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Creation and validation of models 
to predict response to primary 
treatment in serous ovarian cancer
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Nearly a third of patients with high-grade serous ovarian cancer (HGSC) do not respond to initial 
therapy and have an overall poor prognosis. However, there are no validated tools that accurately 
predict which patients will not respond. Our objective is to create and validate accurate models of 
prediction for treatment response in HGSC. This is a retrospective case–control study that integrates 
comprehensive clinical and genomic data from 88 patients with HGSC from a single institution. 
Responders were those patients with a progression-free survival of at least 6 months after treatment. 
Only patients with complete clinical information and frozen specimen at surgery were included. Gene, 
miRNA, exon, and long non-coding RNA (lncRNA) expression, gene copy number, genomic variation, 
and fusion-gene determination were extracted from RNA-sequencing data. DNA methylation analysis 
was performed. Initial selection of informative variables was performed with univariate ANOVA 
with cross-validation. Significant variables (p < 0.05) were included in multivariate lasso regression 
prediction models. Initial models included only one variable. Variables were then combined to create 
complex models. Model performance was measured with area under the curve (AUC). Validation of all 
models was performed using TCGA HGSC database. By integrating clinical and genomic variables, we 
achieved prediction performances of over 95% in AUC. Most performances in the validation set did not 
differ from the training set. Models with DNA methylation or lncRNA underperformed in the validation 
set. Integrating comprehensive clinical and genomic data from patients with HGSC results in accurate 
and robust prediction models of treatment response.
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Despite notable advances in the treatment of ovarian cancer, it continues to be one of the leading causes of cancer 
death among women in the United  States1. The most common type of ovarian cancer is high-grade serous cancer 
(HGSC). HGSC typically presents as advanced disease, and standard treatment consists of combined primary 
cytoreductive surgery and platinum-based  chemotherapy2. Platinum is considered the most effective drug for 
 HGSC2. Patients that respond to initial therapy and have progression-free survival (PFS) of at least 6 months 
are termed “platinum-sensitive” or “responders” and have a median survival of well over four  years3. In patients 
that have no residual disease after the initial surgery and respond to chemotherapy, median survivals can reach 
over 10  years3. However, in nearly a third of patients, HGSC progresses during initial chemotherapy (termed 
“platinum-refractory”) or recurs < 6 months after finishing treatment (termed “platinum-resistant”)2,4–6. The 
majority of these patients with suboptimal response to initial treatment (termed “non-responders” herein) will 
die from their disease within two  years4,7,8 and are typically treated in the second-line setting with alternative 
therapies that do not contain  platinum2.

In recent years, significant efforts have been dedicated to test new targeted drugs in clinical trials to increase 
PFS of the patients that already respond to primary chemotherapy, with celebrated  successes9–12. However, few 
resources have been dedicated to identify those patients that are at risk of failing initial treatment before its 
administration, and there is no validated test that can predict robustly and accurately this  outcome13,14. By con-
trast, in breast cancer gene signatures have been identified that can accurately predict  recurrence15 and chemo-
therapeutic  response16,17. These signatures have been validated in independent clinical  studies17–20. For example, 
one of these signatures, OncotypeDx, used 600 cases to create an association model and validated the model in an 
additional 400  cases15,16. The majority of previous attempts to define predictors of treatment response in HGSC 
have been limited by a small number of patients, mixture of histological types and stages, and lack of validation 
in independent  datasets13,14. One of the more successful efforts used serum markers, including kallikreins and 
CA  12513,14. The performance of these prediction models ranges from 75–85% (measured as the area under the 
receiver operator curve (AUC)). Adding clinical characteristics to serum markers increases the performance 
of the model to an AUC of 90%14. Others have integrated the Cancer Genome Atlas (TCGA) genomic data to 
predict overall survival (OS) and PFS, with performances that ranged from AUCs of 81 to 87%21. However, 
none of these models have been validated in independent datasets, nor have they been validated prospectively.

Using publicly available multi-dimensional datasets with clinical data, like TCGA, we previously built predic-
tion models that distinguish between different outcomes in ovarian and endometrial cancer; we validated these 
models in independent  datasets22–27. However, these models had some limitations due to suboptimal clinical data: 
many patients were lost to follow-up, and others had little information about clinical variables that influenced 
treatment response, such as stage of disease or number of cycles of chemotherapy. Also, some datasets did not 
have complete molecular information because expression analyses were performed on different platforms, with 
different probes. This last limitation severely impacted the performance of the validation  studies22.

Herein we tested the hypothesis that integrating comprehensive clinical and genomic data from patients 
with HGSC will ultimately result in a more accurate and robust prediction models of response to treatment. The 
primary objective of our study was to create models of prediction to standard therapy in patients with HGSC. 
The secondary objective was to validate these models in an independent dataset. Also, we intend to extract 
maximum genomic information from RNA-sequencing (RNA-seq) so resulting models would be feasible and 
affordable for any laboratory.

Methods
This is a retrospective case–control study that used clinical and genomic information to create models to predict 
initial response to standard therapy for HGSC patients. The prediction was made using only data that could be 
obtained before the administration of the initial chemotherapy. Also, as we mentioned, we intend to extract 
maximum genomic information from RNA-sequencing (RNA-seq) experiments.

Outcomes definition. HGSC patients were classified as responders or non-responders. Responders were 
those with a progression-free survival of at least 6 months after the first platinum-based treatment. Non-respond-
ers were those who did not respond (platinum-resistant) or progressed during treatment (platinum-refractory).

Patient inclusion criteria. Ovarian cancer patients with high grade serous histology and complete clinical 
and pathological data were included. Patients that had less than 6 months of follow-up after completing initial 
chemotherapy, unknown disease status after 6 months of completion of initial chemotherapy, or incomplete data 
about the chemotherapy delivered were excluded. Also, patients without DNA and RNA of sufficient quality 
(see below) for RNA-seq or DNA methylation analysis were excluded from the study. Based on the definition 
of response to treatment, there were a total of 50 patients classified as responders and 38 as non-responders 
included in the study (Fig. 1). All patients received combination platinum-based chemotherapy initially. How-
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ever, in 2 patients the regimen was changed before finishing because of disease progression in one case, and 
stable disease in the other. 66% of patient in our analysis received Taxol as initial treatment.

The institutional review board (IRB) of the University of Iowa (UI) approved the current study including 
human subjects/materials on April 25, 2018 (IRB Number 201804817: ‘Prediction Models in Ovarian Cancer’). 
The UI Department of Obstetrics and Gynecology maintains a Women’s Health Tissue Repository (WHTR) 
containing more than 60,000 biological samples, including more than 2500 primary gynecologic  tumors28. All 
tissues in the WHTR are collected under informed consent of patients in accordance with University of Iowa 
IRB guidelines (IRB Number 200910784 and IRB Number 200209010). Tumor samples were collected, reviewed 
by a board-certified pathologist and flash frozen. HGSC diagnosis was confirm in paraffin. Specimens had less 
than 30% of necrosis.

Clinical data. Clinical and pathological data were collected from the electronic medical record. Clinical var-
iables previously observed to be associated with treatment response were included in the data  collection27. Only 
baseline clinical and pathological characteristics that can be obtained before starting initial chemotherapy were 
collected. Table 1 shows the main clinical variables collected for the study. Differences between clinical variables 
between responders and non-responders were assessed with logistic regression. P-values < 0.05 were considered 
statistically significant. All clinical variables initially used in the analysis are described in Supplementary Meth-
ods. Statistical analysis and graphics were performed with R statistical package and computer  environment29.

Biological data. RNA purification and sequencing. Of the 187 patients identified in the original HGSC 
panel, 88 primary tumor tissues with sufficient RNA yield and quality were available for analysis; 50 were re-
sponders and 38 non-responders (Fig. 1). Most tumors were collected from the ovaries, 63%; 30% were extracted 
from the omentum, 3% from a pelvic mass and the rest, 4%, from an abdominal mass. The were no differences 
between both groups (p = 0.2), responders and non-responders, in this distribution. At the time of diagnosis, 
these HGSC were considered of ovarian origin. Now we assume they would be tubal. Only 3 of them had no 
ovaries (previously removed) and were considered as primary peritoneal.

Total cellular RNA was purified from primary tumor tissue using the mirVana (Thermo Fisher, Waltham, 
USA) RNA purification kit following the manufacturers’ instructions. Yield and quality of purified cellular RNA 
was assessed using a Trinean DropSense 16 spectrophotometer and an Agilent Model 2100 bioanalyzer. Samples 
with an RNA integrity number (RIN)30 greater than or equal to 7.0 were selected for RNA sequencing.

RNA processing and sequencing has been described  elsewhere31. Briefly, equal mass total RNA (500 ng) was 
quantified by Qubit measurement (Thermo Fisher, Waltham, USA). Each qualifying tumor was fragmented, con-
verted to cDNA and ligated to bar-coded sequencing adaptors using Illumina TriSeq stranded total RNA library 
preparation (Illumina, San Diego, CA, USA). Molar concentrations of the indexed libraries were confirmed on 
the Agilent Model 2100 bioanalyzer and libraries were then combined into equimolar pools for sequencing. The 
concentration of the pools was confirmed using the Illumina Library Quantification Kit (KAPA Biosystems, 

Figure 1.  Selection criteria for patients in clinical prediction analysis.
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Wilmington, MA, USA). Sequencing was then carried out on the Illumina HiSeq 4000 genome sequencing 
platform using 150 bp paired-end SBS chemistry. All library preparation and sequencing were performed in the 
Genome Facility of the University of Iowa Institute of Human Genetics (IIHG). Quality control (QC) of both 
DNA methylation arrays and RNA-seq experiments were performed to minimalize technical biases (see details 
in Supplementary Methods).

DNA methylation assay. Genomic DNAs (gDNAs) were purified from frozen tumor tissues using the DNeasy 
Blood and Tissue Kit according to manufacturer’s (QIAGEN) recommendations. Yield and purity were assessed 
on a NanoDrop Model 2000 spectrophotometer and used a 260 nm/280 nm absorbance ratio of ~ 1.8 with min-
imal to no degradation as shown through horizontal agarose gel eletrophoresis. For more details please see 
the original publication of DNA methylation assessment in  HGSC32. Bisulfite converted gDNAs from HGSC 

Table 1.  Patient characteristics and association with treatment response. *Charlson Comorbidity Index is a 
measure of the prognostic burden of all associated morbidities to predict mortality, and is the most validated 
measure of the prognostic impact of multiple chronic illnesses (www.charl sonco morbi dity.com). # Surgical 
complexity score: score to predict surgical morbidity and 90-day mortality after primary debulking surgery 
for  HGSC67. + Dose dense chemotherapy: increases the dose intensity of the regimen. In serous ovarian cancer, 
dose dense therapy consists in increasing IV administration of paclitaxel from every 3 weeks to weekly.

Responders Non-responders

p-valueN = 50 N = 38

Age (median, range) 56 (25–81) 64 (33–83) 0.009

Charlson Comorbidity Index*

1–3 9 6

0.039
4–6 35 21

 > 6 1 6

Unknown 5 5

FIGO stage

3 39 25

0.0694 7 12

Unknown 4 1

Disease in upper abdomen (other than 
omentum) by imaging

Yes

Large bowel (N = 4)

28 29
0.051

Porta—hepatis (N = 4)

Mesenteric mets (N = 4)

Other (N = 22)

No 22 9

Disease in the chest by imaging
Yes

Chest (N = 4) 6 0

0.991Pleural effusion (N = 5)

No 44 38

Grade

2 8 11

0.1463 35 23

Unknown 7 4

Residual disease after surgery

Microscopic 12 3

0.053Macroscopic 37 35

Unknown 1 0

Optimal (< 1 cm) 37 20
0.039

Suboptimal (≥ 1 cm) 13 18

Removal of pelvic LN
Yes 9 4

0.333
No 41 34

Removal of para-aortic LN
Yes 5 3

0.734
No 45 35

Surgical complexity  score#

Low 22 23

0.990Intermediate 28 12

High 0 3

Neoadjuvant chemotherapy

Yes 2 10

0.008No 47 28

Unknown 1 0

Number of cycles delivered
 < 6 2 8

0.344
 ≥ 6 48 30

Dose dense  chemotherapy+
Yes 1 1

0.844
No 49 37

http://www.charlsoncomorbidity.com
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tumors were submitted to the Genomics Core Facility of the IIHG for processing on methylationEPIC arrays. 
The Illumina Infinium MethylationEPIC BeadChip Kit (Illumina, San Diego, CA, USA) allows quantification 
of more than 850,000 methylation sites across the human genome. Bisulfite-converted samples were denatured 
and neutralized before they were isothermally amplified overnight. The amplified product was fragmented 
enzymatically. After isopropanol precipitation, fragmented DNA was resuspended and placed onto Illumina 
methylationEPIC BeadChip and hybridized. There are two different bead types for each CpG locus, represent-
ing methylated or unmethylated DNA. The BeadChip was washed to remove unhybridized DNA, followed by 
extension and staining. The arrays were scanned with the Illumina iScan and methylation intensity measured. 
Analysis was performed using the Minfi R statistical  package33.

Pre‑processing of biological data. RNA-seq reads were mapped and aligned to the human reference genome 
(version hg38) using STAR, a paired-end enabled  algorithm34. BAM files were produced after alignment. We 
used featureCount to measure gene expression from BAM  files35. After the gene counts were generated, we used 
DESeq2 package to import, normalize and prepare data for  analysis36. We independently used gene expression 
and micro RNA (miRNA) expression for the association analysis. Exon specific expression needed different map-
ping references for alignment, therefore ENSEMBL was used to annotate single exons during the mapping pro-
cess. Then, single exon features were extracted from these newly created BAM files with the DEXSeq  package37. 
BAM files for each sample were also used for genomic or single nucleotide variation (SNV) discovery and base-
calling against the human genome reference utilizing SAMtools and BCFtools for sorting and  indexing38. After 
filtering for duplicates, known non-synonymous single-nucleotide variants, and synonymous variants, results 
were annotated with ANNOVAR and formatted to display the number of variants per gene and  sample39. We 
included only non-synonymous variants. To estimate gene copy we used SAMtools and CopywriteR using BAM 
files as  input40. CopywriteR is a suite of tools that uses off-target sequenced data to detect CNV and, initially, 
was conceived to be used with DNA sequencing products. However, due to the particularities of the method, 
that uses off-target (not exonic) reads uniformly distributed along the genome, which also are available even in 
low-coverage sequencing, we used this method to create variables that would be proxies for gene copy in the pre-
diction model (gene copy estimation, or GCE). CopywriteR software uses the segmentation algorithm CBS (cir-
cular binary segmentation) to create segmentation files that contain log2-transformed, normalized ratios of read 
counts, that can be used to do further prediction analyses. Long non-coding RNA (lncRNA) were determined 
using BAM files as  input41. Fusion-genes were determined from fastq files processed with the STAR-Fusion 
 suite42. Supplementary Fig. S3 depicts the pipeline and analytics used for file pre-processing before modelling.

Statistical analysis. Variable selection for prediction modeling. In the prediction model, we only used 
those variables that could be assessed at baseline, prior to initiation of treatment. RNA features were used only to 
create predictions models of response to treatment, not for other comparisons. Most RNA features were used as 
continuous variables. Only presence and absence of SNV and fusion-genes were used as dichotomous variables: 
present or not. Our approach was to (1) reduce the number of variables using a univariate selection of predic-
tion variables with cross-validation; (2) utilize those significant variables from the univariate selection process 
in a multivariate model to predict response risk. Rather than introducing all variables directly in the prediction 
model, this approach was chosen because it would likely lead to a model with less complexity (i.e., fewer vari-
ables) and can be more easily validated retrospectively and prospectively. To reduce the number of variables, 
initially, we introduced only features that were different for both groups in a univariate analysis with ANOVA 
(p-value < 0.05). Then, cross-validation with 10 replicates for each fold (tenfold) was applied to select those vari-
ables that were more informative for prediction of response, as implemented by the caret R  package43. Features 
that were selected by this univariate analysis were then used for multivariate lasso regression modeling. Unless 
resampling is included in this initial feature selection step, cross-validation of the subsequent models could be 
 biased44. Thus, variable selection for all classes of clinical and biological data (gene, miRNA, exon and lncRNA 
expressions, GCE, fusion-gene, genomic variation, and DNA methylation analysis) was performed with cross-
validation to decrease the possibility of overfitting the final  model43. As result of this selection process, poorly 
annotated features, present in one or few samples, were eliminated early in the analysis.

Prediction model construction. Selected clinical and types of molecular variables from the k-fold cross-valida-
tion process were analyzed individually and in combination to determine their prediction potential for treatment 
response. The lasso method, as implemented in the glmnet R  package45, was used to develop a regression model 
to predict responders versus non-responders. We selected lasso because it is a multivariate regression method 
that allows simultaneous selection and estimation of the effects of variables, while accounting and adjusting 
for confounding factors. In our experience, lasso consistently lowers number of samples and computes AUC 
without reporting any errors, as compared to other prediction  methods22. We evaluated the performance of our 
model using the AUC and its 95% confidence interval (CI). AUC was estimated with 1,000 replicates of tenfold 
cross-validation to avoid over-fitting of the model (internal validation)46. Bias-corrected and accelerated boot-
strap CIs were computed for resulting AUCs. A value of 0.5 indicates a lack of model predictive performance, 
and 1.0 indicates perfect predictive performance, or the best model.

Model validation. For external validation of response prediction models created with UI data, we used a pub-
licly available TCGA HGSC  dataset47. We included only patients with follow-up of at least 6 months after com-
pleting initial chemotherapy, with known disease status after 6 months of completion of initial chemotherapy, 
and data about type of chemotherapy  delivered25. As before, only baseline (pre-treatment) clinical data were used 
for validation (see Supplementary Methods). Not all clinical data used in the UI cohort was available in TCGA. 
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This is a limitation of using TCGA data for model  building27. Based on these inclusion criteria, there were a total 
of 189 patients classified as responders and 149 as non-responders in TCGA for validation of prediction models 
(Supplementary Table S2).

To make validation possible, only TCGA patients with RNA-seq HGSC tumors were included in the analysis. 
BAM files, resulting from RNA-seq alignment to hg38 human genome version were downloaded (DbGaP Access 
#16,003—NCBI) and pre-processed as for the UI dataset (see Pre‑processing of biological data). Fusion-genes 
need to be determined from fastq/fq files, so we converted BAM files into fq files with  BCFtools38. After sorting 
and indexing, fq files were processed with the STAR-Fusion suite to obtain fusion-genes42.

The validation analysis applies the UI-built model to the TCGA data to predict or discriminate between 
responder or non-responder classes. For validation of clinical data, we constructed new UI models with clinical 
variables available in TCGA. The same was done for other types of data with missing variables in TCGA dataset, 
DNA methylation and fusion-genes. For validation, we used the best UI-built models of treatment response. Next, 
we used the R package pROC to determine thresholds, or cut-offs, for the UI-built model applied to the TCGA 
data (see details in Supplementary Methods)48. Threshold values that yielded sensitivities of > 90% were ranked 
from highest to lowest sensitivity, negative predictive value and AUC. Among the ranked results, the top-ranked 
set of tuning parameters was used to fit a final score of the model to the entire set of patients and define the clas-
sification rule. A sensitivity threshold of over 90% will identify most of the patients at risk of failing treatment. 
Our goal is to capture the highest proportion of non-responders for clinical use of the model, while also aiming 
for acceptable specificity. Similar thresholds have been used to assess tests for malignancy, recurrence or failure 
of ovarian cancer  treatment49–53. We coupled high sensitivity with high accuracy measured by AUC: 0.8–0.9 is 
considered ‘a very good’ diagnostic accuracy, 0.9–1 is considered ‘excellent.’

In previous studies we observed that TCGA patient population has different genetic admixture than UI patient 
 population54. That difference may influence the performance of validation analyses. To account and adjust for 
those genetic differences we extracted genotypes from VCF files obtained after RNA-seq. Then we employed two 
different strategies for the adjustment: 1) we performed a principal component analysis (PCA) to differentiate 
genotypes from UI and TCGA datasets and used the first 3 principal components (PC) for adjustment; 2) we 
performed a lasso regression analysis (PCA) to obtain the genotypes that differentiated UI from TCGA, and 
used them for adjustment (for details see Supplementary Methods).

Survival analysis. To assess the association of survival with response, survival analysis was performed using 
Cox proportional hazard ratios.**

Ethical approval and consent to participate. Tumor samples were obtained under informed consent 
after approval by the University of Iowa Institutional Review Board: IRB# 201,804,817 (approved 5/9/2018) and 
200,209,010 (approved 9/19/2005). The institutional review board (IRB) of the University of Iowa (UI) approved 
the current study including human subjects/materials on April 25, 2018 (IRB Number 201804817: ‘Prediction 
Models in Ovarian Cancer’). All data collection and processing, including the consenting process, were per-
formed after approval by the University of Iowa IRB.

Consent for publication. All authors have reviewed and approved the manuscript for submission.

Results
In the UI database, 43% of patients were non-responders, and in TCGA HGSC dataset 44% of patients were 
non-responders, chi-square p-value = 0.88 (Table 1 and Supplementary Table S1, respectively). Non-responder 
UI patients had higher Charlson comorbidity index score, more residual disease after surgery, and received more 
frequently neoadjuvant chemotherapy before surgery (Table 1). Non-responder TCGA patients had more residual 
disease after surgery (Supplementary Table S2). Median survival was 39.3 months (95% CI: 31, 58.2) for UI 
responders and 57.7 months (95% CI: 44.3, 82) for TCGA responders. Median survival was 12.5 months (95% CI: 
8, 19.1) for UI non-responders and 22.7 months (95% CI: 15.9, 26.3) for TCGA non-responders. Based on these 
95% CIs, there were no differences in survival for responders and non-responders in the UI and TCGA datasets.

Variable selection for prediction modeling. After the univariate analysis of all clinical and genomic 
data with ANOVA as described in Methods, we identified those variables that were more informative for the 
outcome of interest: treatment response (Fig. 2). The number clinical, gene, miRNA, exon and lncRNA expres-
sions, GCE, fusion-gene presence, SNV, and DNA methylation variables selected after the univariate and mul-
tivariate analysis, and included in the prediction analyses are detailed in Table 2. Notably, in the genomic vari-
ation analysis, we found BRCA2 variants in 24% (12 out of 50) of responders and in 26% (10 out of 38) of 
non-responders (p = 0.52); and BRCA1 variants in 36% (18 out of 50) of responders and 50% (19 out of 38) in 
non-responders (p = 0.06). These differences were non-significant; therefore BRCA1&2 were not selected for the 
prediction analysis.

Prediction model construction. Prediction models of response were built initially with one type of 
selected data: clinical, gene, exon, miRNA, and lncRNA expression, SNV, GCE, fusion-gene presence, or DNA 
methylation (Table 2). See Supplementary Table S3 for more details about the variables after lasso prediction. 
Next, we built models integrating 2 and 3 types of data. The performance of all models was evaluated using the 
AUC and its 95% CI. By integrating clinical and genomic variables, we achieved prediction performances of over 
95%. Figure 3 represents all prediction models with 1, 2, or 3 variables with AUC over 90% (N = 59). Adding 4 or 
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more types of data increased model complexity without a significant improvement in performance. For details 
about all prediction models review Supplementary Figure S7.

Model validation. One of the limitations of using TCGA for validation of prediction models was that not 
all clinical data used in the UI cohort were available in TCGA dataset. For validation analysis, we took all mod-
els built using 1, 2, or 3 variables in the UI dataset and inserted TCGA data to assess how well the UI-build 
models discriminate between responders and non-responders in the TCGA dataset (107 different models)47. 
We selected a sensitivity threshold over 90% in order to identify most of the patients at risk of failing treatment 
(see the rationale in methods). Notably, validation of models containing DNA methylation and lncRNA data 
underperformed (Fig. 4A). If we eliminated models with DNA methylation and lncRNA, 80% (51 out of 64) of 
UI-built models had an AUC 95% CI in the TCGA validation set that overlapped with the UI training set interval 
(Fig. 4B).

Figure 2.  Heatmap of selected variables after univariate ANOVA analysis. Representation of the significant 
variables after univariate analysis (p < 0.05) for different types of genomic data: gene, miRNA, exon, and long 
non-coding RNA (lncRNA) expression, DNA methylation, genomic variation, fusion-gene presence, and gene 
copy estimation (GCE). At the right side of each heatmap there are color-coded range of values for all genomic 
variables. Heatmaps were generated with R package Heatplus68 (R version 3.6.3. http://www.r-proje ct.org).

http://www.r-project.org
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To adjust for different population genetic backgrounds between UI and TCGA cohorts, we used PCA and 
lasso regression analysis with genotypes that differentiated UI from TCGA. The preliminary studies with PCA 
did not increase validation performances (see Supplementary Methods), so we next carried out the adjustment 
with genotypes that differentiated UI and TCGA datasets. When adjusting for genetic variation, validation of the 
UI-built models had an AUC 95% CI in the TCGA validation that overlapped 97% (62 out of 64 models) with the 
UI training set interval (Fig. 4C). We did not observe any improvement after adjusting for genotypes in models 
containing DNA methylation and lncRNA data (Fig. 4D). These results indicate that differences in performance 
between UI-built and TCGA validation models that do not contain DNA methylation and/or lncRNA data may 
be related to different genetic background of both datasets.

Discussion
Prediction of treatment response in HGSC patients before treatment initiation is a difficult task. Not many groups 
have attempted these types of predictions and, of the few reported models, none have been introduced success-
fully into clinical practice. The reasons are varied but can be classified into two groups: (1) prediction model 
performances did not warrant their introduction in routine  practice2,13; or (2) models could not be validated in 
independent datasets and thus could not be generally  applied14,21. We present a comprehensive study of treat-
ment response prediction in patients with advanced stage HGSC. Most importantly, these prediction models 
were validated in an independent dataset with similar in-depth genomic assessment, TCGA.

Prediction models were built by integrating different types of clinical and molecular data. Simpler models 
were built after selecting those variables more informative for the outcome, treatment response, and using cross-
validation to minimize over-fitting. As we increased model complexity (with 2–3 types of data), performances 
on the training set reached levels over 95% in terms of AUC. These performances are promising and could 
provide robust clinical decision support to discriminate responders versus non-responders. The most predictive 
models included diverse types of data, but notably, those around 100% AUC included epigenetic regulators of 
gene expression, either by DNA methylation or miRNA expression. Also, other gene modulators like lncRNA 
expression and individual exon expression, a readout for splice variant  expression55, were involved in these high 
performing models. Finally, clinical information was also an important component of the best prediction mod-
els. Other components of high performing models, like fusion genes, have not been characterized yet in HGSC 
outcome prediction or prognosis, but have been associated with acquired  resistance56.

Epigenetic gene regulation is one of the mechanisms that regulate treatment response. For example, whole 
genome DNA methylation analysis found that epigenetic regulation of potentially clinically relevant genes pre-
dicts response to  platinum57–59. Also, lncRNAs have been associated with epigenetic regulation of  HGSC60, and 
specific lncRNAs have been associated with chemo-resistance61. Therefore, it is not surprising that some of the 
best prediction models are composed of diverse lncRNAs. The role of miRNAs in response to treatment in HGSC 
in vitro is well  documented62, and some miRNAs also have been associated with chemo-response  modulation63. 
The presence of epigenetic regulators and modifiers of treatment response in high performance prediction models 
of response to therapy seems to support these regulatory mechanisms. We must be cautious about extrapolating 
functional conclusions from prediction models. Prediction analysis is a form of statistical learning that uses data 
obtained in the past to predict outcomes, or behavior, of other individuals in the future. Prediction analysis is 
based on association and does not infer  causation64.

Prediction models of response created with UI data were validated in TCGA HGSC data. Notably, models 
containing DNA methylation and/or lncRNA data did not perform well in validation analyses. Moreover, when 
we adjusted for different genetic backgrounds between UI and TCGA samples, validation performances of models 
not containing DNA methylation or lncRNA improved, with 97% of overlap in the 95% CI of AUCs. Conversely, 
validation models containing DNA methylation and/or lncRNA did not improve despite adjusting for genetic 
background. We speculate that genetic background differences between the UI-sampled population and TCGA 

Table 2.  Variable selection and variables after prediction model construction with type of data. To reduce 
the number of variables, we used univariate analysis of all data with ANOVA to select the variables that were 
more informative for prediction of response, with a p-value < 0.05 (3rd column). Features that were statistically 
significant in this univariate analysis were then used for multivariate lasso regression modeling. In the last 
column are the number of variables resulting after performing that prediction model with only one variable. 
Variables in this last column were used to build prediction models integrating 2 or 3 types of data.

Type of data Initial number of variables
Variables after selection: univariable ANOVA analysis 
with k-fold cross-validation

Variables after multivariable prediction model with 
lasso

Clinical 45 – 7

Gene expression: mRNA 23,528 2214 62

miRNA expression 1914 12 11

Gene copy estimation: GCE 28,917 1098 83

Genomic variation 13,840 327 54

DNA methylation 66,042 4961 35

Long non-coding RNA 16,325 773 69

Fusion genes 597 147 104

Individual exon expression 63,677 4387 61
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account for some variation in the validation of these prediction models of treatment response, except for those 
models including DNA methylation and/or lncRNA. The poor performance of validation TCGA prediction 
models including DNA methylation and/or lncRNA data was likely due to other reasons. DNA methylation analy-
sis for TCGA HGSC data was performed using Illumina Infinium HumanMethylation27K BeadChip  arrays47. 
Methylation in UI was performed with an EPIC BeadChip 850 k arrays (both arrays from Illumina Inc.). The 
27 K methylation array interrogates mainly CpG islands in gene promoter regions, while the 850 K array also 
explores DNA methylation outside the promoter areas with whole genome  coverage32. To determine lncRNA 

Figure 3.  High performing prediction models of response. On the left is the number of types of data: 2: 
combination of 2 types of data; 3: combination of 3 types of data. Different performances are displayed in 
ascending order. The x axis is AUC as a percentage (0–100%). Although we tested 107 models with 1, 2 and 
3 variables, we only represented those models with performances over 90% measured in AUC, N = 59 (to see 
all of them see Supplementary Figure S7). FS: Fusion genes; Meth: DNA methylation; SNV: single nucleotide 
variation; GCE: gene copy estimation; DEXSeq: exon expression; lncRNA: long non-coding RNA; MIR: micro 
RNA, mRNA: gene expression. Graphics were generated with R package ggplot (R version 3.6.3. http://www.r-
proje ct.org)69.

http://www.r-project.org
http://www.r-project.org
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expression in UI HGSC data, we used data from RNA sequencing that was carried out on the Illumina HiSeq 
4000 genome sequencing platform using 150 bp paired-end sequencing by synthesis (SBS)  chemistry32. LncRNA 
expression was extracted from TCGA HGSC sequenced with the Illumina HiSeq 2000 genome sequencing 
platform that uses 75 bp paired-end SBS chemistry. Differences between 150 and 75 bp sequencing products 
may have contributed to differences in background noise and total lncRNA counts. Indeed, differences between 
the platforms may contribute to the decrease in performance validation with lncRNA data. Other technical dif-
ferences between both databases, like libraries preparations between both sets, may influence critically overall 
prediction model performance.

A strength of this study is that we used diverse databases of genomic and clinical variables to build predic-
tion models of response. We postulated that a complete database containing all variables involved in malignant 
cell functions would make prediction models more  accurate22,27,31,65. Therefore, we extracted as much informa-
tion from the HGSC specimens as possible to improve our models. Likewise, with clinical data we extracted 
as much baseline clinical information that could affect the primary outcome of interest. These variables may 
have been known previously to affect the outcome, or not. Public databases not designed specifically for predic-
tion assessment, like TCGA, may lack of some characteristics that result in important discrepancies of model 
performance. In the present study, we were able to adjust for these discrepancies in some of the models, except 
for those containing DNA methylation and/or lncRNA data. Another strength is the outcome definition. Pro-
gression-free survival of at least 6 months after the first platinum-based treatment, or responders, is an standard 
definition of response to  chemotherapy2,5,6. Indeed, patients that do not respond to initial standard treatment, 
platinum-resistant, or progressed during treatment, platinum-refractory, are considered a different population 

Figure 4.  Validation of UI prediction models of response to treatment in TCGA datasets. The columns 
represent different types of clinical and molecular data: DEXSeq (individual exon expression), Methylation 
(DNA methylation), LncRNA (long non-coding RNA expression), mRNA (gene expression), Fusion genes 
(presence of fusion genes), SNV (Single Nucleotide Variation), GCE (gene copy estimation), and MIR 
(microRNA expression). The rows also represent different types of data, either individually or in combination. 
(A) Validation of all prediction models of response in TCGA: Models containing DNA methylation and lncRNA 
data underperformed: AUC 95% CIs of TCGA-validation models did not overlap with AUC 95% CIs of UI-built 
training models (red cells in the graphic). Green cells represent those AUC 95% CIs of TCGA-validation models 
that overlap with UI-built AUC 95% CIs. (B) When we removed models containing DNA methylation and 
lncRNA data, 80% of CIs from UI-built training models overlapped with CIs from TCGA-validation models. 
(C) When prediction models without DNA methylation and lncRNA data were adjusted with genotyping data 
(as detailed in in Supplementary Methods), 97% of CIs from UI-built models overlap ped with CIs of TCGA-
validation models. (D) TCGA-validation performance did not improve when adjusting for different genotypes 
between UI and TCGA. This was tested in models with 1 and 2 types of data (18 models).
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when chemotherapy or clinical trials are  considered4,8. Treatment response was reviewed in all UI patients, 
and any patient that did not meet the inclusion criteria was excluded from the analysis. Also, to be included in 
validation analyses all TCGA patients had to meet treatment response definition criteria. Finally, validation of 
all models of prediction in a public, well known, independent database (TCGA) also strengthens our study. One 
of the inherent limitations of the study comes from its design: to build prediction models, initially, the outcome 
must be known, so the initial step of the analysis and validation is retrospective. The advantage of extracting 
data from patients of a single institution is the uniformity of diagnosis, outcome definition, specimen collection 
and processing, treatment philosophy and surveillance. This resulted in a homogenous population with quality 
biological and clinical data. The selection process may have some disadvantages, though, and the selected samples 
may lack diversity and it may be limited by the number of HGSC eligible patients. We are the largest of only two 
Gynecological Oncologic practices that serves around 80–90% of women with gynecological cancer in the state 
of Iowa (USA). Thus, the samples we have studied represents the female racial composition of the State of Iowa: 
95.5% white, 1.1% black, 3.4 other (Latina, Asian, Pacific)54. We adjusted these differences in genetic variation 
with TCGA during validation (see Results). In future studies, it may be especially important that every center 
that treats women with HGSC knows exactly the racial and genetic composition of the population they treat, 
so they can correct or adjust for these differences. We acknowledge the limited sample size used to construct 
prediction models, but the necessity of having an accurate outcome definition and homogeneous population is 
even more critical. Previous prediction studies are plagued with patients with heterogenous clinical characteris-
tics and outcome definitions, and with different histological types of ovarian cancers that made generalizability 
even more  difficult2,13,14,21.

Before these models can be applied clinical, they must be validated prospectively. Despite internal and external 
validation, models of prediction still may have biases due to overfitting. In the prospective model those biases 
could be detected and corrected before clinical application. Then, for models of prediction to be applied, there is a 
process that must be followed. After a biopsy is taken (either CT-guided or during surgery) and HGSC histologic 
type has been confirmed, we will determine all components of the best prediction model validated prospectively. 
As long as CT-guided biopsies have enough tumor cellularity (over 2/3), and not too much necrosis (< 30%), it 
would be enough and comparable to the initial model. Sequencing is rapidly evolving with single cell RNA-seq 
 technology66. Each of these components will be transformed as they were formatted in the initial analysis (i.e., log 
transformed, coding values, etc.) and the values would be applied to the weight of each variable in the selected 
model. The addition of all values will give us a final score. That score, and where it is located with respect to a 
chosen threshold, will assess the risk of the patient to fail initial therapy. We could design customized assays, 
PCR-based, for the genomic features of the model that would reduce costs and complexity and would improve 
the turnaround time so the results could be used even before surgery. With this information, clinicians could 
have a good sense of which patients would respond to treatment, and they would be better informed to plan 
initial treatment. For example, if a patient has a higher score for response, the surgeon would take that into 
consideration to balance the effort in cytoreduction with possible complications. Knowing that the patient may 
not respond as well to initial treatment may increase the surgical effort to minimize residual disease. Also, if a 
patient has a lower score for response, we may want to involve them in clinical trials that add targeted treatment 
to the initial chemotherapy backbone to improve outcomes.

Conclusions
Based on our results and previous reporting from other prediction  studies22,27,31,65 we can conclude that our 
hypothesis holds true: integrating comprehensive clinical and genomic data from patients with HGSC results 
in accurate and robust prediction models of treatment response. We have described high performance predic-
tion models of response for initial treatment in HGSC. Based on these performances, some of these prediction 
models could be useful to provide clinical decision support that will differentiate responders to non-responders. 
Furthermore, these models were validated in an independent, trusted, well known database.

Data availability
Data for the prediction model has been submitted to the GEO at NCBI website: https ://www.ncbi.nlm.nih.gov/
geo/. Datasets with methylation data can be browsed by their accession number: GSE133556. Datasets with RNA-
seq can be browsed by their accession number: GSE156699. The validation part of this study was performed in 
silico, with de-identified publicly available data. All data from TCGA is available at their website: https ://porta 
l.gdc.cance r.gov/. Software utilized by this study is also publicly available at Bioconductor website: http://bioco 
nduct or.org/.
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