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Scientific research consistently demonstrates that diseasesmay be delayed, treated, or even
prevented and, thereby, health may be maintained with health-promoting functional food
ingredients (FFIs). Consumers are increasingly demanding sound information about food,
nutrition, nutrients, and their associated health benefits. Consequently, a nutrition industry is
being formed around natural foods and FFIs, the economic growth of which is increasingly
driven by consumer decisions. Information technology, in particular artificial intelligence (AI),
is primed to vastly expand the pool of characterised and annotated FFIs available to
consumers, by systematically discovering and characterising natural, efficacious, and
safe bioactive ingredients (bioactives) that address specific health needs. However, FFI-
producing companies are lagging in adopting AI technology for their ingredient development
pipelines for several reasons, resulting in a lack of efficient means for large-scale and high-
throughput molecular and functional ingredient characterisation. The arrival of the AI-led
technological revolution allows for the comprehensive characterisation and understanding of
the universe of FFI molecules, enabling the mining of the food and natural product space in
an unprecedented manner. In turn, this expansion of bioactives dramatically increases the
repertoire of FFIs available to the consumer, ultimately resulting in bioactives being
specifically developed to target unmet health needs.
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FUNCTIONAL FOOD INGREDIENTS

Consumer Demand for Science-Backed Healthy Ingredients and
Natural Foods
With the recent exponential surge in information technology advancements, today’s consumers
demand instant access to deeper product understanding unlike any generation before. For the food
and nutrition market, this means that the next wave of economic growth will be driven by nutrition-
based technology that empowers consumers to take better control of their own health by accessing
validated information about beneficial effects of natural ingredients and supplements for various
conditions (Doub et al., 2015; Chen et al., 2018; Littlejohn et al., 2018). Market trends are
demonstrating that consumers are 1) increasingly expecting robust scientific evidence for
nutritional claims (Talati et al., 2016; Lin, Shih, and Lin 2017); 2) educating themselves to
understand the meaning and validity of Functional Food Ingredients (FFIs) and their associated
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health claims (A. Zhang et al., 2020; Hartmann et al., 2018); 3)
becoming confident to express their opinion regarding the safety
and benefits of food products (Savchenko et al., 2019); and 4)
identifying which food characteristics, such as food naturalness
and sustainability, are important to them (Román, Sánchez-Siles,
and Siegrist 2017). In particular, there is a need for
standardisation and transparency when it comes to health
claims for additives produced by food and nutrition
companies. For example, E-numbers (codes used to describe
substances used as food additives throughout the European
Union) are a set of standardised codes brought in to ensure
uniformity in additive description and as studies are showing
consumers prefer simpler health claims (Lynam, 2011), an
approach should be developed to standardise health claims,
similar to E-numbers, which is already an active area of
research (Gallagher et al., 2011). Ultimately, consumers are
currently pushing for more natural products, as some of the
additives used in food processing and preservation have raised
health concerns (Winkler et al., 2016; Younes et al., 2018;
Partridge et al., 2019) and triggered negative consumer
perception (Buchler et al., 2010; Bearth et al., 2014; Bärebring
et al., 2020; Jansen et al., 2020).

Functional Food Ingredients and Health
Lifestyle-associated complex diseases, especially metabolic
conditions such as diabetes and obesity (Baboota et al., 2013;
Rebello et al., 2014; Gentile et al., 2018), do not conform to the
traditional “one disease one drug target” paradigm (Hopkins
2008). Moreover, these conditions are typically chronic (Bailes
2002; Bray, Kim et al., 2017), and are amenable to dietary therapy
(Barnard et al., 2009; Sami et al., 2017; Zou et al., 2018; Castellana
et al., 2019; Estruch and Ros 2020). They cannot be sustainably
addressed by pharmaceutical means only, i.e., through “repair
after onset”; rather, prevention and nutritional intervention are
necessary complementary strategies to alleviate the public health
burden of lifestyle-associated chronic disease (Mattei et al., 2015;
S.; Sharma et al., 2010; Turner-McGrievy et al., 2017; Schwarz
et al., 2008). Large-scale clinical studies repeatedly demonstrate
that foods affect the risk of incidence and mortality from
common chronic diseases that are rapidly rising in society (L.
Wang et al., 2018; De Koning et al., 2012; Kenfield et al., 2014;
Tasevska et al., 2014; Salas-Salvadó et al., 2014; Esposito et al.,
2017; Dicker et al., 2018; Muraki et al., 2013), thus bearing the
potential to improve global population health in a cost-effective
manner (Eussen et al., 2011; Yang et al., 2018; J.; Wang et al.,
2020). For example, FFIs can mitigate the effects of chronic,
unresolved inflammation (Rein et al., 2019; K.; Kennedy et al.,
2020a) that can cause damage to healthy cells, tissues and organs,
and FFIs can actually maintain and restore homeostatic balance
(Stampfer et al., 2000; Muraki et al., 2013; Valls-Pedret et al.,
2015; Alkhatib et al., 2017). While pharmacological compounds
typically act on disease states after onset, FFIs exert multiple,
subtle, long-term effects in a concerted fashion that delay or
prevent such disease states. The benefits of FFIs become evident
upon chronic consumption of a blend of bioactives, where the
(food) matrix matters for both bioavailability and bioefficacy
(Kussmann et al., 2007; Holst and Williamson 2008).

So which factors are impeding a more rapid and systematic
progress in translational nutrition studies for health maintenance
and disease prevention?

a) Study design: One important explanation is inconclusive and
at times contradictory scientific findings as to the health
effects of various functional foods and ingredients (Ferreira
et al., 2016; Hungin et al., 2018). These partly result from poor
comparability of nutritional intervention studies, which are in
turn due to lack of standards for diets and study designs
(Kaput et al., 2015). Therefore, standardised studies
performed across different ethnicities with biochemically
defined diets and ingredients are required (Kaput et al., 2015).

b) FFIs discovery and characterisation: a further key limitation in
translational nutritional studies is the incomplete biochemical
and biological characterisation of active ingredients and the
serendipitous discovery process for natural ingredients with
health benefits.

This second issue can be effectively addressed with the
adoption of AI into the discovery and characterisation pipeline
which is the focus of this paper.

Characterisation of Functional Food
Ingredients—For a Healthier and More
Sustainable Food Chain
Customarily, characterisation comes after the identification of a
FFI and encompasses the determination and description of
biochemical, biophysical, and biological properties of the
active molecule(s) with all of these, and especially the latter,
allowing for assignment of health benefits to FFIs. Such
characterisation is usually performed with bioanalytical
methods in the “wet laboratory” and provided information
about key properties of FFIs when administered as a dietary
component or as a supplement. These properties concern safety
profile, stability after (oral) ingestion and across gastro-intestinal
digestion, amenability to active or passive transport from the gut
lumen across the brush border membrane into the blood stream
(systemic bioavailability), and availability in the target tissue
(local bioavailability). Ultimately, this information provides a
comprehensive understanding of mechanism-of-action, overall
bioavailability, bioefficacy and therefore dosage of FFIs. This
fundamental understanding of the ingredient’s molecular
properties and functions informs on:

- Reproducible analytical and production methods.
- Application of the ingredient within a diet or as a
supplement.

- An efficient route to clinical trials.
- Regulatory requirements.
- Further scientific research on the ingredient’s health effects.

In addition to the discovery and validation of new health-
beneficial FFIs or the assignment of new benefits to existing FFIs,
the above described systematic characterisation also enables
many of the risk-associated food product additives to be
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replaced by natural food-derived compounds, in particular
peptides, resulting in a safer food chain (Scotter 2011;
Schweiggert 2018). Such food additives typically confer
stability for longer shelf-life, and sensorial attributes like
flavour, texture, and colour to the food product (Parmar,
Angad, and Gupta Phutela 2015; Solymosi et al., 2015;
Taghvaei, 2015). Both a strong consumer demand and
compelling scientific reasons have triggered the replacement of
artificial, synthetic food additives by natural, typically plant-
derived, alternatives and, thereby, reduced the necessity for
potentially harmful food additives that are typically the source
of consumer concern (Van Gunst and Roodenburg, 2019;
Poortvliet and Hartemink, 2013).

Given the obvious scientific advantages and consumer needs,
why has FFI characterisation science not progressed at speed?
Notably, there are a number of challenges in characterising FFIs.

First, from an analytical perspective, characterisation of
bioactive food ingredients requires expensive and specialized
instrumentation and methods to identify, quantify and
biochemically characterise FFIs and, therefore, quality control
standards need to be established. Numerous compound-specific
bioanalytical methods and assays have been developed for the
micronutrient classes of vitamins (Mitić et al., 2011;
Nannapaneni et al., 2017; Y.; Zhang et al., 2019), essential
fatty (Ichihara et al., 1996; Birjandi et al., 2014; Dołowy and
Pyka, 2015) and amino acids (Fonseca et al., 2018; Virág et al.,
2020) and minerals (trace elements) (Carapelli et al., 2020;
Tempesta et al., 2020). While those methods have proven to
be precise, they typically represent “one-off” methods, and are
neither versatile nor high-throughput (Höller et al., 2018). These
traditional methods typically rely on multi-step fractionation,
separation and isolation of bioactive ingredients via size exclusion
(X. Wang et al., 2017; Gallego et al., 2018), ion exchange
(Mukherjee et al., 2016; Acquah et al., 2019), or reversed-
phase high-performance liquid chromatography (Bah et al.,
2016; Liu et al., 2018), coupled to compound detection,
typically by ultraviolet (UV) absorption (Brodbelt, 2016). Due
to the lack of compound-specific detection when using UV, the
final confirmation of bioactive compound identity relies on the
employment of internal or external standards, adding cost and
time to each analysis (Schnatbaum et al., 2020). Mass
spectrometry coupled with liquid chromatography (LC-MS/
MS) has replaced or is replacing most of those methods
because of its universal applicability to virtually any kind of
biochemical compound, the possibility of analyte multiplexing in
one run, speed of operation, and the capability of de novo
identification and structure elucidation of biochemical
compounds, largely enabled by MS/MS fragmentation of the
molecule of interest (Tribalat et al., 2006). LC-MS/MS is
particularly suited for the analysis of bioactive food peptides,
because of its high-throughput capability of sequencing and
quantifying peptides (Bronsema et al., 2013; “Simplification of
Complex Peptide Mixtures for Proteomic Analysis: Reversible
Biotinylation of Cysteinyl Peptides—Spahr et al.,
2000—ELECTROPHORESIS—Wiley Online Library,” n.d.).
Hence, peptidomics, and more specifically food peptidomics,
have evolved within the overarching mother discipline of

proteomics as the platform for comprehensive characterisation
of the protein and peptide complement in both food raw material
and products (Panchaud et al., 2012). Similarly, high-throughput
and paralleled LC-MS/MS methods have recently been developed
for the comprehensive profiling of essential nutrients such as
vitamins (Nagy et al., 2007), essential fatty (Hewawasam et al.,
2017; Serafim et al., 2019) and amino acids (Le et al., 2014;
Kambhampati et al., 2019). The task of identifying and
quantifying minerals (or trace elements) as a further
complement of essential nutrients, requires even more
sophisticated analysis with inductively-coupled plasma mass
spectrometry having more recently been established as the
state-of-the-art for such purpose (Konz et al., 2017).

Second, from a biochemical and biological perspective, the
molecular food characterisation process involves the
disentanglement of millions of compounds present at different
concentrations in the natural source, which essentially makes the
process akin to space exploration at molecular level. For example,
curcumin is a polyphenol found in Curcuma species. Such species
are considered functional food that exhibit moderate anti-oxidant
and anti-inflammatory effects in vitro and yet, due to the
complexity of the curcuma compound class, individual
molecules responsible for these activities have not yet been
identified (Schaffer et al., 2015; Hewlings and Douglas, 2017).
Conversely, even if a potential bioactive within a functional
ingredient is identified, assessing stability and bioavailability,
attributing functionality, and validating effects in vitro/in vivo
has proven to be difficult (Corrochano et al., 2019; Feng et al.,
2019). The latter challenge of assigning a specific effect to a
molecule is characteristic for food bioactives, because—unlike
pharmaceutical compounds—food bioactives exert multiple,
subtle, long-term effects in a concerted fashion, rather than a
single, strong, immediate effect conferred by a single molecule
(Cal et al., 2020; Corrochano et al., 2021). In addition, the food
matrix adds to the mode-of-action of food bioactives (Udenigwe
and Fogliano, 2017; Sun et al., 2020). Consequently, the attempt
to isolate both the active principle and its effect “in the same
fraction” often fails because the “purer” the compound the
smaller the effect (Papetti 2012).

Traditional Ingredient Discovery and
Characterisation
Health-augmenting bioactive components of natural products
have traditionally been discovered serendipitously, in an ad hoc,
hazardous fashion. For example, the discovery and establishment
of essential nutrients such as vitamins (from “vital amines”, i.e.
initially thought of as amine molecules essential to sustain life)
took decades over the 20th century (DeLuca 2016; Jones, 2018;
Cerullo et al., 2020) and, in turn, excessive financial resources had
to be invested to proceed from discovery via validation to
production (Acevedo-Rocha et al., 2019). Often, the absence of
an essential nutrient has been observed to be associated with a
disease and this disease has then been causally related to a
deficiency syndrome. For example, the high occurrence of
scurvy among sailing seafarers could be attributed to lack of
vitamin C over long periods of time, which was due to the absence
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of fruits from their diets (Magiorkinis et al.2011). Conversely, the
presence of certain dietary components has been correlated with
health benefits. For example, Mediterranean diets are typically
rich in olive oil and, therefore, in monounsaturated fatty acids,
and a causal relationship with reduced incidence of
cardiovascular disease in Mediterranean populations has been
postulated (Lorgeril and Salen, 2007; Massaro et al., 2010; De).
Notably, many of these correlational observations have to date
still not been solidified into causality between nutrient (un)
availability and health/disease condition—simply because of
lacking directional relationships between biochemically
characterised diets and bioactive ingredients on the one hand
and health outcomes in humans on the other hand (Kussmann
et al., 2007). Another, much more recent example of an initially
serendipitous functional ingredient discovery, is human milk
oligosaccharides (HMO) that were first discovered ∼1930
when a human milk carbohydrate fraction named
“gynolactose” was identified [the discovery process is reviewed
in Bode (2012)]. This discovery established the foundation for a
century of research (Kunz, 2012), but it is only in recent years that
this effort has delivered decisive data describing the benefits of
HMOs in the modification of intestinal microbiota (LoCascio
et al., 2007; Asakuma et al., 2011; Hoeflinger et al., 2015; Garrido
et al., 2016), the anti-adhesive effects against pathogens
(Idänpään-Heikkilä et al., 1997; Ruiz-Palacios et al., 2003;
Angeloni et al., 2005; Morrow et al., 2005; Yu et al., 2016), the
modulation of the intestinal epithelial cell response (Kuntz et al.,
2009; Holscher et al., 2014), and the development of the immune
system (Castillo-Courtade et al., 2015; Goehring et al., 2016; He
et al., 2016; Comstock et al., 2017; Donovan and Comstock 2017;
Dicker et al., 2018). In turn, driven by increased consumer
interest in improving gut health and in the consumption of
health-promoting dietary supplements (“Human Milk
Oligosaccharides Market Size | Industry Report, 2027, 2021”),
the emerging global HMO market value is expected to increase
five-fold in the present decade (“Global Human Milk
Oligosaccharides Market Expected to Grow with a CAGR of
21% During the Forecast Period,
2018–2027—ResearchAndMarkets.Com | Business Wire,
2020”). Further exponential growth in the HMO market is not
being hindered by lack of demand, but limited primarily by lack
of technology for large-scale production, in addition to high R&D
cost and stringent government regulations (“Human Milk
Oligosaccharides Market Size | Industry Report, 2027, 2021”).

These examples of serendipitous ingredient discovery
demonstrate the urgent need for a more efficient technology-
aided functional food ingredient characterisation pipeline. As
discussed above, the first big technological revolution in bioactive
compound—and also functional ingredient—discovery and
characterisation came with the advent of high-throughput
(HTP) screening. With the richness of biofunctionalities of
compounds present in the natural product and food space and
the resulting potential for therapeutic effects in mind, these
platforms were built to enable high-throughput fractionation,
identification, and quantification of (expected to be novel) natural
bioactives. The development was catalysed by a combination of
technological breakthroughs in miniaturised and multiplexed

separation (Chu et al., 2006), automated liquid handling
(robotics) (Chow et al., 2018), more sensitive and versatile
detection techniques, such as MS, and advanced
bioinformatics and in silico techniques to interpret MS data
(Li-Chan and Eunice, 2015). Despite notable successes,
especially in drug discovery (Chan et al., 2010; Takebe et al.,
2018), the yield of new bioactive food compounds and functional
ingredients has been limited, because of the particular challenge
with food bioactives acting together and within the food matrix,
as discussed above.

The integration of these new “wet laboratory” technologies
such as mass spectrometry and HTP screening into traditional
ingredient discovery and characterisation has certainly advanced
the field (Figure 1). However, due to still high costs for
equipment and analysis execution, this traditional approach of
“food material fractionation → bioactivity screening →
identification of active fraction(s) → ingredient identification
within active fraction → functional ingredient characterisation
→ benefit assignment” has not delivered on rapid expansion of
the pool of truly novel, disease-modifying and health-
maintaining molecules available to consumers: it is simply not
viable to experimentally unravel and confirm the effect of all
molecules within natural products for multiple therapeutic
benefits. Moreover, employing this traditional approach, health
claims are assigned only after bioactivity has been established: this
approach does not start with a health benefit and consumer need
to be addressed, rather it searches for an application once the
fortuitous new activities of the bioactives have been identified. As
a result, to date only a limited number of bioactive ingredients
with true life-changing properties, such as the essential
micronutrients vitamins (Jacobson and Jacobson, 2018;
Maqbool and Aslam, 2018), omega-3 and -6 fatty acids
(Thomas et al., 2009; Watanabe and Tatsuno, 2017; Shahidi
and Ambigaipalan, 2018) or phytonutrients such as
polyphenols (Nagy et al., 2009) and anthocyanins (Speer et al.,
2020; Tena et al., 2020), with the latter two not being classified as
“nutrients”, have been characterised and successfully marketed.
In view of this, identifying amalleable target in relation to a health
claim may be a more beneficial approach to discovery, and one
where advanced computational techniques offer the greatest
opportunity.

FIGURE 1 | Traditional natural bioactive discovery and characterisation
pipeline. Traditional process (blue) to discovery and characterisation of
functional ingredients. This process begins with food material fractionation,
followed by bioactivity screening, identification of active fraction(s),
ingredient identification within active fraction and functional ingredient
characterisation. Finally, the benefit is assigned to the bioactive (red) based on
the screening results.
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ARTIFICIAL INTELLIGENCE IN
FUNCTIONAL FOOD INGREDIENT
CHARACTERISATION

Advancing From Classical Bioinformatics to
Predicting Novel Bioactives
As discussed in Traditional Ingredient Discovery and
Characterisation, combining in silico bioinformatics, in vitro,
and HTP screening approaches has greatly advanced the
characterisation of FFIs (Li-Chan and Eunice, 2015). For
example, bioinformatic tools that implement sequence
similarity searches, such as the Basic Local Alignment Search
Tool (BLAST) (Altschul et al., 1990) can be used to in silico mine
the proteomes that contain specific proteins of interest, and to
identify molecular pathways, functions and diseases in which
these proteins are involved (Kanehisa and Goto, 2000; Harris
et al., 2004; Carvalho-Silva et al., 2019). However, these processes
typically analyse and extrapolate from known data and cannot de
novo predict molecular entities and functions. Such de novo
computational identification of bioactives and their functions
could and should be expedited by the incorporation of artificial
intelligence (AI) methods, in particular deep learning approaches,
providing true innovation in areas such as functional food and
small molecules at an unprecedented rate, resulting in novel
insights for a range of questions (Kaur and Kumari 2019;
Morley et al., 2020; Zorn et al., 2021; A. K.; Sharma et al.,
2017; Kathy; Kennedy et al., 2020b; K.; Kennedy et al., 2020a;
Chauhan et al., 2021; Corrochano et al., 2021; Cal et al., 2020).
With a focus on peptides, we argue here for complementing, if not
replacing, the traditional sequence of FFI characterisation
(Figure 1) with an AI-powered alternative (“benefit definition
→ bioactive prediction → food source identification → bioactive
release → bioactive validation”; Figure 2) by placing artificial
intelligence upfront in the entire process. In other words: AI
changes the paradigm from screening and retrospective benefit
assignment to design according to predefined benefit.

Advancing From Screening to Design: The
AI-Powered Discovery and Subsequent
Validation Workflow
An ideal starting point and guiding principle to FFI characterisation
that would address the current ad hoc discovery pipeline limitations
would be to first understand and define the nutritionally actionable
health needs of consumers and food chain-relevant replacement
requirements. This should be followed by design and development of

a commercially viable approach to identify, source, unlock and
characterise a safe bioactive food peptide solution that is specific
and effective and addresses needs in a cost-effective manner. For an
integrated AI workflow for ingredient discovery and
characterisation, once a health benefit is targeted, data in the
public domain are curated from structured and unstructured data
sources; these sources include scientific literature, patents and public
databases that are searched for known peptide sequences with
relevant bioactivity. Of note, the increased availability of food and
plant molecular data has resulted in the improvement of relevant
curated datasets (Westerman et al., 2020; Jensen et al., 2015; Rutz
et al., 2021). These data are combined with information collected
fromdifferentmass spectrometry-based peptidomics studies of plant
sources and FFIs (discussed inAI IntegrationWith Peptidomics) and
in-house bioactivity validation data (discussed in Circular Science:
The Iterative Feedback Loop). All these data are manually curated to
ensure robust standards required for building training datasets.
Typically, training datasets are compiled consisting of positive
bioactive datasets, where peptide sequences have been shown to
be efficacious for a specific activity either in published literature,
databases or in-house assays, as well as negative datasets, where a
peptide sequence did not exhibit the specified bioactivity (Kurczab
et al., 2014). If there are only positive datasets available, random
sequences may be used as the negative component for training
purposes. The positive and negative datasets are used as input to
build the algorithmic architecture that will predict peptides for a
given bioactivity. These datasets essentially “train” the predictive
architecture, in an iterative process, which results in improved
accuracy of peptide prediction.

AI Integration With Peptidomics
The power of AI-guided discovery and characterisation becomes
particularly evident in the case of peptide-containing food protein
hydrolysates, which represent a large source of FFIs with virtually
unlimited benefit potential. Protein hydrolysates are widely available
in the food market, for example as infant formulae based on cow’s
milk; soy, or rice protein hydrolysates; and fermented foods such as
yoghurt or kefir (Schaafsma, 2009). They contain large complex
networks of interacting bioactive peptides with attributable health
benefits (Hernández-Ledesma et al., 2014; Nasri 2017). To untangle
these networks and characterise key bioactives and functions within,
an integrated peptidomics-AI platform has recently been proven to
be successful by our laboratories (Corrochano et al., 2021; Casey
et al., 2021; Kathy Kennedy et al., 2020b; K. Kennedy et al., 2020a;
Chauhan et al., 2021). As previously discussed, mass spectrometry-
based peptidomics of food protein hydrolysates is a key input to the
AI platform: the process begins with LC-MS/MS-based peptidomics

FIGURE 2 | Integrating AI into the natural bioactive discovery and characterisation pipeline. Specific health benefits or replacement needs (red) are targeted at the
beginning of the process. AI integration allows for prediction of bioactives with pre-specified health benefits and subsequent selection of a most suitable source, which
contains an abundance of these bioactives, plus bioactivity confirmation (blue).
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that identifies and quantifies peptides in their native state, as released
by mild hydrolysis from parent proteins in the natural food source,
which is not limited to a single type of food or plant source.
Physicochemical characteristics such as molecular weight, charge,
length, and hydrophobicity can be assigned to these peptides, thus
creating libraries of invaluable parsed data from a wide range of
sources, including food-by products, ready to be leveraged by the AI
architecture, as described in Advancing From Classical
Bioinformatics to Predicting Novel Bioactives. This approach
creates millions of entries from natural source-derived in-house
peptidomic data, which are then combined with the manually
curated peptide data sourced from the public domain, and results
from subsequent in-house validation of peptide efficacy in relevant
bioactivity assays. Leveraging this data pool, these peptide libraries
can be classified into various structural and functional categories
using deep learning approaches, parameters such as toxicity,
solubility, size, polarity and binding dynamics and many less
definable albeit important characteristics are inferred from the AI
architecture. Ultimately, any number of these different deep learning
approaches are chosen depending on their relevance to the area of
interest and have been shown to be successful in the identification of
peptides with anti-microbial (Mohan et al., 2019), anti-aging (Kathy
Kennedy et al., 2020b; Kathy Kennedy et al., 2020a), or anti-
inflammatory (Rein et al., 2019) activity.

Circular Science: The Iterative Feedback
Loop
In addition to the hydrolysate-derived and peptidomics-analysed
peptide networks, individual predicted bioactive peptides are
synthesised chemically and validated for efficacy in vitro,

thereby elucidating mechanisms-of-action and creating a
sophisticated real-time feedback loop of positive and negative
data (Figure 3). This feedback constantly refines the deep
learning algorithms resulting in ever-improving accuracy of
bioactive peptide prediction. Once positive bioactive peptides
are identified, AI is used to search natural plant and food
proteomes for the presence of those positive peptides within
the protein complement of a plant or food source. Once such a
suitable source proteome is identified, AI informs the design of
the enzymatic hydrolysis process (selection of food-grade
enzymes) to be applied to unlock the targeted peptide and
generate a hydrolysate with the desired peptide profile. Like
the predicted and synthesised individual peptides, produced
FFIs are also validated for efficacy in vitro, creating more
valuable positive and negative data feedback for the AI
platform. In addition to bioactivity feedback, the safety and
toxicity of predicted peptides and FFIs as well as peptide
stability across oral ingestion and gastro-intestinal digestion
are also assessed, using cell viability assays (Cal et al., 2020)
and in vitro digestion models (Corrochano et al., 2021) that are
incorporated as part of the iterative learning process (Figure 3).
Resulting from this AI approach, the end product FFI exhibits
high bioefficacy, has a good safety profile and is characterised
with a pre-approved list of key constituent peptides that have
been synthesised and validated in vitro for a predicted activity.

For building an ingredient dossier and substantiating health
claims, it is not only important to characterise key bioactivities of
ingredients within a FFI but to also assess the ingredient’s stability
across the gastro-intestinal digestion, its transport properties
from the gut lumen to blood plasma, and its bioavailability at
systemic and target tissue level. Of note, current AI architecture

FIGURE 3 | Iterative feedback loop for an integrated discovery and validation of efficacy platform. This consists of different technologies to explore the molecular
diversity in plants and foods and create characterised natural, safe and effective health promoting bioactives for consumers. A number of processes are integrated in
creating and characterising a functional food ingredient. 1) A consumer-driven health benefit is targeted. 2) The Artificial Intelligence (AI) process begins with data
curation, predicts key bioactives and selects preferred ingredients. 3) Predicted bioactive peptides and ingredients are unlocked and produced. LC-MS/MS based-
peptidomics identifies and characterises the ingredients’ peptide profile. 4) Predicted peptides and ingredients are assessed for relevant bioactivity, safety and toxicity,
as well as for bioavailability using simulated gastric intestinal digestion (SGID) and investigation of stability in a relevant human matrix, i.e. blood plasma. The output of this
integrated discovery platform is a characterised functional food ingredient that addresses an unmet health benefit.
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has the ability to predict peptides with gastro-intestinal resistance
(Corrochano et al., 2021). Therefore, further simulated
gastrointestinal digestion and stability experiments in vitro and
ex vivo using FFIs bears the potential for future AI applications to
identify key latent features, and therefore, predict the
bioavailability profile of bioactive peptides and FFIs.

CASE STUDIESOFAI-POWEREDNATURAL
BIOACTIVE PEPTIDE DISCOVERY AND
CHARACTERISATION

Anti-Inflammatory FFI
An example of a successful AI-powered benefit-driven
bioactive FFI discovery is the identification and
characterisation of novel anti-inflammatory bioactive
peptides to address chronic low-grade inflammation. This
study applied an ensemble of deep learning models to
unstructured (publications, patents) and structured (data
repositories) public data, as well as to proprietary
peptidomic data, molecular docking simulations and
phenotypic data accrued from internal experimental
screening, to predict novel peptides with
immunomodulatory potential from a large input set of
peptide sequences from plant origins. Using an untargeted
predictive approach, Asian rice was shown to be a candidate
source that contained the novel predicted immunomodulatory
peptides encrypted in Asian rice proteins. A hydrolysate was
designed from the Asian rice bulk protein complement to
create a novel FFI, rice Natural Peptide Network (NPN)
(Rein et al., 2019). This FFI contained seven key constituent
bioactive peptides that were physicochemically characterised
and shown to exert immuno-modulatory effects in vitro. In
proof-of-principle human feeding trial and a kinetic human
trial, rice NPN reduced circulating TNF-α and improved
physical performance in a series of challenges (such as a
chair stand test) in an elderly population showing
“inflammaging”, i.e. immune-senescence (K. Kennedy et al.,
2020a; Rein et al., 2019). Of note, in this case of rice NPN, the
time from discovery to commercial launch was approximately
2 years (Nuritas 2018), highlighting the speed at which a
consumer need can be addressed using an AI-driven
bioactive food peptide discovery and characterisation process.

FFI for Muscle Health
Complementary to starting with a targeted health benefit, (“from
benefit to bioactive”), AI can be leveraged to characterise an
already known FFI or plant/food source in terms of constituent
bioactives with a targeted functionality (“from source to benefit”).
This approach was adopted to characterise a hydrolysate derived
from Vicia faba, NPN_1, that was previously identified to prevent
muscle atrophy in vivo (Cal et al., 2020). Here, two constituent
peptides were predicted to increase protein synthesis and
decrease inflammation and subsequently showed positive
in vitro effects on ribosomal protein (S6) phosphorylation and
reduction of TNF-α, respectively (see Corrochano et al., 2021 for

in depth detail on predictive architecture methods utilised)
(Corrochano et al., 2021). S6 phosphorylation induces the
translation of mRNA transcripts for ribosomal proteins and
elongation factors that induce muscle protein synthesis
(Peterson and Schreiber, 1998; Gordon et al., 2013), while
TNF-α is responsible for producing chronic inflammation,
which is implicated in skeletal muscle dysfunction (Londhe
and Guttridge, 2015). As discussed in Characterisation of
Functional Food Ingredients—For a Healthier and More
Sustainable Food Chain, assessing the bioavailability of an FFI
within a diet is key to characterising the bioefficacy of the
ingredient. Considering this, Corrochano et al. (2021)
demonstrated in vitro that both of the peptides with predicted
activity within NPN_1 from Vicia faba survived simulated
gastrointestinal digestion, were transported across the
intestinal barrier, and exhibited notable stability in human
plasma (Corrochano et al., 2021).

These two examples illustrate the game-changing impact of AI
in discovery and characterisation of peptide-based FFIs. When
integrated into the process, AI can:

- Extend the discovery space to the entire plant and food
kingdom because peptides are the largest class of genome-
encoded nutrients and are therefore amenable to prediction
of function and source.

- Direct the discovery process according to predefined, unmet
consumer needs, be they health care- or food chain-related.

- Accelerate the discovery and subsequent validation process
by rapid development and improvement of predictors and an
efficient prediction-experiment feedback loop.

- Reduce the number of candidates to be characterised
biochemically and biologically.

- Inform on clinical trial design and FFI health claims.
- Efficiently build a peptide-based FFI knowledge base that
informs both producers and consumers, fuelling food
innovation and augmenting science-backed nutritional
health benefits.

CONCLUSION

Given the widespread consumer acceptance of technology as a
facet of their healthcare regime and the potential importance
of FFI in preventive and therapeutic interventions for many
chronic disorders, it is becoming clear that we are standing on
the precipice of the next age of nutrition technology. The
vision of health care, enabled by both nutrition and medicine
(with an increasing overlap between the two) is changing from
being disease-focussed in a medical setting, to a prevention-
oriented practice, guided by health knowledge-empowered
consumers. Ultimately, what does this next age of nutrition
technology look like for the consumer? At present, most FFIs
are developed in extrapolation from a limited number of
ingredients with known health effects, in an inefficient,
unfocussed, costly, and exceptionally slow manner. There is
a vast reservoir of health-promoting and disease-defeating
molecules in nature and the use of AI will enable the most
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efficient discovery and characterisation of innovative
physiochemically and biologically characterised FFI
products. These nutritional interventions will have the
capability to be developed to address unmet consumer
needs in the future at the levels of both individual and
population health and a safe and sustainable food system.
As food and nutrition become increasingly perceived as a
knowledge-based health care and industry sector, we believe
that integrating AI into FFIs discovery and development will
greatly enhance the delivery of safe and cost-effective
solutions for improved human and animal health as well as
a safer and more sustainable food chain, over the decades
to come.
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