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Abstract: Bone augmentation implants are porous to allow

cellular growth, bone formation and fixation. However, the

design of the pores is currently based on simple empirical

rules, such as minimum pore and interconnects sizes. We

present a three-dimensional (3D) transient model of cellular

growth based on the Navier–Stokes equations that simulates

the body fluid flow and stimulation of bone precursor cellular

growth, attachment, and proliferation as a function of local

flow shear stress. The model’s effectiveness is demonstrated

for two additive manufactured (AM) titanium scaffold architec-

tures. The results demonstrate that there is a complex interac-

tion of flow rate and strut architecture, resulting in partially

randomized structures having a preferential impact on stimu-

lating cell migration in 3D porous structures for higher flow

rates. This novel result demonstrates the potential new

insights that can be gained via the modeling tool developed,

and how the model can be used to perform what-if simula-

tions to design AM structures to specific functional require-

ments. VC 2014 The Authors. Journal of Biomedical Materials Research

Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
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INTRODUCTION

Implants for bone augmentation are expected to stimulate
bone ingrowth to enable fixation to the host bone, and their
porous surfaces facilitate osteogenic cell recruitment to
improve such fixation.1 Both the mechanical environment
and interstitial fluid flow can significantly affect bone tissue
remodeling.2–5 Vascularization and osteogenic cell prolifera-
tion plays a key role in osteogenesis6 and is promoted in
the bone healing process by interstitial fluid flow in perios-
teum and surrounding tissues.7 Johnson et al.8 hypothesized
that fluid flow-induced shear in bone regulates continuous
and rapid release of nitric oxide from osteoblasts and the
vascularization introduced by the fluid flow may stimulate
bone formation. Meanwhile, bone deformation caused by
the mechanical loading also produces interstitial fluid flow
in the bone tissue.9,10 Weinbaum et al.9 suggested that
osteocytes can be stimulated by the mechanical induced
fluid shear stress and thus promoting osteoblast migration
and proliferation.

Figure 1 shows a schematic of bone with mechanical
deformation induced interstitial fluid flow. The mechanical
movement induces the interstitial fluid flow and applies
shear on cells. Similar to the mechanical loading system,

flow-induced shear stress applied on the implant structure
via in vitro three-dimensional (3D) perfusion systems has
also been found to have important stimulatory effects on
cell and tissue growth.3,11,12 Raimondi et al.13,14 was first to
perfuse the culture medium through the 3D inner structure
of the chondrocyte-seeded scaffold and predicted that a wall
shear stress in the range 1.5–13.5 mPa was required for the
stimulation of higher cell viability. By assessing the MC3T3-
E1 osteoblast-like cell viability qualitatively by confocal
microscopy and measuring the DNA content within the scaf-
folds, Cartmell et al.15 suggested that for a positive effect on
seeded cell viability and proliferation in vitro, fluid shear
stress ranging from 0.05 to 25 mPa was desired. Knowledge
of how shear stress relates to bone precursor cell migration,
attachment and proliferation (termed cellular growth from
here on) in various design architectures can help optimize
both implant design and manufacture. An understanding of
fluid-induced shear stress within porous structures and
induced bone ingrowth, is therefore of great importance
and has been studied numerically by several prior
authors.14,16–23

Raimondi et al.13 developed a 2D computational fluid
dynamics (CFD) model to characterize the macroscopic flow
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through a scaffold made of hyaluronic fibers. The model
was a first attempt to provide the correlation between the
fluid shear stress and cultured cell response. It predicted a
median shear value of 3 mPa at a 44.2 mm/s flat inlet veloc-
ity, however, the accuracy of the model was limited by the
2D domain.

Botchwey et al.24 used Darcy’s law to estimate the shear
stress analytically in a 3D porous scaffold, and Coletti
et al.20 calculated the macroscopic average shear stress by
modeling the flow in a homogeneous scaffold volume. With
the development of microtomography (mCT) being applied
to tissue engineering scaffold imaging and quantifica-
tion,25,26,50 the simulation of flow in 3D constructs with real
pore architectures improved dramatically.16,27,28 Raimondi
et al.16 calculated the shear stress acting on the outer sur-
face of the internal pores, using a CFD model based on a
partial volume from mCT images, to be in the range 4.6–56
mPa. These results suggested a strong correlation between
the hydrodynamic shear and the invoked biosynthetic
response in chondrocyte systems. Porter et al.19 used 3D
lattice Boltzmann simulations to investigate the flow in
cylindrical scaffolds as a function of flow rates, and they
found an average shear stress of 0.05 mPa was required to
have stimulating effect on cell proliferation, and that higher
shear stress would lead to subsequent upregulation of
osteoblast growth.

Cioffi et al.18 developed a CFD model to evaluate the
shear stress acting on scaffold walls based on higher resolu-
tion mCT images of a polyester urethane scaffold. Various
flow rates were simulated in this model and the calculated
shear stresses varied between 0 and 40 mPa over the scaf-

fold surfaces. The same group then developed a combined
macroscale/microstructured model to investigate the effect
of the flow rates and scaffold microstructures on shear
stress and oxygen consumption rates in the central region
of the scaffold.29 Their model suggested that a flow rate of
0.3 mL/min, at which 95% of the scaffold surface area expe-
rienced shear stresses less than 6.3 mPa, would maintain
the oxygen supply above the anoxic level. While mCT has
allowed significant improvements in capturing geometric
effects on flow, these have yet to be coupled with time
dependent simulation of the influence of cell parameters,
such as migration and attachment rate, matrix deposition,
and the resultant time dependent reduction in flow channel
directions. All these issues are crucial to the correlation of
fluid induced shear stress and osteoblast growth.

Chung et al.22 developed a mathematical model which
incorporated nutrient transport to predict the macroscopic
average shear stress with a fivefold increase in correlation
to cell growth. Liu et al.21 presented a mathematical model
which applied the Brinkman equation to describe the local
fluid flow. Their work incorporated the nutrient transfer
and the flow rates with cellular growth. Recently, Lesman
et al.23 considered the time dependent proliferation and
matrix production from preseeded fibroblasts inside a
porous structure by adding cell-layers of constant thickness
onto the pore periphery, which however in reality, greatly
depends on local shear stress acting on the cells. All of the
prior studies focused on macroscopic shear stress predic-
tions; however, there has not been a comprehensive study
on the local shear stress effect on cellular growth which
inter-relates time dependent flow simulation with flow-
induced shear stress distribution on a microscopic level.

Quantifying local flow shear stress to predict cellular
growth at microscopic level, and then feeding the results
growth back into flow simulations offers a better under-
standing of the complex coupling of how flow and porous
scaffold strut architecture impact osteogenesis. In this study,
a 3D microscale numerical model has been developed that
simulates the fluid flow induced shear stress, time depend-
ent cellular growth and the inter-relationship between the
two dynamic factors. The model was then applied to study
the influence of strut architecture design in AM Ti implants,
with the inter-relationship between the flow-induced shear
stress and the time dependent cellular growth at the micro-
scopic level being determined in different implant structural
designs.

MATERIALS AND METHODS

A microscale model was developed to study the flow
induced shear stress and cellular growth by solving the
Navier–Stokes equations interactively with the cellular
growth. The CFD model employed here was based on a
prior 3D open-source microscale three-phase flow model,
mMatIC, which incorporated momentum and mass transport
in liquid–solid–gas phases.30,31 Therefore, only a summary
of how the mass transport was simulated in the model is
given below (for details see Refs. 31–36) with details of the

FIGURE 1. Schematic of bone and mechanical deformation induced

interstitial fluid flow. Fluid-induced shear stress comes from the

mechanical movement, upregulating cell proliferation/attachment and

hence the cellular growth (after Carvalho et al.48). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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development of fluid shear stress evaluation and henceforth
cellular growth prediction.

Momentum and mass transport
We assumed the laminar flow occurring through porous
media materials and the fluid is incompressible and Newto-
nian. Based on the control volume fixed in space, the
momentum equation takes the form:37

o~ul

ot
1r � ~u l~ulð Þ2 l

q
D~ul52

1

q
rP (1)

where ~ul is the velocity vector in fluid, t is the time step, P
is the pressure, q is the fluid media density, and m is the
fluid media viscosity. In order to unify the equation in the
entire domain including fluid, bone and growing cells, the
velocity field was defined as

~u5f~ul (2)

where f is the fraction of fluid in a single control volume.
When f5 1, the volume represents pure fluid in the porous
space; when f50, it represents the bone structure itself,
which ensures ~u 5 0 in the bone; and when 0< f< 1, it rep-
resents the growing cell at the surface. Therefore, this tran-
sition from fully liquid (f51) to fully dense bone (f5 0)
can represent the attachment of cells and their subsequent
densification.

The conservation of mass equation, therefore, applied:

r �~u50 (3)

The flow governing equations above were solved by a
projection method38 based on the regular orthogonal grid
mesh using a control volume method. The Poisson equation
for pressure, as deduced using the projection method, was
solved using the preconditioned conjugate gradient solver.
In order to take into account the momentum sink at the
bone/fluid interface, the standard projection method was
modified in the following way. The intermediate velocity, u*,
explicitly evaluated from the previous time step and the

pressure gradient rP were multiplied by the liquid fraction
to obtain the new velocity, ~un11:

~u�5f ~un
1DtF ~unð Þð Þ (4)

~un11
5~u�2fDtrP (5)

where F is the discrete convection and diffusion term in the
Navier–Stokes equations. The method has been validated
against analytical solutions.39 This modification does not
introduce extra computational effort but provides a dynamic
solution to the transient cellular growth.

Shear stress and cellular growth model
Shear stress on the bone surface was calculated through the
velocity gradients neighboring the growing cells. Velocity
components were specified at the center of each cell, and
gradients were evaluated linearly along velocity nodes to
the center. Based on the definition of fluid shear being the
components of stress coplanar with the cross section of a
control volume,40 we defined the shear stress in the x direc-
tion as:

~sx52l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du

dy

� �2

1
dv

dx

� �2
s

(6)

where u and v are the velocity tensors on the tangential
plane of the fluid flow. A similar definition is then applied
to~sy and ~sz.

The local shear stress magnitude was calculated as

s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~sx21~sy21~sz2

q
(7)

For a simpler calculation and less intensive computa-
tional requirement, we set the subsequent cell growth rule
as a simplified linear relationship with the shear stress
(original reference of the concept in Ref. 21). The absolute
growth (%) on each grid was defined as:

gi5f s; tð Þ5A3s3Dt (8)

where A is a constant, termed the growth factor; Dt is the
time step. The value of the growth factor was chosen so
that the maximum growth rate matches previous recorded
values in literature.22,41

Figure 2 shows the schematic of the boundary and ini-
tial conditions used in the simulations. A fully liquid region
was placed up- and downstream to act as a fluid buffering
zone and to allow the flow to stablize on the upstream and
downstream flow faces. Up/downstream end faces of the
buffer zone in the desired flow direction were set as fluid
inlet/outlet boundaries. Four different constant inflow
velocities, 0.02, 0.05, 0.1, and 0.2 mm/s were simulated
(note all producing laminar, low Reynolds number flows). A
pressure outlet was imposed on the outlet boundary. A no-
slip condition was used on the predefined bone–fluid inter-
face and zero-flux on other bounderies. The other simula-
tions parameters are given in Table I.

FIGURE 2. Schematic of the flow system used for the cellular growth

simulation with boundary and initial conditions (regions A and B:

fluid buffer zones). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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It should also be noted that, as previously reported by
Cartmell et al.15 and Raimondi et al.,16 once the shear stress
becomes greater than 0.05 mPa, cell proliferation/stimula-
tion will be promoted. However, if the shear stress becomes
too large, exceeding 56 mPa, cells tend to be washed out
and therefore it slows down the cellular growth rate. There-
fore, a minimum and a maximum shear stress constraint
were incorporated in the model. In this case, the growth
vanishes when the calculated shear stress magnitude lies
outside the range (shear stress <0.05 mPa or >56 mPa).
The simulation was run both with and without the upper
constraint of 56 mPa so that the effect of high shear stress
on decreasing the cell growth can be quantified.

Implant microstructures
In this study, we compared two different porous Ti implant
structures designed by Mullen et al.,42 with regular and
randomized strut ordering respectively, as a demonstration
of the applicability of the simulations to help analyze real
designs. The implants were constructed using the unit cell
(UC) approach.43 A brief description of the design procedure
is given below, for full details see Mullen et al.42,43 Note
that the variability has been quantified both by Mullen et al.
and also in terms of baseline flow properties in Zhang
et al.,44 therefore only one example of each design type will
be studied, and only as a virtual model.

All porous structures were designed based on a
computer-aided design (CAD) model by using the Manipula-
torVC software suite (University of Liverpool, UK). The 3D
structure was first completely filled with cubic UCs of unit
side of 600 mm. Then all UCs were filled with a connected
lattice structure by joining sets of vertices and vectors in
3D space to form regular octahedrons (allows tessellation in
3D). Further on, the Cartesian coordinates of the lattice
points were perturbed by 630% in the x, y, and z direc-
tions, whilst maintaining connectivity, to produce a 30%
randomized structure (Note that the randomized structures

are actually pseudo-random because the randomness is fully
reproducible.) When producing actual components, the
selective laser melting (SLM) additive manufacturing pro-
cess is used. During SLM, the vertices and vectors were
sliced at 50 mm intervals to locate laser melting points on
all layers. To produce virtual parts, we simulated this pro-
cess by voxelizing the SLM input file containing the coordi-
nates of the laser melting nodes producing a 3D model
implant. Using an inhouse convolving code,49 the melting
nodes were first located as foreground voxels and a perfect
sphere kernel was then chosen to perform convolution on
these nodes throughout the volume to form the struts
phase. All the other voxels are assigned as background vox-
els indicating the void phase. The grid mesh is therefore
based on the voxelized CAD volume.

Both regular and 30% randomized structures form com-
pletely open porosity that is fully connected to the surface.
The overall porosities of the two test samples were kept
similar as 67.5 and 69.2%, respectively. The effects of ran-
domising the regular lattice are that the mode value of pore
size increases from 203 to 302 mm and the overall distribu-
tion is shifted to a wider range. This has brought about a
difference of 3.4% in their intrinsic permeability property.

RESULTS

The model was applied to calculate the cellular growth in
the regular and 30% randomized structures with similar
porosities characterized based on the 3D CAD design. For
each sample, we calculated the velocity profiles, the shear
stress magnitude and distribution, the pressure drop, the
growth rate and corresponding volume fraction of cellular
growth over 120 h at each inflow velocity.

The overall pressure drop in both implant structures at
inflow velocity of 0.02 mm/s are shown in Figure 3. Pres-
sure in the 3D volume of the regular design (0% randomiza-
tion) varies from 0 to 1.5 mPa. Simulation in the 30%

TABLE I. Parameter Values Used in the Model

Property Value Unit References

Initial inflow
velocity (vin)

2 3 1025 m/s

5 3 1025

1 3 1024

2 3 1024

Medium density (q) 1009 kg/m3 Coletti
et al.20

Medium viscosity (m) 8.4 3 1024 kg/ms Coletti
et al.20

Growth factor (A) 1.5 3 1024 –
Max growth rate 1.5 3 1025 s21 Coletti

et al.20

Min (critical)
shear stress (s)

0.05 mPa Cartmell
et al.15

Max shear stress (s) 56 mPa Raimondi
et al.16

Grid size 36 mm

FIGURE 3. 3D volume images showing the overall pressure changes

in the regular and the randomized structures (inflow velocity: 0.02

mm/s). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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randomized structure reveals a maximum pressure variation
2.4 times greater than the regular due to the uneven distri-
bution of velocities of fluid passing through more torturous
channels.

Figure 4 shows selected 2D cross sectional views of the
velocity and shear stress distributions from central slice of
the 3D model for both the (a) regular and (b) 30% random-
ized structures when the inflow velocity is 0.02 mm/s. In the
regularly ordered implant structure, higher velocity flow
occurs in the narrow channels with weak flow in the open
channel [labeled as region ‘(N)’ in Figure 4(a)]. The shear
stress is almost zero in ‘(N)’ regions. The maximum values of
velocity along the flow direction within the regular (0.13
mm/s) and randomized structures (0.16 mm/s) exhibit a dif-
ference of 23.1%. The average velocity throughout the entire
structure is also compared: the 30% randomized structure
has a higher average velocity value of 22.7% greater than

that of the regular structure at the final stage of growth.
Higher shear stress values are seen at the locations where
the changing in velocity is significant. The maximum value of
shear applied on the solid in the randomized structure is 3.4
times greater than the regular. Note that we ran a CFD simu-
lation in Fluent on same structures without cells to validate
the initial stage results, and the overall pressure changes and
velocities agreed with each other within experimental error.

The distributions of local shear stress throughout the reg-
ular and randomized implants are shown in Figure 5 as fluid
volume normalized histograms. Shear stress values corre-
sponding to all the interfacial cells are counted and normal-
ized by the total fluid volume. Five key parameters are
extracted in Table II: the mean, standard deviation of shear
stress and the mode, skew and kurtosis of the distribution at
both early and final growth stages. The strong influence of
inflow velocity and strut structure on local shear stress is

FIGURE 4. (a,b) 2D cross-sectional views of local velocity distributions in the regular and 30% randomized structures. (c,d) 2D cross-sectional

views of local shear distributions in the two structures (inflow velocity: 0.02 mm/s). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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clearly shown. In the regular structure, more local cells have
higher shear stress with the increase of inlet velocity. This
trend is also shown for the randomized structure. However,
in the 30% randomized structure, both the shifts in modal
values of the shear stress from 2.6 to 71.1 mPa at early stage
and 5.8 to 71.1 mPa at final stage reveal greater ranges than
those in the regular structure [(Figure 5(b)].

In the regular structure, at earlier time points up to
16.7 h [Figure 5(a)], a factor of 10 increase of the inflow
velocity (0.02–0.2 mm/s) causes a 11.4 times increase in
the mode of the shear stress (5.3–60.6). Although shear
stress distributions at later time points, especially in the
regular structure, show a less steep increase in the mode of
the shear, there is a large difference in distributions
between the regular and randomized structures at higher
inflow velocities. For example, in Figure 5(c,d), significant
reduction in regions with high shear stress values (>1500
mPa) is found in the randomized structures as time
increases. And the randomized structure has a broader dis-
tribution of shear with a maximum shear stress 1.7 times
larger than the regular structure.

A comparative plot of volume fraction occupied by cells
over time in the two structures is shown in Figure 6(a). A

tenfold increase in inflow velocities causes a nine times
increase in cellular growth (1.9–17.5%) in the regular struc-
ture after 120 h while in the randomized structure, cellular
growth is initially similar for all inflow velocities, but after
60 h, it shows a faster migration with a 11.5 times increase
in bone volume (1.7–19.5%).

Several prior experimental studies suggested that there
is also a maximum shear stress beyond which cells will not
attach and there will be no bone formation. This is simu-
lated by applying the upper shear constraint for cellular
growth. Results in Figure 6(b) show significant decreases in
cellular growth by 80.1 and 81.0% in the regular and 30%
randomized structures with the constraint of maximum
shear value, 56 mPa, respectively. Further comparing the
two structures, an 8.8% additional decrease of cellular
growth volume fraction is found in the randomized
structure.

The comparison of the total volume fraction of cellular
growth without constraints in both structures is shown in
Figure 7 as a function of the average local shear stress.
Both regular and 30% randomized structures show similar
growth at inflow velocities less than 0.1 mm/s; however by
looking at the shear distributions in the 3D structures,

FIGURE 5. Local shear stress histogram distributions at different time points with the vertical axis showing the frequency density within a given

shear range (log-based bin range). (a,b) At time point 16.7 h, shear distributions at four different inflow velocities in the regular (a) and 30%

randomized (b) structures. (c,d) At inflow velocity 0.2 mm/s, shear distributions at four different time points in the regular (c) and 30% random-

ized (d) structures. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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factors which may hinder the growth in the regular and
randomized structure appear differently, and are discussed
in the following section. At an inflow velocity of 0.2 mm/s,
after 9% of channel volume is occupied by new grown tis-
sue, the regular structure experiences higher shear stress
and shows less increase in bone volume fraction when com-
pared to the randomized structure.

The comparison of overall growth rate (calculated by aver-
aging the growth rates at all the time points) for regular and
randomized structures is shown in Figure 8. It suggests that
at velocities greater than 0.5 mm/s, randomized structure
exhibits a generally better performance of cellular growth
under the prevalence of the fluid flow induced shear stress.

DISCUSSION

A numerical model is presented which simulates the micro-
scopic flow shear stress and cell migration, attachment and
proliferation (termed cellular growth in this paper for brevity),
reveals for the first time their complex inter relationship as
osteogenesis occurs, especially at a microscopic level. Although
a few prior computational approaches have been proposed to
evaluate the shear stress on porous scaffold surfaces,16,22,29,45

and after imposed bone deposition,23 the time dependent
changes in flows and distribution of cellular growth have not,
to our knowledge, been previously simulated. This model is
applied to study complex 3D AM structures, allowing quantita-
tive prediction of the effect of shear stress distribution within
the real implant structure on cellular growth, and locates the
actual areas where the cellular response takes place.

The model was applied to investigate the local shear
stress distribution within two types of implant structures,
regular and 30% randomized with four different fluid inflow
velocities over a time period of 5 days. As shown in Figure

4(c,d), the randomized structure had a much broader range
of shear stress (maximum shear is >4 times that of the reg-
ular structure). The distribution of the shear stress in the
regular structure showed a regular pattern with relatively
high local stress concentration in strut channels, but little
shear in areas within pores. This promotes cellular growth
in the narrow channels, but not across the bulk of the regu-
lar structure. In the randomized structure, the fluid flow
was more evenly distributed [Figure 4(b)].

Analysis of shear stress histograms at various time points
reveals that in the regular structure, the distribution of shear
varied more significantly than that in the randomized struc-
ture, especially at later stages of growth [see Figure 5(c,d)].
At lower inflow velocities (0.02 and 0.05 mm/s), there was a
twofold increase in the mode of the shear stress with
increasing time during the early stages. At higher inflow
velocities (0.1 and 0.2 mm/s), a threefold increase in the
mode of the shear stress took place in the middle stages.
However, after about 9% cellular matrix deposition, the
growth rate (mode) dropped and the distribution narrowed.
As cellular growth continues, high stress regions were
formed (regions with shear greater than 1000 mPa). This
indicates that in the regular structure, as the attached cellular
layer thickness increases, interconnect regions become con-
stricted, which further reduces shear in the bulk regions
(pores).

In the randomized structure, at all inflow velocity mag-
nitudes, the shear stress distributions showed a similar
skew trend at all time points. We hypothesize that in the
randomized structure preferential flow channels are pres-
ent (larger channels), which act like larger arteries feeding
finer capillaries, where these larger channels do not
become as easily constricted as in the regular structure.

TABLE II. List of Key Parameters Obtained from Shear Stress Distribution at Final Growth Stage

Inflow
Velocity
(mm/s)

Regular Randomized

16.7 h 120 h 16.7 h 120 h

Mean shear stress (mPa) 0.02 4.3 6.7 3.9 6.4
0.05 13.1 18.5 12.2 19.0
0.1 30.3 50.1 29.3 48.0
0.2 66.9 105.2 66.9 90.4

Mode shear stress (mPa) 0.02 5.3 10.2 2.6 5.8
0.05 11.3 24.5 12.3 12.3
0.1 35.3 35.3 20.2 54.9
0.2 60.6 60.6 71.1 71.1

Standard deviation (31023) 0.02 4.6 6.9 4.8 7.6
0.05 14.6 20.9 15.9 28.3
0.1 34.1 86.6 39.3 85.1
0.2 75.7 304.1 90.9 162.3

Skew 0.02 0.3 0.5 0.7 0.8
0.05 0.5 0.5 0.8 1.0
0.1 0.8 1.2 0.9 1.3
0.2 0.8 1.4 0.9 1.3

Kurtosis 0.02 21.5 20.6 21.1 20.9
0.05 21.4 20.8 20.9 20.4
0.1 20.5 1.4 20.7 0.4
0.2 20.5 0.9 20.8 0.6
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This results in the magnitude of shear stress increasing
during cellular growth without fully obstructing blockages.
This shows how internal structural differences may be
used as a tool for the bespoke design of implants. For
example, at earlier stages of implantation, the structural
flow channels need to be formed to serve as a 3D template
for guiding the desired cellular growth, and for vasculari-
zation. More uniformly distributed shear with a stable
average magnitude may be required during later treatment
period.

The total amount of cellular growth in both types of
structures is compared at different inflow velocities
(Figure 6). In general, the amount of cellular growth is
directly proportional to the inflow velocity. In the regular
structure, the growth increased almost threefold from 1.8 to
4.7%, at inflow speed from 0.02 to 0.05 mm/s. For the

randomized design, the result showed similar volume fraction
of cellular growth as the regular structure for inflow veloc-
ities< 0.1 mm/s. However, at high flow velocities and longer
times, the rate of growth in random structures increased by
11% over the regular strut architecture. This finding can be
explained by two mechanisms: (1) in the regular structure,
due to the ordered design, there are channels where there is
little flow in contact with the struts wall and therefore less
shear, resulting less amount of cellular matrix in those areas;
and (2) as discussed previously, at later growth stages, in the
regular design all channels are equally constricted hindering
growth, whilst the randomized structure has preferential
channels for flow that prevent flow blockages.

Raimondi et al.16 suggested that beyond a certain shear
stress magnitude, cells would be washed out hence the
growth might be hindered. In order to examine the potential

FIGURE 6. (a) Comparative plot of cellular growth vs. time between the regular and 30% randomized structures at different inflow velocities.

Insets: I showing the blockage of the channels in the regular structure at later time stage; II showing the concentration of shear stress in the

randomized structure, where indicates more growth at later stages after 70 h. (b) Effect of maximum shear constraint on bone ingrowth at

inflow velocity of 0.2 mm/s in the regular and 30% randomized structures. (i,ii) showing the final growth at 120 h without capping the shear

stress. (iii,iv) showing zoomed in features of cellular growth (colored red). (v,vi) showing the final growth at 120 h with the shear constraint.

Contour colored by shear stress. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of excessive shear stress on bone growth, our numerical
model with maximum shear constraint provides a quantita-
tive result on the effect of its cell wash out effect. We picked
the simulation with the highest inflow velocity to examine
the impact of the maximum shear on cellular growth. It was
found that with the maximum shear stress constraint, the
amount of cellular matrix decreased significantly in both
designs (by more than a factor of 5). This suggests that the
high inflow velocity (2 mm/s) simulation results might be
unrealistic, and highlights the need for careful selection of
profusion bioreactor flow rates. However, the full impact of
maximum shear on cellular growth is still unclear, and fur-
ther experiments need be performed to understand the rela-
tionships, that can be used to find the best perfusion inlet
velocity and correlate this finding to the cellular growth rate.

The relationship between the volume fraction of cellular
growth and the shear stress is shown in Figure 7. Local
shear stress increases with the amount of new cellular
matrix into the structure, which in turn blocks part of the
flow channel, causing fluid to pass through narrower space,
resulting in the increase in the fluid velocity in the porous
structure and consequently the shear applied on surface
cells. It is interesting to see that for the highest inflow
velocity case, the regular structure shows a higher local
shear profile than the randomized structures for less cellu-
lar matrix. This agrees with the observation that at high
velocity, regular channels become blocked by fast matrix
production, which results in a less optimal environment for
later stage cellular growth.

From Figure 8 where we plot the average values of
growth rate at different time points with different inflow
velocities, it can be concluded that the overall growth rate
depends, to a large extent, on the flow inlet velocity. Compar-
ing the performance of the two types of structure, greater
overall growth rate may occur at higher flow velocities in a
randomized structure. However, the shear stress and the
location of the cells and matrix depend greatly on the inter-
nal structure at a micro level. Further simulations are
required on a statistical basis to test the model on structures
with different internal strut and pore morphology.

The model was validated against both prior computa-
tional and experimental work. Firstly, the predicted velocity
profile was compared to a prior computational fluid dynam-
ics (CFD) simulation given in Ref. (44). The results correlate
well, matching the prior study to within 2–16% in terms of
the flow velocities and to within 11% in terms of perme-
ability. The models were also compared qualitatively to the
studies by Raimondi et al.17 and Liu et al.21. The current
numerical model employs the same concept of time depend-
ent cellular growth kinetics [Eq. (8)] proposed by Liu et al.
and Raimondi et al. with the advance of having microscopic
shear stress interacting with the cellular growth. Direct
comparison of the shear stress magnitudes with the litera-
ture is not straightforward since the shear stress estimation
will be greatly affected by the choice of simulation parame-
ters and the porosity/microstructure of the structure being
tested. Our predicted levels of shear stress agree reasonably
well with Raimondi et al.’s work (mean shear stress of 16
mPa at an inlet velocity of 0.22 mm/s).16 Compared to
Maes et al.’s work28 at similar inflow velocity (0.03 mm/s),
the average stresses were the same order of magnitude (1.4
mPa). The amount of cellular matrix at 5 days agrees with
Raimondi et al.’s prediction but a direct comparison is not
possible as the void fraction and shear stress levels were
not given in that publication. Note that although we simu-
lated in flow velocities up to 0.2 mm/s to compare, at veloc-
ity above 0.1 mm/s the shear stress predicted will be too
high for cell attachment.16

Although we have used the previously proposed linear
cell growth function depending on shear stress, this func-
tion can be easily altered in the model as more data
becomes available, such as dependency on local oxygen
delivery, nutrient concentration and mechanical shear. In
addition, the coefficients will be dependent on the fluid,
cells used, etc. Another limitation is a paucity of quantitative
experimental validation data for these dependencies. At

FIGURE 7. Comparison between the regular and 30% randomized

structures at final stage of growth: volume fraction of cellular growth

vs. average shear stress at different flow inlet velocities (without

shear constraint).

FIGURE 8. Comparison between the regular and 30% randomized

structures: overall growth rate (average value at different time points)

versus inflow velocity (without maximum shear constraint). Inset: I, II,

III, and IV showing final growth in the regular structure; i, ii, iii, and iv

showing the final growth in the randomized structure. Contour col-

ored by shear stress. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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present, we can only compare the average values of shear
stress provided by macroscopic computational modeling
results. Further modification should be made to our micro-
scopic model to include the nutrition and oxygen transport
in order to provide more accurate results of cellular growth
with local shear stress distribution once this data becomes
available. Improvements such as a statistical analysis can be
performed to further test the accuracy of the model by
applying the model on different samples with same level of
randomization and also samples with different levels of ran-
domization, or only completely different structures, such as
apatite foams46 or bioglass foams.47

In summary, our study provides a microscopic evalua-
tion of shear stress within the implant structure, and
reveals direct quantitative results of cellular growth related
to shear stress distribution. By simulating the flow in
implants with different internal structures, the model pro-
vides potential guidelines to optimize the implant construc-
tion for stimulating cellular growth.

CONCLUSIONS

A microscale numerical model, based on the Navier–Stokes
equations, was developed to study time dependent osteo-
genic cell migration, attachment and proliferation (termed
cellular growth for brevity) and flow shear stress under two
proposed AM Ti scaffold structures. The cellular growth as
a function of time and shear was simulated in 3D structures
on a microscopic scale for the first time and its subsequent
influence on the flow was determined.

The influence of local fluid shear stress on cellular
growth as a function of increasing inflow velocities,
implant structures and time was investigated. The increas-
ing inflow velocity enlarges the range of shear stress and
has a positive relationship to the overall growth rate. The
results indicate that the 30% randomized structure pro-
duces a much higher variation in flow shear than the regu-
lar structure. During initial stages of growth, this may not
affect osteogenesis significantly; but interestingly as cellu-
lar growth progresses, the randomized structure sustains
high growth rates due to preferential flow channels form-
ing. In the regular structure, localized growth may hinder
the cellular growth at later stage which reduces the overall
growth rate. Quantitative effect of excessive shear stress
predicted that higher inflow velocities, greater than those
shown in experiments, can be used as guidelines for
designing the optimal perfusion rates in the cell culturing
study. Our model provided a viable tool that can be used
to determine the influence of hierarchical structure design
in any open cell implant, using additive manufactured Ti
implants as an example.
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