that the Top1% selected

according to the P-score was higher when the best Z-score cutoff of

targets was used as 4.0 or 5.0, but somewhat lower when targets

had an optimal Z-score less than 6.0. Furthermore, in order to

evaluate the models selected according to P-score and Z-score, we

compared the TM-score [25] of Top1 models according to two

metrics for targets with an optimal Z-score ,5.0 on the

SCOP1.75–500 set (Figure 1B). Of 63 targets on the testing set,

there were 33 Top1 models with better quality selected according

to the P-score, while 22 Top1 models with better quality selected

according to Z-score. These results indicate that better perfor-

mance for protein modeling can be achieved for targets in the

dawn region using the P-score of the MEFTop method than using

the Z-score of the FR-t5 method.

The Contribution of Newly Introduced Structural
Features in MEFTop

To investigate the contribution of newly introduced structural

features of MEFTop to the improvement of model evaluation for

dawn region proteins, different combinations of features were

trained on the SCOP1.75-Z6 set and tested on the SCOP1.75–

500 set. As shown in Table 1, two groups of structural features,

including SSE contact features and 3-dimensional topology

features, contributed significantly to the improvement of the

MEFTop method. When SSE and 3D topology features were

added separately, for the targets with an optimal Z-score less than

6.0, the Top1% increased to 56.4% (SSE) and 58.2% (3D

topology) as compared to 53.6% when only the traditional features

were considered. Similar improvements were also observed for the

targets with optimal Z-score less than 4.0 and 5.0. As expected,

after incorporating the two groups of structural features with

traditional features, the Top1% increased more significantly, from

53.6% to 62.7% for the targets with an optimal Z-score less than

6.0.

The Combination of MEFTop with FR-t5, Denoted as FR-
t5-M, Significantly Improves the FR-t5 in the Dawn
Region

As shown in Figure 1B, although overall the P-score of

MEFTop outperforms Z-score of FR-t5 in model selection for

the targets in the dawn region, the two metrics apparently showed

complementarity. Thus we sought to integrate the two metrics

(denoted as M-score) to achieve a better performance of protein

prediction by combining the methods MEFTop and FR-t5

(denoted as FR-t5-M) (see Methods section for detailed descrip-

tion).

To evaluate FR-t5-M, we compared the performance of M-

score and Z-score for the 110 targets in the dawn region of

SCOP1.75–500 (Table 2). From the data presented in Table 2, it

is evident that the M-score outperformed the Z-score for all

Figure 1. Comparison of the performance of MEFTop and FR-t5 in the dawn region of SCOP1.75–500 set. (A) The percentage of native-
like Top1 models (Top1%) that selected by MEFTop using P-score and FR-t5 using Z-score. The X-axis is the Z-score cutoff and the Y-axis is the Top1%.
The performances of Z-score and P-score are shown as white and black columns, respectively. (B) The TM-score of Top1 models selected according to
Z-score and P-score for 63 targets with optimal Z-score ,5.0. The X-axis and Y-axis of each point represent the TM-scores of Top1 models selected by
Z-score and P-score, respectively.
doi:10.1371/journal.pone.0089935.g001
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criteria listed. For instance, the average rank of Top1 models (see

Methods section for details) was 9.14 for the M-score, whereas it

was 11.48 for the Z-score. Figure 2 gives a more detailed

comparison of the two methods by looking at the quality of Top1

models according to TM-score. Notably, FR-t5-M could find

high-quality models for 7 low homology proteins (marked by

triangles), whereas FR-t5 could not. Four of these 7 low homology

proteins were illustrated in Figure 3. One example is a bacterial

immunity domain d2bl8c1 containing 81 amino acids (AA). The

Top1 model selected by FR-t5-M (M-score) has a TM-score of

0.728, which is in higher quality than the model selected by the

FR-t5 (Z-score) (TM-score = 0.300). The other three examples are

d1b33n_ (67 AA), d2rdeb1 (110 AA) and d1sgka1 (155 AA). Their

Top1 models selected by the FR-t5-M (M-score) were all native-

like, whereas models selected by the FR-t5 (Z-score) were native-

unlike. These differences in model selection between M-score and

Z-score revealed that structural features clearly contributed in

model evaluation and selection. As shown in Figure 3, all Top1

models selected according to their Z-score also had similar SSEs

type to native structures, whereas the topology relationship

between these SSEs was not correct. However, the MEFTop

algorithm corrected for this error through utilizing the SSE

contact map and introducing topological constraints.

Since a significant portion of low-homology proteins were

included in the dawn regions, we further compared FR-t5-M and

FR-t5 on these low-homology proteins. Of 110 proteins in dawn

region of SCOP1.75–500, 59 have sequence identity less than

40%. As shown in Table 3, for these 59 targets, the average rank of

Top1 models and Top1% were 13.49 and 52.5% for M-score, and

17.72 and 42.4% for Z-score, respectively. The similar improve-

ment was also observed in 25 proteins whose sequence identity less

than 30%.

The FR-t5-M was also evaluated on the 390 targets of high

confidence from the SCOP1.75–500 dataset (Table S1). We found

that the two methods exhibited similar performances for high-

confidence targets.

We further tested the performance of FR-t5-M on targets of the

recent CASP10. A comprehensive comparison between the

performance of FR-t5-M (M-score) and FR-t5 (Z-score) on the

103 targets of CASP10 data set is shown in Table 4. Overall, FR-

t5-M outperformed FR-t5 as measured by average rank (9.00 vs

10.46) and average TM-score (0.570 vs 0.564). Notably, the

improvement was contributed by dawn region targets. For the 57

targets in dawn region, the average ranks for FR-t5-M and FR-t5

were 12.08 and 14.15 respectively.

The Integration of MEFTop with other Threading
Methods

Here we would like to demonstrate that the MEFTop could

offer a general approach to improve protein modeling by

combining it with another two popular threading programs,

RaptorX and SPARKS-X. These two integrated methods

RaptorX-M and SPARKS-X-M were tested on the 110 targets

in the dawn region of SCOP1.75–500. As shown in Table 5 and 6,

both integrated methods were significantly improved. For

RaptorX-M, the Top1% increased from 76.0% to 78.8%.

We further looked into the performance of the newly integrated

methods (RaptorX-M and SPARKSX-M) on 59 low-homology

targets (sequence identity less than 40%) in SCOP1.75–500. From

the data presented in Table 7, for RaptorX-M, the Top1%

increased from 63.2% to 66.7%.

Discussion

In order to improve low-homology protein modeling, we have

developed a useful model evaluation method (MEFTop) by focusing

on evaluating the native-likeness of topology. Further, by incorpo-

rating MEFTop with our previously developed threading method

FR-t5, a new TBM method (FR-t5-M) was developed. We found

that FR-t5-M significantly outperforms our previous threading

method FR-t5, and displays a predictive performance for low-

homology CASP10 targets that is comparable to most other popular

protein structure prediction programs. Moreover, we observed

significant improvements in predicting structures for low-homology

proteins when combining the MEFTop with RaptorX and

Table 1. Testing results for the contribution of structural
features to MEFTop in the dawn region on SCOP1.75–500 set.

SCOP1.75–500(Top1%)

Feature ,6.0* ,5.0* ,4.0*

T 53.6 36.5 23.9

SSE 38.2 27.0 15.2

Topology 43.6 28.6 23.9

T+SSE 56.4 41.2 28.3

T+Topology 58.2 44.4 30.4

SSE+Toplogy 44.5 30.2 23.9

All (T+SSE+Topology) 62.7 42.9 30.4

*Targets with optimal Z-score less than this cutoff value (6.0 or 5.0 or 4.0). On
the SCOP1.75–500 set, the numbers of targets are 110 (Z-score,6.0), 63(Z-
score,5.0) and 46(Z-score,4.0).
doi:10.1371/journal.pone.0089935.t001

Figure 2. The TM-score of Top1 models selected according to
Z-score and M-score for all targets with optimal Z-score ,6.0
on SCOP1.75–500 set. The X-axis and Y-axis of each point represent
the TM-score of Top1 models selected according to Z-score and M-
score, respectively. Low homology proteins (marked by triangles) had
high-quality Top1 models by FR-t5-M (M-score) whereas not FR-t5 (Z-
score).
doi:10.1371/journal.pone.0089935.g002
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SPARKS-X. Taken together, we argue that MEFTop could offer a

generalized method to improve threading algorithms for low-

homology protein modeling.

A wide range of earlier studies have demonstrated that

traditional features of 1D and 2D information can be effectively

utilized for high-quality model evaluation [15,19,21]. Our

research revealed that the integration of SSE contact features

and 3D topology features into the model evaluation method

MEFTop greatly increased the quality of model evaluation for

proteins in the so-called dawn region. The incorporation of these

two groups of structural features was intended to capture the

topology structure information during evaluation of the quality of

models. As shown above, the introduction of these structural

features significantly improves the percentage of native-like Top1

models in the dawn region or for low homology proteins.

Whilst we have shown that the application of MEFTop or FR-

t5-M brings significant improvements, both methods can be

optimized further. First, models of FR-t5-M could be optimized

with the introduction of side-chain packing and refinement in the

future. Second, a systematic and complete programming code

optimization should result in accelerating the program. As a case

in point, a mutation in the transporter membrane protein

SLC45A2, which is the genetic basis of the fur color of white

tigers, was successfully predicted by using FR-t5-M [26]. In

summary, both our model evaluation method MEFTop and

improved TBM program FR-t5-M could facilitate a wide range of

applications.

Figure 3. Four representative targets with different Top1 models selected by FR-t5-M (M-score) and FR-t5 (Z-score). The native
structure (red) of d1b33n_ (A), d2bl8c1 (B), d2rdeb1 (C) and d1sgka1 (D), the Top1 model selected by FR-t5-M using M-score (green) and FR-t5 using
Z-score (cyan) are shown. The TM-scores of Top1 models and native structures are presented. 3D structure models are produced with PyMOL (http://
www.pymol.org/).
doi:10.1371/journal.pone.0089935.g003
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Materials and Methods

Data Set
The CASP7-8 data set was used as training data, which consists

of 221 CASP7 and CASP8 targets (http://predictioncenter.org/).

The CASP10 data set was used as testing data, which includes 103

targets in total (http://predictioncenter.org/).

For further training and testing, another two datasets, the

SCOP1.75-Z6 as training data and SCOP1.75–500 as testing data

were constructed from SCOP1.75 [27], independently. The

SCOP1.75-Z6 set was constructed as follows. Firstly, 1401

domains over 1195 fold classes were selected uniformly as the

size of fold class. Then, 252 targets in the dawn region (optimal Z-

score ,6.0 for FR-t5) were kept. Similarly, the SCOP1.75–500 set

consists of 500 domains covering 307 folds was built. Notably, a

major difference between the two data sets is that the SCOP1.75-

Z6 set only includes targets in the dawn region, while the

SCOP1.75–500 set is a comprehensive set that consists of high-

confidence targets, as well as targets in the dawn region. The

SCOP1.75-Z6 and SCOP1.75–500 data set were available at

http://jianglab.ibp.ac.cn/lims/MEFTop/meftop.html.

For each protein in training and testing data, 50 structural

models were generated by FR-t5.

Feature Extraction and SVM Predictor
MEFTop was developed as an SVM predictor that considered

37 features classified into four groups: (1) 1-dimensional (1D) and

(2) 2-dimentional (2D) contact map features, (3) Secondary

Structural Element (SSE) contact features and (4) 3-dimensional

topology features.

1D features included secondary structure (SS) represented by

helix, strand and coil and relative solvent accessibility (RSA)

computed as exposed and buried states. For a target sequence, its

SS state and RSA state for each residue were predicted by

SCRATH [28]. For each structural model of the target sequence,

the SS state and RSA state were calculated for each residue with

DSSP [29]. Then the percentages of residues of the three SS states

(helix%, strand% and coil%) and of the two RSA states

(exposed%, buried%) were calculated over all the residues for

both target sequence and its structural models. Thus we obtained

10 1D features for both sequence and structural models. Based on

these 1D features, four similarity scores between the target

sequence and its structural model were derived by following Wang

and colleagues’ work [21]. More specially, the 1D features (the

percentages of helix, strand, coil, exposed and buried) of target

sequence and its structural model can be regarded as two

composition vectors. The cosine, correlation, Gaussian kernel,

and dot products of the two composition vectors were calculated as

four similarity scores, namely 4 features. In total, there were 14

features derived as 1D features.

2D contact map features capture contact information between

residues with separation $6 residues at two distance thresholds (,

8Å and ,12Å) between the side chain center of mass (SCM) [21].

For a target sequence, the contact probability of each residue pair

was predicted by SCRATH, while the information about a residue

pair in contact or not was readily extracted from structural models.

Then for each residue in target sequence or structural models, its

contact order and contact number were calculated asP
Di{jDw~6 Cij Di{jD and

P
Di{jDw~6 Cij respectively (Cij is the

predicted contact probability from target sequence or extract

contact information from structural models for residues i and j).

Thus, the residues contact order of target sequence and its

structural model can be regarded as two composition vectors. The

cosine and correlation of the two composition vectors were

calculated as two similarity scores at a distance threshold.

Similarly, another 2 similarity scores were obtained for contact

number.

In addition, the overall match score (fres) of the contact

probability between target sequence and structural model was

calculated as the following equation:

fres~

Pn
i,j~1 CijNijPn

i,j~1 Nij

ð1Þ

Here, n is the length of sequence. For residues i and j, Cij is the

predicted contact probability and Nij is the contact value from

structural model (1 is in contact and 0 is in isolation).

Table 2. Improvements of FR-t5-M over FR-t5 in the dawn
region on SCOP1.75–500 set.

Top1%

Metrics Averagea Sumb CC ±sc ,6.0d ,5.0d ,4.0d

Z-score 11.48 66.41 0.47260.382 64.5 41.3 26.1

M-score 9.14 69.08 0.55660.344 69.1 50.8 37.0

aThe average rank according to TM-score(over 110 decoy sets) in the absence of
native structures.
bThe sum of TM-scores for Top1 models in the dawn region.
cThe average and standard deviation of Pearson correlation coefficients
between predicted score and TM-score for every target in the dawn region.
dTargets whose best Z-score is less than the cutoff. On the SCOP1.75–500 set,
the number of targets is 110(Z-score,6.0), 63(Z-score,5.0) and 46(Z-score,

4.0), respectively.
doi:10.1371/journal.pone.0089935.t002

Table 3. Improvements of FR-t5-M over FR-t5 for low-
homology targets on SCOP1.75–500 set.

Seq-40%a Seq-30%a

Metrics Ave-Rankb Top1%c Ave-Rankb Top1%c

Z-score 17.72 42.4 17.80 32.0

M-score 13.49 52.5 16.32 40.0

aThe sequence identity.
bThe average rank according to TM-score in the absence of native structures.
cThe Top1% is the fraction of native-like Top1 models for all targets.
doi:10.1371/journal.pone.0089935.t003

Table 4. Performances of FR-t5-M and FR-t5 on CASP10 set.

All Dawn regiona High-confidenceb

Metrics
Ave-
Rankc

Ave-
TMd

Ave-
Rankc

Ave-
TMd

Ave-
Rankc

Ave-
TMd

Z-score 10.46 0.564 14.15 0.449 2.79 0.803

M-score 9.00 0.570 12.08 0.458 2.58 0.802

a57 proteins whose optimal Z-score ,6.0.
b46 proteins whose optimal Z-score . = 6.0.
cThe average rank according to TM-score in the absence of native structures.
dThe average of TM-scores for Top1 models.
doi:10.1371/journal.pone.0089935.t004
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Therefore, to describe the extent of correspondence between a

target sequence and its structural model, ten features including

eight similarity scores for contact order and contact number and

two overall match scores were derived at two distance thresholds.

In total, 24 traditional 1D and 2D features were generated.

SSE contact features capture the information of SSE spatial

relationship including the SSE pairs in contact, the distances

between SSEs and the SSE lengths. Based on the SS states of

residues calculated above, an SSE was identified as a segment

consisting of at least 4 continuous residues with helix or strand

state. Figure 4A illustrated the cartoon representation of two

contacts between two pairs of beta strands. For structural models,

the contact strength of two SSEs was computed as the number of

residues pairs in contact (distance threshold ,8.5Å). For a target

sequence, the contact strength of two SSEs was computed as the

sum of their residues contact probability (threshold ,8Å). An SSE

of a structural model was considered to be corresponding to an

SSE of the target sequence, if the two SSEs have minimum

difference in the starting residue position according to the

sequence order. Only the SSEs that have correspondence in both

structural model and target sequence were considered in the

following calculations. Then, the overall match score (fSSE) of the

SSE contact strength between structural model and target

sequence was calculated in the following equation:

fSSE~

Pn
i,j~1 CS(ij)NS(ij)Pn

i,j~1 NS(ij)
ð2Þ

Here, n is the total number of corresponding SSEs between a

structural model and target sequence. CS(ij) is the predicted contact

strength of SSE i and j from target sequence divided by the length

of SSE i, and NS(ij) is the contact strength between SSE i and j

extracted from structural model divided by the length of SSE i.

Two composition vectors of SSE contact numbers were

generated, respectively, for the structural model FM = [PM(1),

PM(2),…, PM(n)] (PM(i)~
Pn
j=i

NS(ij) is the sum of contact strength

for SSE i in the structural model ) and the target sequence

FT = [PT(1), PT(2),…, PT(n)] (PT(i)~
Pn
j=i

CS(ij)is the sum of contact

strength for SSE i in the target sequence) and then transformed

into similarity scores using the cosine and correlation function.

The overall match of the distances of SSE pairs between the

structural model and target sequence was also considered. First,

the distance of an SSE pair in structural model was assigned with

the minimum distance between residues of this SSE pair, and the

distance of SSE pair for the target sequence was estimated from its

residue predicted contact probability as follows:

D~
Dm p[½0:0,0:1�

{k log (p{p0)zD0 p[(0:1,1:0�

�
ð3Þ

Here, D is the predicted distance of a SSE pair, p is the

maximum predicted contact probability between the residues of a

SSE pair, Dm is the distance threshold, k is a constant, and P0 and

D0 denote ideal status values. Then, the similarity score of SSE

pair distance between the structural model and target sequence

was calculated as by following equation S3 (see Methods S1).

The length of the corresponding SSEs between the structural

model and target sequence was compared and transformed into

two different ratios by equation S6 and S7 (see Methods S1). As

seen from above, 6 SSE contact features were generated, including

one overall match score (fSSE) of the SSE contact strength, two

similarity scores for SSE contact numbers, one similarity score of

SSE pair distance, and two different ratios of SSE lengths.

As shown in Figure 4B and 4C, the topology features were

generated from radius of gyration, Hydrophobic Core (HC) and

local conformation potential of all fragments for a structure model.

To capture the topology compactness, the radius of gyration for

each structural model was calculated (Figure 4B). On the other

hand, the radius of gyration could be predicted based on the

length of the target sequence according to the following equation

Table 5. Improvements of RaptorX-M over RaptorX in the
dawn region on SCOP1.75–500 set.

Method Top1%a Sumb CC ±sc Averaged

RaptorX 76.0 69.95 0.57260.324 13.88

RaptorX-M 78.8 71.4 0.58160.320 11.81

aThe Top1% is the fraction of native-like Top1 models for 104 targets in the
dawn region whose optimal Z-score(FR-t5) is less than 6.0. (remove 6 targets
which could not get complete models by RaptorX).
bThe sum of TM-scores for Top1 models in the dawn region.
cThe average and standard deviation of Pearson correlation coefficients
between predicted score and TM-score for every target in the dawn region.
dThe average rank according to TM-score(over 104 decoy sets, remove 6 targets
which could not get complete models by RaptorX) in the absence of native
structures.
doi:10.1371/journal.pone.0089935.t005

Table 6. Improvements of SPARKS-X-M over SPARKS-X in the
dawn region on SCOP1.75–500 set.

Method Top1%a Sumb CC ±sc Averaged

SPARKS-X 70.9 68.64 0.51860.351 13.05

SPARKS-X -M 73.7 69.93 0.58760.301 9.77

aThe Top1% is the fraction of native-like Top1 models for 110 targets in the
dawn region whose optimal Z-score(FR-t5) is less than 6.0.
bThe sum of TM-scores for Top1 models in the dawn region.
cThe average and standard deviation of Pearson correlation coefficients
between predicted score and TM-score for every target in the dawn region.
dThe average rank according to TM-score(over 110 decoy sets) in the absence of
native structures.
doi:10.1371/journal.pone.0089935.t006

Table 7. Improvements of RaptorX-M and SPARKS-X-M for
low-homology targets on SCOP1.75–500 set.

Seq-40%a Seq-30%a

Method Top1%b Ave-Rankc Top1%b Ave-Rankc

RaptorX 63.2 20.53 54.2 25.38

RaptorX-M 66.7 17.07 62.5 19.38

SPARKS-X 47.5 15.31 32.0 20.64

SPARKS-X-M 49.2 10.85 40.0 11.52

aThe sequence identity.
bThe Top1% is the fraction of native-like Top1 models for all targets.
cThe average rank according to TM-score in the absence of native structures.
Note: Ave-Rank is only compared between a pair of methods (RaptorX/RaptorX-
M and SPARKS-X/SPARKS-X-M).
doi:10.1371/journal.pone.0089935.t007
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[30]:

R~k|Lm ð4Þ

Here, R is the predicted radius of gyration, L is the length of

sequence, k and m are constant parameters. The radii of gyration

predicted from the target sequence and extracted from the

structural model were compared and transformed into two

similarity scores by equation S8 and S9 (see Methods S1).

Besides radius of gyration constraints, some local interactions

played important roles in protein folding and topology stability,

such as hydrophobic interaction. Thus, specific local hydrophobic

residue clusters were defined as Hydrophobic Core (HC), and the

HC is a new structural descriptor (Figure 4C). The radius, the

number of hydrophobic residues and the number of SSEs in HC

were compared to those in structural model, and transformed into

three 3D topology features. In addition, potentials from the local

conformation of fragments (Figure 4C) [31] were also used as 2

features. In total, 7 features were obtained for describing the 3-

dimensional topology.

Figure 4D illustrates the use of SVM predictor as a core

component of MEFTop to evaluate model quality. The SVM

predictor takes as inputs the traditional 1D and 2D residue contact

map features and two groups of additional structural features.

Thus MEFTop represents a novel model evaluation and selection

program with focus on predicting the similarity in topology

between a predicted model and its native structure.

Evaluation Score
In the FR-t5 program, the Z-score was applied for template

ranking, and could also be used to assist in the selection of the

optimal structural model. The raw score Nscoreof the FR-t5 scoring

function [7], which is positively correlated with the quality of the

alignment between query and template sequences, was trans-

formed into a Z-score as follows:

Z{score~
Nscore{Nscoreffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

score{Nscore
2

q ð5Þ

Here Nscore is the average of Nscore, and N2
score is the mean

square of Nscore.

In MEFTop, a P-score was used to evaluate the quality of a

structural model through a SVM regression function f(x) as

follows:

P{score~f(x)~
X
xi[S

(ai{a�i )K(x,xi )
zb ð6Þ

Here, the value computed by f(x) is the estimate of the TM-

score associated with an input feature vector x of a model. a and

a�i are non-negative weights assigned to the training data point xi,

and they control the trade-off between training errors and the

smoothness of f(x) during training [32]. b represents the bias term.

Figure 4. The overview of MEFTop. (A) The cartoon representation of two contacts between two pairs of SSEs (beta strands). (B) The radius of
gyration for the model structure as one of the topology features. (C) Hydrophobic core and local conformation potential based on residue fragments.
Schematic representation of the backbone atoms (N CA C O) and the side chain center of mass is shown. (D) The SVM predictor. Four groups of input
features: traditional sequence (1D) and contact map (2D) features and two groups of newly introduced structural features including SSE contact
features and topology features.
doi:10.1371/journal.pone.0089935.g004
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K is the kernel function, which could be viewed as a function to

compute the similarity between the training data point xi and the

target data point x. The function related parameters were

optimized on the training set.

In order to form the new modeling program FR-t5-M,

MEFTop was combined with FR-t5. A new metric called M-score

was then used as follows:

M{score~Z{scorezn|P{score ð7Þ

Here, n is the weight for P-score.

Training and Testing
MEFTop was firstly trained and evaluated as a general model

evaluation method in our research. The training dataset was

CASP7-8 set, which is generated from 221 targets of CASP7 and

CASP8 with FR-t5. Furthermore, in order to adapt this method

for targets in the dawn region, MEFTop was optimized using the

SCOP1.75-Z6 set. First, the weight for the vector of this structural

model was assigned according to its TM-score, and the weights

and features were used as inputs for the software LIBSVM [33].

Basically, a bigger TM-score represents a larger weight. Subse-

quently, the SVM predictor was trained and optimized with a cost

function (F) as follows:

F~Nnzn|ZzNm ð8Þ

Here, Nn is the average rank of native structure, Z is the

average Z-score in SVM (Z-scoreSVM) for training target, n is the

weight of Z-scoreSVM and Nm is number of missed proteins whose

native structures have not been ranked 1st. The optimization goal

was to minimize the cost function value. To evaluate the

robustness of the SVM predictor, a 5-fold test for the dataset

SCOP1.75-Z6 was carried out.

After training of MEFTop using the above process, the

performance of MEFTop was tested on the SCOP1.75–500, with

particular focus on targets in the dawn region. Mostly, two criteria

were used to evaluate the performance of evaluation method.

They include the percentage of native-like Top1 models (Top1%)

and the average rank of Top1 models. The Top1% is the fraction

of native-like Top1 models for all targets. If the TM-score of a

model is larger than 0.4, the model is usually defined as a native-

like model, which has a similar topology when compared with its

native structure [34]. The average rank represents the average

value for the rank of the selected model in all potential models for

a target, according to its TM-score.

Similar to MEFTop, our new method FR-t5-M (using M-score

as a metric) was optimized on the SCOP1.75-Z6 dataset, and

evaluated on both the SCOP1.75–500 and CASP10 datasets.

Evaluation of the Combination of MEFTop with RaptorX
and SPARKS-X

Similar to the Z-score of FR-t5, a score of RaptorX and an

energy score of SPARKS-X were used to rank templates,

respectively. We integrated the P-score of MEFTop with the rank

score of these threading programs into new metrics similar to the

M-score of FR-t5-M. Then these new methods which combined

MEFTop with threading programs (RaptorX and SPARKS-X)

were evaluated for 110 targets in the dawn region of SCOP1.75–

500. Among the 110 targets, 59 targets have sequence identity to

templates less than 40%, and 25 targets less than 30%. For each

protein in training and testing data, 100 structural models were

generated by RaptorX and 80 structural models were generated

by SPARKS-X.
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