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Mesenchymal stem cells (MSCs) play an important role in developing bone tissue
engineered constructs due to their osteogenic and chondrogenic differentiation
potential. MSC-based tissue engineered constructs are generally considered a safe
procedure, however, the long-term results obtained up to now are far from
satisfactory. The main causes of these therapeutic limitations are inefficient homing,
engraftment, and directional differentiation. Flavonoids are a secondary metabolite,
widely existed in nature and have many biological activities. For a long time,
researchers have confirmed the anti-osteoporosis effect of flavonoids through in vitro
cell experiments, animal studies. In recent years the regulatory effects of flavonoids on
mesenchymal stem cells (MSCs) differentiation have been received increasingly attention.
Recent studies revealed flavonoids possess the ability to modulate self-renewal and
differentiation potential of MSCs. In order to facilitate further research on MSCs
osteogenic differentiation of flavonoids, we surveyed the literature published on the use
of flavonoids in osteogenic differentiation of MSCs, and summarized their pharmacological
activities as well as the underlying mechanisms, aimed to explore their promising
therapeutic application in bone disorders and bone tissue engineered constructs.
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INTRODUCTION

People are living longer than ever before because of medical, social and economic advances in the
whole world. However, increasing life expectancy also brings tremendous challenges to the society,
like chronic non-communicable diseases including osteogenesis are becoming the leading cause of
death and disability (Williams et al., 2018; Garmany et al., 2021). Osteoporosis is a condition in that
bones become weaker and more fragile owing to bone mass loss with ageing, diseases and drugs, so
the chances are higher they’ll crack or break. It is predicted that osteogenesis fractures will account
for over 50% of the total fractures, and unlike bone fractures in young people, osteogenesis fractures
induce a large proportion of disability and mortality in elderly people (Patel et al., 2021).
Additionally, poor fracture healing can cause critical-sized bone defects (Miller, 2016; Nauth
et al., 2018). Mesenchymal stem cells (MSCs)are a kind of adult stem cells with multiple
differentiation potentials (Friedenstein, 1976) and exist in a variety of tissues including bone
marrow, adipose tissue, umbilical cord, etc., (Baksh et al., 2004). Stand as promising candidates
in the treatment of bone defects and other degenerative bone diseases, MSCs have great potential use
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in the bone repair and regeneration owing to their osteogenic
differentiation potential and extensive sources. However, the ability
of MSC to differentiate into osteoblasts may become impaired
under certain pathophysiological conditions including oxidative
stress and inflammation (García-Sánchez et al., 2019). Hence, the
strategies aimed to increase cell survival and osteogenic capacity are
important for the MSCs-based bone regeneration therapies.
Strategies, including promoting MSCs osteogenic differentiation
through genetic modification (Armstrong and Stevens, 2019), or
providing the appropriate extracellular environmental cues like
scaffolds, growth factors or other bioactive molecules, are
commonly used (Velasco et al., 2015; Yang et al., 2017). For
example, combining β-tricalcium phosphate and BMP-2 has
been proven to be effective to enhance the osteogenesis of
MSCs (Dimitriou et al., 2011).

Some botanical drugs have been effective and safe in the
treatment of fracture healing in China for a long time, and
more and more evidences show many ingredients of them are
beneficial to bone health. Flavonoids are commonly present in
botanicals, they are synthesized in plants as secondary metabolites,
and characterized with diverse pharmacological properties
(Martens and Mithöfer, 2005). Natural flavonoids and their
glycosides have been identified and explored for their
therapeutic potentials in different fields including osteoporosis-
related complication and disorders. Many flavonoids exerted
promoting bone formation and anti-osteoporosis effects through
stimulating osteogenic differentiation of MSCs (Huang et al., 2018;
Wang et al., 2018; Casado-Díaz andRodríguez-Ramos, 2021). Also,
European nutritional studies demonstrated that daily intake of
flavonoids contributed to good bone health (Zamora-Ros et al.,
2016), Therefore, combining flavonoids and MSCs would be an
efficient strategy to enhance bone formation and increase cell
survival in the field of bone tissue engineering.

BASIC STRUCTURE AND CLASSIFICATION
OF FLAVONOIDS

Flavonoids are a kind of polyphenolic compounds widely present in
nature and have spectral biological activities. In terms of chemical
structure, flavonoids generally refer to a series of hydroxylated
phenolic molecules consisting with a C6-C3-C6 units, in which
two benzene rings (A and B rings) are linked to each other through
three central carbon atoms ring (ring C). These compounds can be
divided intomany different classes according to the oxidation degree
of the central three carbons, whether the three carbons constitute a
ring and the connection site of B ring, and so on. Generally,

TABLE 1 | Structure of flavonoids subclasses.

Subclass name Core chemical structure Typical compounds

Flavanones Naringin, Hesperetin

Flavonols Quercetin, Kaempferol, Rutin

Flavones Luteolin, Apigenin

Isoflavones Genistein, Daidzein

Anthocyanins Delphinidin, Cyanidin

Chalcones Xanthohumol

FIGURE 1 | Schematic presentation of the biological activity of
flavonoids.
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TABLE 2 | The list of some flavonoids compounds on MSCs osteogenic differentiation.

Compound name Dosage In vitro In vivo Results and mechanism of action

Icariin 0.1–10 μM hBMSC, hADSC - Enhance hBMSC and hADSC osteogenesis (Wu et al., 2017a)
0.1 μM rADSCs/glass

scaffold
rat calvarial bone Up-regulation VEGF expression, enhance angiogenesis, promote bone

formation (Jing et al., 2018)
5–40 μM hBMSC defect models osteogenesis ↑, adipogenesis ↓; miR-23a ↓, active Wnt/β-catenin (Xu et al.,

2021)
0.01–1 μM hBMSCs, rBMSCs - Osteogenesis ↑; sclerostin ↓, Wnt/β-catenin/ERα activation (Gao et al., 2021)

(Wei et al., 2020)
10–20 μM rat mandibular

MSCs
- osteogenesis ↑, bone osteoporosis ↓; osteocalcin ↑, STAT 3 pathway

activation (Xu et al., 2020)
1 μM rBMSCs OVX rats proliferation ↑, osteogenesis ↑, adipogenesis ↓; ERα pathway activation (Li

et al., 2018)
0.1–10 μM rBMSCs - protect against iron overload induced dysfunction of BMSCs; active PI3K/

AKT/mTOR pathway, inhibit ERK1/2 and JNK pathways (Yao et al., 2019)
0.1 μM rBMSCs - osteogenesis ↑, TAZ ↑; active ERα and Wnt/β-catenin pathway (Wei et al.,

2017)
50 mg/kg mBMSCs - osteogenesis ↑, bone loss ↓; autophagy activation (Liang et al., 2019)

Quercetin 2–10 μM hADSCs - proliferation ↓, osteogenesis ↑, ERK activity ↑, ER independent (Kim et al.,
2006)

1 μM rBMSCs/nHA
microspheres

OVX fracture rats proliferation ↑, osteogenesis ↑, angiogenesis ↑; ERK, p38 and AKT activity ↑,
RANKL ↓ (Zhou et al., 2017)

10 μM hBMSCs/scaffold - proliferation ↑, osteogenesis ↑, quercetin-crosslinked nHAp-modified
decellularized goat-lung scaffold (Gupta et al., 2017)

0.03 (wt%) rabbit BMSC/SF/
HAp scaffold

calvarial defect rats osteogenesis ↑, proliferation ↑, bone regeneration ↑(Song and Tripathy, 2018)

1–2 (wt%) hUCMSCs/3D
printing scaffold

- cells growth and mitosis ↑, osteogenesis ↑, calcium deposit ↑(Huang et al.,
2021)

10 μM rBMSC - osteogenesis ↑, adipogenesis ↓, active ERα-mediated circRNA-miR-326-5p-
axis (Li et al., 2021)

Quercetin 3-O-β-D-
galactopyranoside

1–25 μM hBMSCs - proliferation ↑, osteogenesis ↑, adipogenesis ↓, active Wnt/BMP pathway,
inhibit PPARγ pathways (Oh et al., 2020)

Isoquercitrin 0.1–1 μM rBMSCs maxillary
expansion rats
(10 mg/kg)

proliferation ↑, osteogenesis ↑, BMP2 ↑, bone formation ↑(Li et al., 2019a; Li
et al., 2019b)

Hesperetin 1–10 μM BMSCs - DEX-induced osteogenic inhibition ↓, active ERK signal pathway (Liu et al.,
2021b)

1 μM hBMSCs/gelatin
scaffold

rat osteotomy
model

osteogenesis ↑, active ERK and Smad pathways, accelerate fracture healing
(Xue et al., 2017)

10–100 μM PDLSCs - osteogenesis ↑, ROS ↓, active PI3K/Akt and β-catenin signal pathways (Kim
et al., 2013)

Naringin 1–100 μg/ml hAFSCs - proliferation ↑, osteogenesis ↑, BMP4 ↑, active Wnt/BMP pathway (Liu et al.,
2017)

0.03–0.1 (wt%) hUCMSCs/SF-
nHAp scaffolds

rabbit bone defect proliferation ↑, osteogenesis ↑, angiogenesis ↑, bone regeneration ↑, active
PI3K/Akt pathways (Zhao et al., 2021)

20–100 μM NPMSC - H2O2-induced cell apoptosis ↓; mitochondrial function ↑ (Nan et al., 2020)
70 μg/ml rabbit MSC/

scaffolds
rabbit bone defect bone formation ↑, inhibit BMPR-1A signaling (Dong and Ma, 2020)

0.1 μM rBMSC - restore TNF-α-induced osteogenesis and proliferation inhibition, p-IlBα and
nuclear p65 ↓, inhibit NF-lB pathway (Cao et al., 2015)

1–100 μg/ml rBMSC OVX rats proliferation ↑, osteogenesis ↑, bone loss ↓, inhibit JAK2/STAT3 pathway
(Wang et al., 2022)

Kaempferol 1 μM, 10 mg/kg rBMSCs OVX rats bone density ↑, osteogenesis ↑, CXCL12 ↑, miR-10a-3p ↓(Liu et al., 2021a)
0.1–100 μM or
25–100 mg/kg

rBMSCs OVX rats bone
defect

osteogenesis ↑, prevent OVX-induced osteoporosis, p-4E/BP1 ↓, p-S6K ↑,
active mTOR pathway (Zhao et al., 2019)

20–100 μM rabbit BMSC - cells viability ↑, osteogenesis ↑, adipogenesis ↓, IL-10 ↑, IL6 ↓, inhibit NF-κB
pathway (Zhu et al., 2017)

50 μg/ml rBMSC/TiO2
implants

rats femur bone
defect

cell proliferation ↑, osteogenesis ↑, bone formation ↑, kaempferol-loaded TiO2
implants (Tsuchiya et al., 2018)

2–10 μM hADSCs skull defect mice cell proliferation ↓, osteogenesis ↑, ERK activity ↑, bone regenerating ability
↑(Kim et al., 2006)

EGCG 1–10 μM hBMSCs rats femoral bone
defect

Osteogenesis ↑, Runx2 ↑, BMP2 ↑, bone defect healing ↑ (Lin et al., 2018b; Lin
et al., 2019)

5–40 μM hBMSCs - hypoxia-induced apoptosis ↓, ameliorate hypoxia-induced osteogenesis
reduction, miR-210 ↑, EFNA3 ↓(Qiu et al., 2016)

1–10 μM mBMSCs - cell proliferation ↓, osteogenesis ↑, Cbfa1 ↑, Runx2 ↑(Chen et al., 2005)
(Continued on following page)
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flavonoids are mainly classified into the following subclasses:
flavanones, flavonols, flavonones, and isoflavones, anthocyanins,
flavanols, (Amarowicz et al., 2009; Kumar and Pandey, 2013),
and their basic chemical structure and representative compounds
are shown in Table 1.

BIOLOGICAL ACTIVITY OF FLAVONOIDS

Flavonoids have a wide range of pharmacological activities including
anti-inflammatory, anti-oxidative, anti-microbial, and anti-tumor
properties (Kumar and Pandey, 2013; Wen et al., 2017) (Figure 1).
These properties are beneficial to bone regeneration. Firstly, many
flavonoids, including baicalin (Guo et al., 2019; Huang et al., 2019),
Kaempferol (Hwang et al., 2019), exert their anti-inflammatory
effects by inhibiting the activation of the nuclear factor NF-κB
pathway which is closely associated with inflammation.
Kaempferol, a bioflavonoid extracted from Persicaria tinctoria
(Aiton) Spach (Polygonaceae), prevented bone resorption through
its anti-inflammatory property on osteoclast precursor cells (Hwang
et al., 2019). Flavonoids have free radical scavenging activities
through inhibiting the formation of free radicals, reducing lipid

peroxidation, and stimulating antioxidant enzymes (Pietta, 2000).
Secondly, given their anti-oxidative roles of flavonoids, some of them
have been applied in clinical treatments. For example, troxerutin, a
semi-synthetic flavonoid compound prepared by
hydroxymethylation of rutin, is commonly used to treat ischemic
cerebrovascular diseases, thrombophlebitis, central retinitis, and so
on (Ahmadi and Mohammadinejad, 2021). Finally, flavonoids have
been demonstrated anti-tumor effects through inhibiting tumor cell
proliferation and metastasis, inducing tumor cell autophagy or
apoptosis, and preventing tumor invasion. High intake of dietary
flavonols, flavones and anthocyanidins may decrease the risk of
cancer (Zamora-Ros et al., 2016; Chang et al., 2018).

Botanicals containing flavonoids compounds have been
extensively used in traditional medicines for centuries, and
nowadays many flavonoids have been extracted or synthesized
and have been applied to treat various diseases in clinics. For
example, diosmin, a semi-synthetic flavonoid drug with, is used
to treat chronic venous insufficiency and varicose veins (Zheng et al.,
2020). However, even if there are a number of well-tried treatment
experiences of botanicals that are safe for clinical use, there are still
many disagreements due to their ambiguous mechanisms.
Investigating the underlying mechanisms of these herbal extracts

TABLE 2 | (Continued) The list of some flavonoids compounds on MSCs osteogenic differentiation.

Compound name Dosage In vitro In vivo Results and mechanism of action

1–10 μM SCAPs - Proliferation ↑, osteogenesis ↑, Dspp ↑, Dmp-1 ↑, active BMP-Smad signaling
pathway (Liu et al., 2021c)

1–10 μM rabbit BMSCs nude mouse EGCG/DC/HAp sponges increased cell internalization, attachment
proliferation, ALP ↑ (Kook et al., 2018)

Genistein 0.01–1 μM hBMSCs - Proliferation ↑, osteogenesis ↑, BMP2 ↑, SMAD5 ↑, RUNX2, ER dependent
(Dai et al., 2013)

5–20 μM rBMSCs - Proliferation ↑, osteogenesis ↓, PPARγ ↑(Zhang et al., 2016a)
1 μM hBMSCs - Osteogenesis ↑, adipogenesis ↓, PPARγ ↓, ER-dependent, TGF-β ↑ (Heim

et al., 2004)
Ipriflavone 0.4–0.8 μM rBMSCs OVX rats osteogenesis ↑, osteoporosis ↓, BMD ↑ (Gao et al., 2018)
Malvidin 25 μM hADSC - calcium deposits ↑, BMP-2 and Runx-2 ↑(Saulite et al., 2019)
Taxifolin 15 μM hBMSC - Osteogenesis ↑, inhibit NF-κB pathway (Wang et al., 2017b)
Diosmin 10–100 μM C3H10T1/2 - Osteogenesis ↑, runx2 ↑, active FAK/ERK signaling pathway (Chandran et al.,

2019)
Tricin 50–100 μM hMSC(ATCC) - Proliferation ↑, osteogenesis ↑, Wnt3α- mediated (Zhang and Li, 2018)
Glabridin 5 μM hBMSC - osteogenesis ↑, OCT4 gene↑(Heo and Lee, 2017)
HYSA 0.05–0.2 mg/ml rabbit MSCs - prevent glucocorticoid-induced osteoporosis (Wan et al., 2014)

0.1–0.5 mg/ml rBMSCs/scaffold rats bone defect Osteogenesis ↑, HIF-1α ↑, BMP-2 ↑, new bone formation ↑(Deng et al., 2020)
Butein 1–30 μM mBMSCs,

hBMSCs
- Osteogenesis ↑, adipogenesis ↓.activate ERK1/2 signaling pathway (Abdallah

and Ali, 2020)
Baicalein 0.1–10 μM TDSCs tendon-bone

healing rat model
Osteogenesis ↑, active Wnt/β-catenin signaling pathway (Tian et al., 2018)

Amentoflavone 0.1–5 μM hBMSCs - Osteogenesis ↑, p-p38 ↑, active JNK and p38 MAPK pathway (Zha et al.,
2016)

Troxerutin 25–200 μM hBMSC fracture rats model Osteogenesis ↑, fracture healing ↑, active Wnt/β-catenin signaling (Yang et al.,
2021)

Fisetin 200–800 μg/ml rBMSCs/BC
scaffold

- BC scaffold loaded with fisetin promote osteogenesis (Vadaye Kheiry et al.,
2018) proliferation ↓, migration ↓, YAP ↓, osteogenic differentiation
↓(Lorthongpanich and Charoenwongpaiboon, 2021)

1–30 μM chorion tissue
hMSC

- BC scaffold loaded with fisetin promote osteogenesis (Vadaye Kheiry et al.,
2018) proliferation ↓, migration ↓, YAP ↓, osteogenic differentiation
↓(Lorthongpanich and Charoenwongpaiboon, 2021)

hUCMSCs, human umbilical cord-derived mesenchymal stem cells; hAFSCs, human amniotic fluid-derived stem cells; NPMSC, nucleus pulposus-derived mesenchymal stem cells; NG/
SF/HAp, naringin-inlaid composite silk fibroin/hydroxyapatite; SCAPs, Stem cells from apical papilla; TDSCs, tendon-derived stem cells; PDLSCs, periodontal ligament stem cells; HYSA,
Hydroxy Safflower Yellow A.
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will help gain deeper understanding of their beneficial
pharmacological activities and facilitate medicinal applications.

EFFECTS OF FLAVONOIDS ON
OSTEOGENIC DIFFERENTIATION IN OF
MESENCHYMAL STEM CELLS
Many herbal medicines for the treatment of fractures and other
degenerative bone diseases have been used for several centuries in
some countries, and modern pharmacology confirmed their major
biologically active ingredients are flavonoids, such as soybean
isoflavones, and flavonoids from Drynaria roosii Nakaike
(Polypodiaceae), Epimedium brevicornu Maxim (Berberidaceae), etc.
(An et al., 2016). Among them, the corresponding active monomers,
including naringin, icariin, genistein, and daidzein, have been proved to
be able to regulate bone tissues metabolism by enhancing osteogenic
differentiation and inhibiting osteoclast-mediated bone resorption.
Especially their osteogenic induction potentials make flavonoids
potential candidates to interfere with the osteogenic differentiation
of MSCs (Table 2). Studies revealed flavonoids modulated the self-
renewal and osteogenic differentiation potential of MSCs by targeting
multiple signal pathways such as Wnt/β-catenin pathway, ERK
pathway, PI3K/Akt pathway, and regulating the bone-specific
markers and transcription factors including ALP, Runx2, BMP-2,
Cbfa1, Osx (An et al., 2016; Zhang et al., 2016a) (Figure 2). In
addition to directly stimulating the osteogenesis of MSCs,

flavonoids could also indirectly affect the osteogenic differentiation
of MSCs by their well-known antioxidant and anti-inflammatory
properties (Schilling et al., 2014; Zhang ND. et al., 2016; Zhang L.
et al., 2021). Besides, flavonoids were also loaded on bioscaffolds for the
promotion of MSCs self-renewal and differentiation in bone
regeneration. The utilization of flavonoids in biomaterials showed
to be a great prospect for bone tissue engineering.

Icariin
5Icariin (ICA) is a kind of flavonol glycoside and generally extracted
from Epimedium brevicornu Maxim (Berberidaceae), a traditional
Chinese herbal medicine for bone repair. A large number of studies
have revealed that ICA had protective roles on bone loss and bone
regeneration (Fu et al., 2016;Wang J. et al., 2016;Wei et al., 2017; Ye
et al., 2017;Wang et al., 2018; Liang et al., 2019; Gao et al., 2021). ICA
not only increased the ALP activity and mineralization of BMSCs
but also reduced bone resorption mediated by overactivated
osteoclasts in OVX-induced osteoporosis mice (Liang et al.,
2019). In addition, ICA has been shown to promote proliferation
by activating the Wnt/β-catenin signaling pathway (Wang J. et al.,
2016; Gao et al., 2021), which is the most important pathway in
osteogenesis. In Sprague-Dawley (SD) rats, ICA stimulated BMSCs
proliferation by increasing the phosphorylation level of GSK-3β and
cyclinD1 protein (Fu et al., 2016). ICA has been reported to promote
proliferation and osteogenic differentiation through increasing the
expression of transcriptional coactivator with PDZ-binding motif
(TAZ) both in rat BMSCs and ADSCs (Wei et al., 2017; Ye et al.,

FIGURE 2 | Signalling pathways of flavonoids in MSCs osteogenic differentiation.
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2017). Furthermore, the up-regulation of TAZ induced by ICA could
be blocked by ICI 182780 or DKK1 (the Wnt/β-catenin pathway
inhibitor), which indicatedWnt/β-catenin signaling pathway and ER
signaling pathway were involved in the osteogenic differentiation of
rBMSCs induced by ICA. The proliferation of rat BMSCs enhanced
by ICA is also achieved through activating ERK and p38 MAPK
signaling (Fu et al., 2016).

Similarly, Icariside II, a kind of metabolite of ICA, enhanced
osteogenic differentiation of BMSCs by increasing ALP activity
and calcium deposition at 10 µM (Luo et al., 2015). Icaritin,
another metabolic product of ICA, significantly increased ALP
activity and calcium deposition at concentrations 0.1–10 µM in
human BMSCs and ADSCs through increasing the expression of
BMPs, and showed better osteogenesis induction ability than
rhBMP-2 (Wu T. et al., 2017).

Quercetin and Kempferol
Quercetin and kaempferol are the main representatives of
flavonols, which are the 3-hydroxy derivatives of flavanones,
probably the most ubiquitous subclass of flavonoids in nature.
The anti-inflammatory and antioxidant effects of quercetin and
kaempferol have been repeatedly reported (Babaei et al., 2018;
Dabeek and Marra, 2019; Kashyap et al., 2019).

With the development of tissue engineering, the roles of
quercetin on the osteogenic differentiation of MSC gradually
attracted more attentions. It was reported quercetin could
increase bone mineral density (BMD) and improve bone
biomechanical properties in postmenopausal osteoporosis rat
models (Yuan et al., 2018). The increase of BMP-2 and TGF-β1,
two main osteogenic factors, was observed in rat and mouse BMSCs
treated with quercetin (Li et al., 2015). Furthermore, the ability of
quercetin to stimulate proliferation and osteogenic differentiation of
mouse BMSCs could be blocked by estrogen receptor inhibitor
ICI182780 (Pang et al., 2018). This indicates that quercetin enhances
osteogenic differentiation of MSCs by an estrogen receptor-
dependent mechanism. However, in another study similar effects
of quercetin on human adipose tissue-derived stem cells (hADSCs)
could not reversed by ICI182780, despite the fact that it up-regulated
the expression of BMP2, Runx2, as well as activated ERK
phosphorylation (Kim et al., 2006). Quercetin also promoted the
differentiation and proliferation of BMSCs through inhibiting NF-
κB activation and β-catenin degradation stimulated by TNF-α
(Yuan et al., 2018). Bian et al. also observed Wnt/β-catenin
pathway activation played an important role in the osteogenic
differentiation of quercetin treated-BMSCs (Bian et al., 2021).
Quercetin stimulated osteogenic differentiation of BMSCs by
increasing connexin 43 expressions (Zhang et al., 2020) which
could enhance osteogenic differentiation of BMSCs by promoting
GSK-3β/β-catenin signaling pathways (Lin FX. et al., 2018).

Kaempferol, another representative flavonol, had a similar
osteogenic induction potential with quercetin in periodontal
ligament stem cells (PDLSCs). The treatment with 10–6 M
kaempferol increased cell viability, ALP activity, and enhanced
calcium mineralization of PDLSCs. Furthermore, these effects of
kaempferol could be reversed by XAV939, a tankyrase inhibitor,
indicating Wnt/β-catenin signaling pathway was involved (Nie
et al., 2020). The activatedWnt/β-catenin signaling by kaempferol,

to some extent, depended on estrogen receptors, as the activation of
Wnt/β-catenin could be markedly blocked by the ICI 182780, the
inhibitor of estrogen receptors (Sharma and Nam, 2019).

Naringin and Hesperetin
Naringin and hesperetin are two of the best-studied compounds in
flavanones (Den Hartogh and Tsiani, 2019; Tutunchi et al., 2020).
Naringin is rich in grapefruit and also the main active component of
Drynaria roosii Nakaike (Polypodiaceae), a Chinese herbal medicine
commonly used to treat orthopedic disorders and bone injury
(Lavrador et al., 2018). Naringin dose-dependently increased ALP
activity and Alizarin red S staining, and decreased PPARγ2 mRNA
expression that is the marker of adipogenesis in rat BMSCs under
osteogenic induction. Furthermore, this osteogenic effect of naringin
could be reversed by the inhibitor of Notch signaling, indicating
naringin exerted its role through activating the Notch signaling
pathway (Yu G. Y. et al., 2016). In human BMSCs, wang et al.
demonstrated naringin promoted proliferation and osteogenesis by
activating the ERK signaling pathway (Wang H. et al., 2017). The
gene expressions of bone morphogenetic protein 4 (BMP4), runt-
related transcription factor 2 (Runx2), β-catenin, and Cyclin D1
were significantly up-regulated by naringin in human amniotic
fluid-derived stem cells (Liu et al., 2017). In addition, Naringin
alleviates the inhibitory effect of various stimulating factors on
osteogenic differentiation of MSC. In a glucocorticoid-induced
osteoporosis rat model, naringin not only improved bone mineral
density and bone morphology parameters, but also stimulated the
expression of autophagy-related factors including Beclin-1 and p62,
which indicated autophagy was also involved in the bone protective
effect of naringin (Ge and Zhou, 2021). Similarly, Hesperidin and its
aglycone, hesperetin, two flavonoids from citrus species, also exerted
protective roles in the osteogenesis of MSCs (Parhiz et al., 2015). In
dexamethasone-treated BMSCs, the inhibition of MSC osteogenesis
was reversed by the intervention of hesperetin through activating the
ERK signal pathway (Liu L. et al., 2021). retreatment with 1–100 μM
concentration hesperetin significantly increased the osteogenic
activity of periodontal ligament stem cells under high glucose
conditions. It was considered scavenged intracellular ROS
produced and activated PI3K/Akt and β-catenin signaling
pathway by hesperetin were responsible for this protective effect
(Kim et al., 2013).

Epigallocatechin-3-Gallate
Tea is abundant in flavonoids, mainly including catechins,
theaflavins, alkaloids, etc., (-)-epigallocatechin-3-gallate
(EGCG) is the major catechin isolated from Green Tea
(Friedman, 2007). As an antioxidant and anti-inflammatory
agent, EGCG plays an important role in maintaining the
balance of bone metabolism through the inhibition of bone
resorption as well as the enhancement of bone formation
(Nishioku et al., 2020). Although EGCG alone could not
induce osteogenic differentiation of MSC, EGCG was able to
enhance osteogenesis under osteogenic induction environment
through upregulating BMP2 expression (Jin et al., 2021). Lin et al.
showed EGCG enhanced osteogenic differentiation at the
concentrations range from 1 to 10 µM both in murine and
human BMSCs by increasing the expression of osteoblastic
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genes including BMP2, Runx2, ALP, osteonectin, and osteocalcin,
as well as promoting ALP activity and mineral deposits (Lin S. Y.
et al., 2018). Furthermore, the effect of EGCG on promoting the
mineralization of human MSCs is independent of its antioxidant
activity (Lin S. Y. et al., 2018). In human ADSCs, 5 μM EGCG
significantly enhanced cell proliferation and ALP activity,
experimental data revealed that osteo-inductive effects of EGCG
on human ADSCs were associated with the inhibition of
adipogenesis-related gene expression (Zhang et al., 2019). For
the stem cells from apical papilla (SCAPs), at low
concentrations, EGCG promoted the cell proliferation and
increased ALP activity as well as mineral deposition through
activating the BMP-Smad Signaling Pathway (Liu Z. et al.,
2021). In addition to promoting osteogenic differentiation
directly, EGCG treatment significantly reversed the inhibition of
MSC osteogenesis induced by hydrogen peroxide and
inflammatory cytokines. EGCG could enhance osteogenic
differentiation by increasing the expression of β-catenin and
cyclin D1 in H2O2-induced human BMSCs (Wang D. et al.,
2016). A similar protective effect of EGCG was also observed
on TNF-α-induced osteogenesis inhibition of MSC, in which
EGCG reversed the TNF-α-induced destructive through
inhibition of NF-κB signaling (Liu et al., 2016).

Genistein
Genistein is one of the most abundant isoflavones in Glycine max
(L.)Merr (Fabaceae), and it is also called a phytoestrogen owing to
its similar structure to that of human estrogen. It could bind to ERα
and ERβ and exert ER-mediated estrogenic effects including
increasing bone formation and repressing adipose tissue (Jaiswal
et al., 2019) At the same time, it possessed antiestrogenic effects as
well as non-ER-mediated effects like inhibiting tyrosine kinase
(Dang et al., 2003). Genistein exerted estrogenic effects mainly by
binding to ER α, even with a stronger affinity to ERβ than to ERα,
genistein, and 8-prenylgenistein (a prenylated derivative), all of
them could inhibit GSK-3β enzymatic activities though inducing
GSK-3β phosphorylation at Serine-9 in human BMSCs andmurine
pre-osteoblast MC3T3-E1 cells. In addition, 8-prenylgenistein
showed stronger osteogenic ability than genistein in MC3T3-E1
cells by increasing ERα-dependent β-catenin protein expression
(Qiu et al., 2020). It seemed that both Wnt/β-catenin and ERα-
associated signaling were involved in the osteogenic activities of
genistein. Owing to its well-known estrogenic ability, genistein
directly or indirectly affected the osteogenic and adipogenic
differentiation of MSCs. In the early stages of differentiation of
human primary BMSCs osteogenic markers were strongly up-
regulated by genistein, while during adipogenic differentiation,
adipogenic regulators, including PPARγ and CCAAT/enhancer-
binding protein-α, were down-regulated after genistein treatment
(Heim et al., 2004). A lineage shift from adipogenesis to
osteogenesis induced by genistein was observed in murine MSCs
and pre-osteoblasts isolated from newborn mice (Li et al., 2005).
However, in another study, genistein was reported to enhance
adipogenesis of human MSCs and suppressed their osteogenesis
through regulating the expression of PPARγ (Zhang LY. et al.,
2016). These contradictory results may be caused by the dose of
genistein, at low concentrations (&1 μM), genistein acted like

estrogen, stimulating osteogenesis and inhibiting adipogenesis,
whereas at high concentrations (>1 μM), genistein acted as a
ligand of PPARγ, leading to up-regulation of adipogenesis and
down-regulation of osteogenesis (Dang et al., 2003).

Other Flavonoids
In addition to the flavonoids mentioned above, other flavonoid
extracts like baicalein (Ren et al., 2021), apigenin (Pan et al., 2021),
amentoflavone (Zha et al., 2016), and anthocyanins (Saulite et al.,
2019) have also been found to enhance osteogenic differentiation of
MSCs. In human periodontal ligament cells (hPDLCs), baicalein
induced osteogenic differentiation dose-dependently (1.25–10 μM)
by activating the Wnt/β-catenin signaling pathway (Chen et al.,
2017). Cyanidin-3-O-glucoside (C3G), the most common type of
anthocyanin in nature, was shown to increase the expression of
osteoblastic markers and osteoblast proliferation rate both in
mouse MC3T3-E1 cells and human osteoblasts (extracted from
the hip joint of patients with osteoporosis) by regulating ERK1/2
signaling pathway (Hu et al., 2021).

Inhibitory Effects of Flavonoids on
Mesenchymal Stem Cells Osteogenic
Differentiation
Although most studies showed that flavonoids promoted the
osteogenic differentiation of MSC, some reports showed that
flavonoids sometimes had an inhibitory effect on the osteogenic
differentiation ofMSC, and promoted adipogenesis (Hu et al., 2011;
Zhang LY. et al., 2016; Casado-Díaz et al., 2016). Some flavonoids
showed that they promoted the adipogenesis and inhibited
osteogenesis of MSCs (Hu et al., 2011; Casado-Díaz et al., 2016;
Lorthongpanich et al., 2021). Two isoprenylated flavonoids isolated
from the twigs of Morus alba L (Moraceae; Morus alba L)
significantly promoted adipogenesis and induced up-regulation
of the expression of adipocyte-specific genes, aP2 and GLUT4 in
3T3L1 cells (Hu et al., 2011). In another study showed that high
concentration of quercetin inhibited osteoblastic differentiation and
promoted adipogenesis through Wnt/β-catenin inhibition. Which
indicate such possible adverse effects of high use concentrations
should be taken into account in nutraceutical or pharmaceutical
strategies using flavonoids (Casado-Díaz et al., 2016).

THE APPLICATIONS OF FLAVONOIDS IN
BONE DISORDERS BY PROMOTING
OSTEOGENIC DIFFERENTIATION OF
MESENCHYMAL STEM CELLS

The effects of flavonoids on bone defects had been extensively
established using animal models (Yu et al., 2021; Zhao et al., 2021;
Zhou and Xie, 2021). Flavonoids stimulated bone formation by
increasing cell viability, matrix mineralization, calcium
deposition, and up-regulation of osteogenic genes (Wu Y.
et al., 2017; Preethi Soundarya et al., 2018). Meanwhile,
flavonoids have great importance in treating bone disorders
owing to their anti-inflammatory and anti-oxidative activities
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as we described above. Many flavonoids have been widely used in
ovariectomized (OVX) osteoporotic, age-related osteoporotic
models as well as glucocorticoid-induced osteoporosis, by
regulating osteoblast-regulated bone formation and/or
osteoclast-mediated bone resorption.

The impaired capability of osteogenic differentiation and
senescence of MSCs are important pathogeneses of osteoporosis
caused by various reasons (Jiang et al., 2021). In the aging process,
as well as in glucocorticoid-induced osteoporosis, the ability of
MSCs’ commitment towards the osteogenic lineage is impaired,
while the adipogenesis is increased. Reactivating the osteogenic
differentiation ability of MSCs is considered an important way to
osteoporosis treatment. Icariin was effective in preventing
postmenopausal osteoporosis through stimulating osteogenic
differentiation of BMSCs (Wang et al., 2018), and it also
protected against glucocorticoid-induced osteonecrosis of the
femoral head in rats (Huang et al., 2018). Hesperetin alleviated
glucocorticoid-induced inhibition of osteogenic differentiation
through ERK signal pathway in BMSCs (Liu L. et al., 2021).
Flavonoids also have great potential for the treatment of
diabetes-induced osteoporosis owing to their anti-oxidative and
adipogenesis inhibition activities (Nelson-Dooley et al., 2005;
Kawser Hossain et al., 2016). Diabetes-induced osteoporosis is
caused by chronic hyperglycemia, advanced glycated end products,
and oxidative stress (Mohsin et al., 2019). In a rat model of diabetic
osteoporosis, icariin could prevent diabetic osteoporosis by
reducing blood glucose, inhibiting bone marrow adipogenesis,
as well as up-regulation the expression of Runx2 and OPG (Qi
et al., 2019).

MSC-based cellular therapy is a promising novel therapeutic
strategy for osteonecrosis of the femoral head (ONFH).
Flavonoids can increase bone formation in femoral heads by
promoting MSCs proliferation and osteogenic differentiation.
In methylprednisolone-induced rat ONFH models, the lithium
chloride treatment group displayed a higher vessel volume and
better trabecular structures as well as more OCN expression
compared with methylprednisolone group, MSCs extracted
from rats treated with lithium chloride had higher
proliferative and osteogenic ability (Zhang Y. L. et al., 2021).
Zefeng Yu et al (2016) also demonstrated lithium could enhance
angiogenesis and stabilize osteogenic/adipogenic balance in
glucocorticoid-induced ONFH rat models by activating the
β-catenin pathway.

COMBINATION USE OF FLAVONOIDS AND
BIOMATERIALS IN BONE TISSUE
ENGINEERING
Mesenchymal stem cells combined with biological scaffold
materials loaded with flavonoids are an excellent option for the
application of flavonoids in the field of bone tissue engineering
repair, and incorporation of flavonoids into biomaterials or
scaffolds has been proved as a reliable technology for bone tissue
regeneration, For example, the quercetin/silk fibroin/
hydroxyapatite scaffolds with BMSCs increased the formation of
new collagenous tissue and tissue ingrowth in a rat calvarial defect

model, quercetin was found to promote cell proliferation and
osteogenic differentiation of BMSC cultured in scaffolds in vitro
(Song and Tripathy, 2018). Flavonoids also can stabilize collagen
and inhibit its degradation in biological systems (Shavandi et al.,
2018). The BMSCs-laden quercetin/collagen/hydroxyapatite
sponge was proved as an alternative biomaterial for bone
regeneration (Song et al., 2020). Kaempferol-immobilized
titanium dioxide promotes the formation of new bone and is
considered an effective tool for bone regeneration around dental
implants (Tsuchiya et al., 2018). Promoting the proliferation and
osteogenic differentiation of MSCs on scaffolds is the main role of
flavonoids in the construction of bone tissue engineering. Besides,
flavonoids enhance bone regeneration by counteracting the negative
effect of oxidative stress onMSCs viability and differentiation (Forte
et al., 2016; Chu et al., 2018). However, recent developments in bone
tissue engineering focusing on flavonoids and their potent biological
properties that enhance bone health has beenwell-reviewed (Preethi
Soundarya et al., 2018). The potential of a combination of
biomaterials loaded with flavonoids and MSCs might be
enormous in bone tissue engineering.

FUTURE PROSPECTIVE

Extensive evidence showed the roles of flavonoids in regenerative
and therapeutic medicine. Flavonoids as stimulants significantly
affect the proliferation and osteogenic differentiation ofMSCs. To
further effectively screen and evaluate the application potential of
flavonoids in bone tissue engineering and repair, it is very
necessary to establish a standard and effective osteogenic
differentiation protocol of MSC induced by flavonoids.
Furthermore, the dose-effect relationship between MSCs and
flavonoids should also be well established to achieve desired
effects and reduce side effects. Given most flavonoids
compounds are not having good solubility and low
hydrophilicity, delivery systems, such as nanocarriers, with
flavonoids are promising strategies for the improvement of cell
uptake efficiency. In addition, MSCs combined with biological
scaffold materials loaded with flavonoids are an excellent option
for the application of flavonoids in the field of bone tissue
engineering.

CONCLUSION

Flavonoids have a wide range of pharmacological activities and
widely exist in nature. Flavonoids play a crucial role in the bone
repair process not only through direct induction of osteoblastic
differentiation, but also through their anti-inflammatory and
anti-oxidant effects. MSCs combined with flavonoids are a
promising alternative in stem cell therapy and bone tissue
engineering construction. Flavonoids can help to increase
proliferation and osteogenic differentiation of MSCs as well as
modulate the microenvironment in the injured bone. To promote
their clinical use, more works need to be done to improve their
safety, efficacy, and quality, and to explore the mechanisms
underlying their roles.
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