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Herpes simplex virus type-1 (HSV-1) ocular infection is one of the leading causes of
infectious blindness in developed countries. The resultant herpetic keratitis (HK) is caused
by an exacerbated reaction of the adaptive immune response that persists beyond virus
clearance causing substantial damage to the cornea. Intramuscular immunization of mice
with the HSV-1(VC2) live-attenuated vaccine strain has been shown to protect mice
against lethal ocular challenge. Herein, we show that following ocular challenge, VC2
vaccinated animals control ocular immunopathogenesis in the absence of neutralizing
antibodies on ocular surfaces. Ocular protection is associated with enhanced intracorneal
infiltration of gd T cells compared to mock-vaccinated animals. The observed gd T cellular
infiltration was inversely proportional to the infiltration of neutrophils, the latter associated
with exacerbated tissue damage. Inhibition of T cell migration into ocular tissues by the
S1P receptors agonist FTY720 produced significant ocular disease in vaccinated mice
and marked increase in neutrophil infiltration. These results indicate that ocular challenge
of mice immunized with the VC2 vaccine induce a unique ocular mucosal response that
leads into the infiltration of gd T cells resulting in the amelioration of infection-
associated immunopathogenesis.

Keywords: herpes simplex, gamma delta T cells, immunopathogenesis, ocular infection, herpes keratitis
INTRODUCTION

Herpetic Keratitis (HK) induced by herpes simplex virus type 1 (HSV-1) ocular infection is a leading
cause of infectious blindness. It is estimated that 50-90% of the world population is infected with
HSV-1 (1–3). Primary infection of HSV-1 targets mucosal regions such as the oral lining and skin
(4). After the establishment of latency in the trigeminal ganglion (TG), HSV-1 can reactivate due to
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various environmental factors and physiological stress, leading to
HK (5, 6). HK is widely considered to be an immune-mediated
condition where uncontrolled inflammatory events continue to
damage the cornea during and after the resolution of
infection (7).

The use of animal models such as mice and rabbits is well-
established in ocular HSV-1 research (6). Data from these animal
models suggest that after initial reactivation from the TG, the
virus travels to the ocular surface in an anterograde manner (8,
9). The presence of the virus on the ocular surface activates
several innate immune pathways (10) that lead to inflammation
and subsequent tissue damage. It has been suggested that
vaccine-induced immunity can reduce HSV-1 induced HK in
animal models (11–17). However, there is currently no approved
vaccine for clinical use. Previously, we reported that
intramuscular immunization (IM) with the live-attenuated
HSV-1 vaccine (VC2) confers complete protection against a
lethal HSV-1 challenge and ocular immunopathogenesis
(18–20).

The HSV-1 (VC2) vaccine strain derived from the laboratory
attenuated parental HSV-1 (F) strain specifies glycoprotein K
(gK) having a 39 amino-terminal deletion of glycoprotein K
(gK). This amino acid deletion has been shown to prevent entry
into cells via fusion of the viral membrane with cellular plasma
membranes including neuronal axons. In contrast, the virus
replicates efficiently in a variety of cells, because it can enter
through endocytosis (21–23). In addition, the VC2 vaccine strain
has a deletion in the amino terminus of the membrane protein
UL20 that interacts with the carboxyl terminus of glycoprotein B
(gB). The UL20 protein functions as a heterodimer with gK to
modulate the fusogenic properties of gB and both gK. Thus, the
combined effect of the gK/UL20 mutations provide a unique
safety feature to the VC2 virus, since it cannot infect neurons via
neuronal axons and establish latency (24–30). HSV-1 gK has an
important role in virus-induced corneal scaring (CS).
Specifically, immunization with gK or overexpression of gK
caused exacerbated virus-induced CS. gK-induced CS depends
on gK binding to signal peptidase (SPP), while its binding
partner UL20 binds GODZ (DHHC3) that are involved in gK-
induced pathology (31–35).

HSV-1 infection of the corneal epithelium induces a cascade
of antiviral innate and downstream adaptive immune responses
(10). Innate responses are mediated by neutrophils, plasmacytoid
dendritic cells (pDCs), natural killer (NK) cells and macrophages
(MQ), which have direct and indirect antiviral functions (36–39).
These innate responses possess potent antiviral activity, however,
exacerbated responses can cause tissue damage. This
phenomenon is particularly true for tissue damage caused by
neutrophil accumulation in two separate waves (39, 40) despite
their beneficial role in viral clearance (39, 41). Innate immune
responses are followed by the adaptive immune response, which
mainly involves CD4+T and CD8+T cells appearing as early as 3
days post-infection exhibiting potent antiviral activities that limit
viral spread (42, 43). However, an exacerbated adaptive CD4+T
cell response and to a lesser extent a CD8+T cell response can
lead to corneal epithelium damage and herpetic stromal
Frontiers in Immunology | www.frontiersin.org 2
disease (44). Thus, a balanced immune response at ocular
surfaces is needed to control excessive inflammation and tissue
damage, particularly in the case of herpes ocular infections.

Herein, we report that intramuscular immunization of mice
with the VC2 vaccine strain, but not with UV-inactivated VC2 or
mock-vaccination, induced ocular protection against lethal ocular
challenge with the human ocular and highly pathogenic clinical
strain HSV-1(McKrae). This tissue-specific protection was
associated with gdT cell infiltration with reduced neutrophil
accumulation compared to groups received mock and inactivated
vaccine. Further, observations suggest that this infiltrated
population is not HSV-1 specific memory population although
their presence is required to control immunopathogenesis induced
by the infection.
MATERIALS AND METHODS

Cells and Viruses
African green monkey (Vero) cells were maintained in
complete Dulbecco’s Modified Eagle Medium (DMEM)
(Gibco) supplemented with 10% Fetal Calf Serum (FBS)
(ThermoFisher). VC2 was constructed as described previously
(30). Briefly, the VC2 recombinant virus was constructed
utilizing the two-step Double-Red Recombination protocol
using the HSV-1(F) viral genome cloned as a bacterial artificial
chromosome (BAC). The virus was cultivated in Vero cells.
HSV-1((McKrae) was a gift by the late Dr. James Hill
(Louisiana State University Health Sciences, Center, New
Orleans, LA).

Vaccination Schedule and Challenge
Female Balb/CJ mice (8-10-week-old) were purchased from
Jackson Laboratories, (Bar Harbor, ME USA) and were housed
in the Louisiana State University School of Veterinary Medicine
(LSU-SVM) ABSL2 facility. A prime-boost vaccination strategy
was used. For prime, 100µl of vaccine (107 PFU in DMEM) were
injected intramuscularly into the right hind leg followed by a
booster dose into the left hind leg 21 days later. Mock vaccinated
animals received PBS. All animals were challenged 21 days or 8
months after the last vaccination with a lethal dose (106/eye) of
HSV-1 (McKrae). For challenge, animals were anesthetized, and
a linear partial epithelial corneal debridement was performed
with a 27G needle before 10µl of HSV-1 (McKrae) was applied to
the ocular surface. Animals were observed daily for clinical signs
of disease and euthanized as described in the IACUC
euthanasia criteria.

Ocular Scoring
Ocular scoring of mice was performed by Dr. Andrew Lewing, a
board-certified veterinary ophthalmologist (ACL) according to a
modified established ocular disease scoring system (45). Briefly,
this scoring system provides objective categorization of corneal
opacity, corneal neovascularization, corneal ulceration and
ocular discharge [see Table 1 for the scoring system]. All
examinations were performed following induction of a light
November 2021 | Volume 12 | Article 789454
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plane of anesthesia using inhaled isoflurane in oxygen using a
handheld biomicroscope (Kowa, SL-17). Normal animals were
assigned a score of 0 per eye, and animals with ocular disease
were assigned a score of up to 8 per eye, for a maximum possible
score of 16 per animal at each time point. All animals were
confirmed to be normal with a score of 0 for each eye prior to
challenge and were scored again 5 days post infection.

Tissue Processing and Flow Cytometry
The whole mouse eye was collected in PBS following euthanasia,
mince and incubated with collagenase in HBSS buffer for 2
hours. The homogenized solution was passed through a 70µm
filter to prepare a single cell solution. Mandibular lymph nodes
(mLN) were collected and processed through a 70µm filter to
prepare a single cell solution. A pre-titrated antibody mixture
was incubated for 30 minutes at 4°C, washed and fixed with 2%
paraformaldehyde. The next day, samples were analyzed using
the BD FACS-Aria equipment and data was processed using FCS
Express 7. The anti-mouse antibodies used for flow cytometry
were; CD45-APC Vio770, Ly6G-PE CF594, CD3-PerCP-ef710,
CD4-FITC, CD8a-BV650, gdTCR-APC, MHCii-BV711,
CD11C-PE. CD64-BV605, CD49b-BV421, CD19-BV786,
CD44-BV711 and CD62L-BV421. Gating strategy is presented
in Supplementary Figure S1.

Immunofluorescence Microscopy and
Detection of HSV-RNA Using RNAScope
Following euthanasia, eyes were immediately fixed using 10%
formalin for 3 days and processed in the Histology Core Facility
Frontiers in Immunology | www.frontiersin.org 3
of LSU-SVM. For IFM and RNAScope, 5µm thick Formalin-
Fixed Paraffin-Embedded (FFPE) sections were prepared on
glass slides. To detect viral replication, the HSV-1 UL-48 RNA
was used as the target gene with the Probe-V-HSV-1-UL48-C3
purchased from Advanced Cell Diagnostics. The RNAScope
assay was performed according to ACDBio guidelines using
the Opal 620 dye (Akoya Biosciences) as the substrate.
Following the RNAScope assay, the slides were blocked with
10%FBS and incubated overnight with rabbit polyclonal anti-
HSV-1 (Dako). The following day slides were washed and anti-
rabbit FITC was used as the secondary antibody. Next, the
background was reduced with the TrueView auto fluorescence
kit (Vectorlabs). After adding mounting media with DAPI, slides
were visualized with a Zeiss observer Z1 inverse microscope.

IFM on Frozen Sections
Whole mouse eyes were collected after euthanasia and
immediately frozen using OCT in liquid nitrogen. Samples
were stored at -80°C until processing. For microscopy, 8µm
thick frozen sections were prepared on glass slides using a
cryostat. Tissue sections were fixed briefly for 1 minute using
2% paraformaldehyde at room temperature (RT). After blocking
with 5% FBS for 1 hour, slides were incubated with fluorophore-
conjugated primary antibody overnight at 40°C. Slides were then
washed, fixed and mounting media was added. Images were
captured with a Zeiss observer Z1 microscope. The antibodies
used for IFM were: Anti-gdTCR-AF488 (GL3), anti-LY6G-
AF594 (1A8) and Alexa Fluor 594 anti-mouse CD31
(MEEC13.3) (Biolegend. Inc.) and LYVE-1 AlexaFluor488
(ALY7) (Thermofisher, Inc).

Bromodeoxyuridine Proliferation Assay
BrdU labeling reagent (Invitrogen, cat# 000103) was injected
(1ml/Kg) intraperitoneally (IP) on the day before challenge and
administered every day following infection for 4 days. At day 5,
animals were euthanized, cells were stained and fixed as
mentioned above. Cells were then permeabilized using
permeabilization buffer (eBioscience) and incorporated BrdU
was stained using Rb-anti-BrdU primary antibodies and aRb-
AlexaFluor488 secondary antibodies. Data was captured using a
BD FACS Aria Flow cytometer and calculated as a percentage of
cells positive for BrdU within a specific population.

Quantification of Viral Shedding
At 5 days post infection (dpi), viral shedding on the ocular
surface was determined using plaque assay. For virus collection, a
sterile cotton swab soaked in DMEM was swabbed gently on the
ocular surface and collected in a 1.5 ml Eppendorf tube
containing DMEM. Samples were stored at -80°C. For virus
quantification, a viral plaque assay was performed using Vero
cells. Vero monolayers were prepared in 12 well tissue culture
plates and incubated with 10-fold dilutions of each sample at
room temperature (RT) for 1 hour with shaking. Cells were
subsequently washed with complete medium and incubated with
complete medium with 1% methyl cellulose for 3 days at 37°C
with 5% CO2 for viral plaque formation. Next, plates were
washed, fixed using 10% formalin and stained with crystal
TABLE 1 | Ocular scoring system of mice.

Category Score Description

Ocular Discharge 0 Normal
1 Mild ocular discharge – usually watery/clear,

covering skin and fur surrounding eye
2 Severe ocular discharge – usually yellow/tenacious,

covering skin and fur surrounding eye. Palpebral
fissure may be initially sealed due to copious
discharge.

Corneal Opacity
(scar/edema)

0 Normal

1 Mild corneal opacity due to edema and/or corneal
fibrosis. Can typically make out intraocular detail
using slit beam

2 Severe corneal opacity due to edema and/or
corneal fibrosis. Cannot typically visualize intraocular
detail using slit beam

Corneal
Neovascularization

0 Normal

1 Mild corneal neovascularization. Small number (1–2)
of thin blood vessels, extending into cornea from
limbus

2 Severe corneal neovascularization. Large number
(3+) or blood vessels of varying diameter, extending
into cornea from limbus

Corneal Ulceration 0 Normal
1 Visible corneal ulceration using slit lamp, extending

into corneal stroma
2 Visible corneal perforation using slit lamp
Adapted from Eaton et al., 2017 (45).
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violet. Viral plaques were counted using a light microscope and
calculated according to the dilution factor.

Neutralization Assay
Mouse tears were collected using a sterile cotton swab and placed
in a 1.5 ml Eppendorf tube containing DMEM. Each sample
represents a pool of 5 animals. Approximately 100 PFU of HSV-
1 (McKrae) was mixed with 0.5 ml DMEM containing tears and
incubated at 37°C for 1 hour for neutralization. After incubation,
the mixture was placed on Vero monolayers on 12 well plates
and incubated at room temperature with shaking. The plates
were subsequently washed and incubated with complete medium
with 1%methyl cellulose for 3 days at 370C with 5% CO2 for viral
plaque formation.

qPCR
Following challenge with HSV-1(McKrae), TGs were collected at
the time of euthanasia and kept frozen until analysis. On the day of
analysis, TGs were thawed, and total DNA was collected using the
Qiagen Blood and Tissue kit per manufacturer’s instructions. HSV-
1 glycoprotein D (gD) was used as the target gene for quantification
using the following primer-probe mixtures purchased from IDT;
gD FP – 5’-GTCCGGAAACAACCCTACAA-3’, gD RP – 5’-GCAT
TCGGTGTACTCCATGA-3’, and qPCR Probe – PrimeTime 5’ 6-
FAM™/ZEN™/3’ 5’-TTGGTTTCGGATGGGAGGCAACT-3’

IB®FQ. For qPCR, the Prime time Gene Expression Master Mix
(IDT) was used according to the manufacturer’s instructions and
the reaction was run using the 7900HT Fast Real-Time PCR System
with the 384-Well Block Module. TGs from naïve animals were
used to set cut-off values and the gD G-block (IDT) was used to
create a standard curve.

FTY720 Treatment
To reduce T cell infiltration in the mouse eyes following
infection, FTY720 (Millipore-Sigma) was applied topically to
ocular surfaces. FTY720 was dissolved in water at 10 mg/mL.
One drop (approx. 10 ml) of this solution was then applied twice
daily to the ocular surface one day before infection and
continued until 10 DPI. Uninfected naïve mice were treated
similarly as controls.

Multiplex Immunoassay
Whole mouse eyes were collected following euthanasia and
immediately frozen using liquid nitrogen. On the day of the
assay the eyes were pulverized using a mortar and pestle while
frozen. The resulted homogenized tissue was weighed and
dissolved in Tris-based lysis buffer (Thermofisher)
supplemented with protease inhibitor for total protein
extraction. For detecting cytokine and chemokine, the
Cytokine & Chemokine Convenience 26-Plex Mouse
ProcartaPlex™ Panel 1 (Thermofisher) was used according to
manufactures instructions and data was acquired using the
Bioplex200 equipment.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 9
software. Survival analysis was performed using the log-rank
Frontiers in Immunology | www.frontiersin.org 4
test. For analysis between three groups one-way ANOVA and
Kruskal-Wallis test were performed. To compare results between
two groups, the Mann-Whitney test was utilized. The statistical
significance level was set at p = 0.05.
RESULTS

The HV-1(F) VC2 Live-Attenuated
Vaccine Generates Robust and Durable
Immune Responses in Mice
The VC2 vaccine strain specifies the amino-terminal deletion of
39 amino acids of glycoprotein K (gK), which has been shown to
prevent entry into neuronal axons as well as fusion of the virus
with cellular plasma membranes, while the virus replicates
efficiently because it can enter epithelial and other cells
through endocytosis (21–23). To confirm that the VC2 vaccine
strain that contains the gK and the UL20 amino terminal
deletions cannot infect neuronal endings, travel to the TG and
establish latency, mouse corneas of naïve mice were infected with
106 PFU per eye after mild-scarification with either the HSV-1(F)
parental wild-type virus or the VC2 vaccine strain. Both the
parental HSV-1(F) and VC2 viruses were avirulent, since none of
the mice succumbed to the infection. Two weeks post infection,
the amount of viral DNA in the TGs was quantified by
quantitative PCR. HSV-1(F) but not VC2 viral DNA was
detected in ganglionic tissues indicating that VC2 was unable
to reach the TGs and establish latency (Figure 1A).

Previously, we reported that VC2 intramuscular vaccination of
mice generates robust protection against lethal ocular HSV-1
(McKrae) challenge (18). To assess whether this protective
immune response is virus replication-dependent and sustained
over time, we immunized mice with VC2 or Ultraviolet (UV)-
inactivated VC2 and challenged the mice ocularly with HSV-1
(McKrae) at 21 days or 8 months after the booster immunization.
VC2 vaccinated mice were fully protected at both time points
(Figures 1B, C), and there were no apparent ocular and/or
systemic clinical disease symptoms observed (Figure 1D). In
contrast, mice immunized with the UV-inactivated VC2
succumbed to the HSV-1 (McKrae) within 5 DPI and significant
ocular damage was noted characterized by ocular inflammation
and cornea damage (Figures 1D, E). Determination of the relative
number of viral genomes in ganglionic tissues by qPCR revealed
that a significantly higher level of viral DNAwas present in the TG
of UV-VC2 vaccinated animals compared to those vaccinated with
VC2 (Figure 1F). This data suggests IM immunization with live
attenuated VC2 generates a robust protection compared to
vaccination with inactivated VC2 virions.

Absence of Neutralizing Antibody on
Ocular Surfaces of VC2-Vaccinated Mice
Previously, we showed that VC2 prime-boost intramuscular
immunization induces a strong systemic neutralizing antibody
response (18). To assess the contribution of neutralizing antibody
in the observed ocular protection against HSV-1 (McKrae)
infection, tears from vaccinated mice with either the VC2
November 2021 | Volume 12 | Article 789454
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vaccine, the UV-inactivated VC2, or mock-vaccinated mice prior
to challenge were tested for the presence of neutralizing antibody
using a plaque reduction neutralizing assay. Tears from VC2 and
VC2-inactivated vaccinated animals did not have higher
neutralizing ability compared to mock-vaccinated animals
(Figure 2A), suggesting the absence of strong neutralizing
antibody activity at ocular surfaces. Detection of viral antigens
on FFPE sections by indirect immunofluorescence of ocular
tissues with anti-HSV-1 polyclonal antibody revealed the
presence of viral antigens on ocular surfaces at 2- and 5 DPI in
all groups of animals (Figure 2B, green). In addition, transcription
of the HSV-1 UL48 gene was detected in all ocular tissues using
the RNAScope assay (Figure 2B, red dots). These results indicated
productive infection and viral replication in all groups for at least
5DPI. However, at 5DPI viral shedding in VC2-vaccinated
animals were undetectable compared to the mock and UV-VC2-
vaccinated mice (Figure 2C). This data suggests that despite
productive infection and ocular viral replication, the VC2-
vaccinated animals experienced robust ocular mucosal responses
that significantly reduced viral infection and resultant
immunopathogenesis in the absence of neutralizing activity.

Ocular Protection Is Associated With gdT
Cell Infiltration
To assess the extent of cell-mediated immunity at ocular surfaces
following infection with HSV-1 (McKrae), immune cellular
Frontiers in Immunology | www.frontiersin.org 5
infiltration was evaluated at 2-, 5- and 9 DPI. No detectable
differences were noted for macrophages, dendritic cells and NK
cells infiltration at any time points (Figures 3A–C). A large
neutrophil influx was noted following infection in mock-
vaccinated animals at 5DPI (Figure 1E). In contrast, VC2
vaccinated animals showed significantly lower neutrophil counts
at 5DPI (Figures 3D–F). A significantly higher T cell infiltration
was noted in VC2, but not in mock-vaccinated mice at 5DPI
(Figures 3G–I). Further analysis revealed that the majority of the
infiltrating T cells in all groups ofmice expressed the gamma-delta
(gd) TCR, while a relatively small population of CD4+, CD8+ and
double negative TCR T cells were also present (Figures 3J–M).
These results show that gdT cells were the dominant population of
immune cells in vaccinated animals, while neutrophils were the
major immune cell infiltrate inmock-vaccinated animals at 5DPI.
Non-parametric Spearman correlation among all groups of mice
revealed a negative correlation between gdT cells and neutrophil
accumulation in corneas at 5DPI among all groups (Figure 3N).
The infiltrating gdT cell numbers peaked at 9 DPI and eventually
dropped to basal levels at 25 DPI (after the resolution of ocular
pathogenesis (Figure 3K). Importantly, the UV-VC2 vaccinated
group of mice had lower gdT cell accumulation and high
neutrophil accumulation at 5DPI in comparison to the VC2-
vaccinated mice that correlated with the observed elevated
ocular disease scores in UV-VC2 versus VC2-vaccinated mice
(Figures 1E, 3E, H).
A B C

D E F

FIGURE 1 | Safety and protective efficacy of VC2 immunization in Balb/CJ mice against HSV-1 (McKrae strain) ocular challenge. (A) Mouse eyes were scarified and
infected with HSV-1(F) or VC2 viruses at 106 PFU per eye and viral loads in TGs were quantified by qPCR at 20 days post infection. (B) Kaplan-Meir survival curves
of mice immunized with either, VC2, UV-irradiated VC2 or mock-immunized and challenged with HSV-1 (McKrae strain) at 21 days post booster immunization. The
experiment was duplicated with n=10/group each time. (C) Kaplan-Meir survival curves as with (B) challenged with HSV-1 (McKrae strain) at 8 months post booster
immunization, n=10/group. (D) Representative pictures of animals in each group at 5 DPI. (E) Ocular scores following challenge at 5 DPI. (F) Quantification of TG
viral load following euthanasia. *<P=0.05, ****<P=0.0001 by One-Way ANOVA. *<P=0.05, **<P=0.005, ****<P=0.0001. ns, Non-Significant.
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To address whether the presence of gdT cells following
infection in VC2-vaccinated animals is the result of local
proliferation or infiltration, a flow cytometry analysis for Ki67,
a marker for cellular proliferation, was performed. Following
infection, there was no significant increase of Ki67+ gdT cells in
VC2-vaccinated animals (Figure 3O) suggesting that the
presence of gdT cell is due to the increased infiltration rather
than local proliferation of resident gdT cells. In addition, gdT
cells were detected by indirect immunofluorescence on OCT
sections of ocular tissues in the corneal stroma of vaccinated
animals with little to no neutrophil presence (Figure 3P, right-
most panel). In contrast, a high number of neutrophils were
detected in the corneal stroma and epithelium in mock-
vaccinated animals, while low numbers of gdT cells were also
present (Figure 3P, left-most panel). Taken together, this data
suggests VC2 vaccinated animals recruit gdT cells following
infection at the ocular surface and that increased neutrophil
migration is prevented.
Frontiers in Immunology | www.frontiersin.org 6
Increase Lymphoangiogenesis and
Reduced Neovascularization Is
Associated With gdT Cell Infiltration
HSV-1 infection induces neovascularization following infection
(46), and infiltrating immune cells may prolong neovascularization
by secreting pro-angiogenic growth factors. This neovascularization
is likely tobe the sourceof increased levels of cornealneutrophils (47).
To assess whether the VC2-vaccination affects neovascularization,
OCT sections were stained for LYVE-1, a marker of lymph-
angiogenesis (48) and CD31, a marker of angiogenesis (49).
HSV-1 infection in mock-vaccinated animals had high levels of
CD31 expression (Figure 4, left panel) as also described
previously (46, 49). In contrast, VC2-vaccinated animals
exhibited strong reactivity with the anti-LYVE-1 antibody,
while little or no CD31 expression was detectable in the
cornea (Figure 4, right panel). This data suggests that
neovascularization is not responsible for the higher infiltrating
gdT cells in VC2 immunized mice.
A C

B

FIGURE 2 | Neutralizing antibodies in mouse tears and post-challenge viral replication in ocular tissues. (A) Neutralization of virus after the incubation with tear
fluids. (B) Viral replication in ocular tissues following challenge at 2- & 5DPI detected by IFM and RNAScope assays. Detection of viral antigens (green) HSV-1 UL48
transcripts (red). (C) Viral shedding on ocular surfaces quantified by plaque assay at 5DPI. *<P=0.05, ****<P=0.0001 by One-Way ANOVA.
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Increased Levels of IL-4 and IL-22 Is
Associated With Protection
To address the status of immune response, we used a 26 plex
immunoassay to detect Th1/Th2Th9/Th17Th22 and Treg
associated cytokines and chemokines in homogenized eye
samples at 5 DPI. The VC2 and UV-VC2 vaccinated animals
exhibited a unique cytokine and chemokine expression profile
compared to the mock-vaccinated animals. Specifically, the VC2
and UV-VC2 immunized animals had significantly higher IL-4
Frontiers in Immunology | www.frontiersin.org 7
and IL-22 levels in the eye (Figures 5A, B). In contrast, the pro-
inflammatory cytokine IL-5 and chemokine Gro-alpha/KC, IP-
10 and MCP-1 was detected at lower levels in VC2 and UV-VC2
immunized animals compared to mock-vaccinated animals
(Figures 5C–F). It has been reported that these pro-
inflammatory cytokines are associated with tissue damage,
neutrophil accumulation and increased severity of HSV-1
infection (47, 50). Overall , this data suggests VC2
immunization generates a unique adaptive response that
A B C

E FD

H IG J

L MK

PO

N

FIGURE 3 | Phenotype of cellular infiltrates in ocular tissues following viral challenge. Flow cytometric analysis for cellular infiltration for: (A) Macrophage. (B) Dendritic
cells. (C) NK cells over time. (D) Percentage of neutrophil accumulation over time. (E, F) Percentage and absolute count of neutrophils at 5DPI. (G) Percentage of T cell
accumulation over time. (H, I) Percentage and absolute count of T cells. (J) Phenotype of T cells in individual groups. gdT cell accumulation over time (K), percentage
(L) and absolute count (M) at 5DPI. (N) Spearman's rank correlation between gdT cell and neutrophil accumulation among all groups. (O) Ki67+ gdT cell in cornea. (P)
IFM for the presence of neutrophils and gdT using OCT section. **<P=0.005, ***<P=0.001 using One-Way ANOVA, n=6/group/timepoint.
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reduces pro-inflammatory signals and that this reduction is
associated with infiltrating gdT cells.

Infiltrating gdT Cells Do Not Originate From
an HSV-1 Specific Memory Population
Several studies suggested that gdT cells may contain memory
populations like abT cells and can undergo memory-like
expansion following antigen recognition (51–56). To address
the possibility of whether infiltrating gdT cells represent an HSV-
Frontiers in Immunology | www.frontiersin.org 8
1 specific memory population, we performed a BrdU
proliferation experiment in-vivo. Both mock and VC2-
vaccinated animals were administered 1 ml concentrated BrdU
per 100 g body weight via the intraperitoneal route one day
before infection and continued every day. Following euthanasia,
both eyes were removed and mLN cells were stained for BrdU
positive cells. VC2-vaccinated animals exhibited marked
incorporation (red) of BrdU in B (CD19), CD4 and CD8 T
cells in mLN at 5DPI compared to mock-vaccinated (gray)
FIGURE 4 | Neovascularization and lymph-angiogenesis in ocular tissues. IFM on OCT sections was used to detect the presence of neovascularization (CD31-red)
and lymph-angiogenesis (LYE-1 green).
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FIGURE 5 | Pro-inflammatory and anti-inflammatory cytokines and chemokines in whole eye tissues. Cytokine IL-4, IL-22 and IL-5 (A–C), and chemokine Gro-
alpha/KC, IP-10 and MCP-1 (D–F) were measured from homogenized eye samples using the 26 plex immunoassay kit. *<P=0.05, **<P=0.005, ***<P=0.001 using
One-Way ANOVA, n=5/group.
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animals, suggesting a pre-existing memory population for these
cells (Figure 6A). However, there was no significant difference
detected for BrdU-positive gdT cells in mLN tissues (Figure 6A,
right panel), indicating the absence of a memory population. In
addition, BrdU positive gdT cells in the vaccinated animals did
not have a higher frequency of T central memory (TCM CD44+
CD62L) as BrdU positive CD4+ and CD8+ T cells (Figure 6B)
suggesting the absence of TCM in the proliferating gdT cell
population. Further, there was no difference in BrdU-positive
gdT cell in the ocular mucosa tissues following infection and only
a small percentage of gdT were BrdU-positive in both mock and
VC2-vaccinated groups (Figure 6C) suggesting infiltration of
pre-existing rather than newly proliferative gdT cells in the eye
following infection. Taken together, our data strongly suggest
that the infiltrating gdT cells in vaccinated animals were not
Frontiers in Immunology | www.frontiersin.org 9
HSV-1 specific/experienced memory populations, but rather
non-specific gdT cells recruited in the infected cornea in
vaccinated animals with increased frequency.

gdT Cell Infiltration Is Required to Control
Ocular Immunopathogenesis
Although it has been reported that gdT cells have an important
role on the mucosal surface (57–60), the role of the gdT
cells in vaccine-induced protection against herpes ocular
immunopathogenesis and specifically herpes keratitis has not
been investigated. The association of gdT cell infiltration
(Figure 3K) and lower ocular damage (Figure 1E) suggest a
functional role of this infiltrating population on corneal
pathology following infection. This raises the question of
whether the presence of this population is necessary for the
A

B C

E

FIGURE 6 | Analysis of antigen-specific memory T cell expansion in LN at 5DPI. (A) Representative histogram (top panel) and percentage of BrdU incorporation in
CD19, CD4, CD8 and gdT cells in mLN cells using flow cytometry (bottom panel). (B) Representative gating (Top panel) and percentage of BrdU-positive TCM in CD4,
CD8 and gdT cell populations. (C) Percentage of BrdU-positive gdT cell in the eye following infection. *<P=0.05, **<P=0.005 using Mann-Whitney test, n=5/group. ns,
Non-Significant.
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control of HSV-1 induced keratitis in vaccinated animals.
Unfortunately, there is neither a gdT cell KO animal in the
Balb/C background nor an appropriate depleting antibody to
remove this cell type from systemic and peripheral circulation to
study the specific role of gdT cells following HSV-1 challenge. To
circumvent this issue, we used FTY720 (Fingolimod, Sigma), an
FDA-approved drug for immune suppression, which inhibits
lymphocyte egress from both thymus and secondary lymphoid
organs (61). Following infection in vaccinated animals, 1 drop
(approximately 10 ml) of FTY720 (10mg/ml) was applied twice
daily topically to the mouse eyes to prevent T cell infiltration.
Because FTY720 was applied directly to the ocular surface, it was
unlikely to alter cellular migration in other tissues. As expected,
the FTY720 treatment lowered gdT cell infiltration at 5 DPI
Frontiers in Immunology | www.frontiersin.org 10
(Figure 7A). At the same time, FTY720-treated vaccinated
animals exhibited a significant increase in neutrophil
infiltration (Figure 7B) and concomitant increased ocular
disease score (Figure 7C) compared to the PBS-treated and
vaccinated animals. To confirm that FTY720 treatment did not
increase ocular scores, naïve animals were also treated with
FTY720 and showed minimal ocular damage in the absence of
infection (Figure 7C, green). Further, there was no substantial
increase in viral shedding in VC2-vaccinated animals compared
to PBS-treated animals (data not shown) suggesting that the
observed ocular damage is not due to persistent viral replication,
but rather the result of increased neutrophil infiltration. The
ocular damage persisted (gross observations) as long as the
FTY720 treatment continued, and animals recovered quickly
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FIGURE 7 | Ocular infiltration and score following inhibition of T cell migration. T cell migration in mouse eyes was inhibited by the administration of FTY720 on
ocular surfaces. (A) gdT cell infiltration. (B) Neutrophil infiltration at 5DPI. (C) Ocular score following infection. (D) IFM on a representative OCT section for detection of
gdT and neutrophil cell infiltration in ocular tissues. (E) IFM for CD31 and LYVE-1 expression. (F) Viral DNA copies in TG using qPCR. *<P=0.05, **<P=0.005 using
the Mann-Whitney test, n=5/group. ns, Non-Significant.
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after FTY720 treatment termination (data not shown). Increased
neutrophil infiltration (Figure 7D) and neovascularization
(Figure 7E) was also detected more frequently after the
challenge in FTY720-treated vaccinated animals. Although
FTY720 treatment following challenge in vaccinated animals
increased ocular pathogenesis, it did not have any effect on
survival (data not shown), as well as on viral loads in
the TG tissues (Figure 7F) suggesting that the role of
gdT cell accumulation is limited to control of ocular
immunopathogenesis induced by HSV-1 infection.
DISCUSSION

An over-active immune system during HSV-1 infection is
generally thought to be the principal cause of corneal tissue
damage (6). This damage is attributed to the influx of neutrophils
(40, 41) and CD4 T cells that lead to visual impairment (4, 62).
However, these cell populations have also been shown to be
beneficial since their depletion rendered the animals more
susceptible to infection. Thus, a balanced immune response is
required to protect ocular tissues from immune-mediated
damage, while ensuring clearance of the viral infection. We
recently showed that the live-attenuated VC2 vaccine, which
cannot enter neuronal axons and establish latency, protects mice
against lethal ocular HSV-1 challenge and the development of
HK (18). Herein, we show that VC2 intramuscular vaccination of
mice results in gdT cell enhanced accumulation and reduction
of infiltration neutrophils that results in substantial reduction of
HSV ocular immunopathogenesis.

gd T cells are known to participate in innate and adaptive
immune responses (63–65). These cells can respond quickly to
bacterial and viral infections because they can be activated by
cytokines and toll-like receptor (TLR) signals without the need for
T cell antigen receptor (TCR) activation (64, 66–68). This dual
nature of gd T cell biology is due to their non-MHC-restricted
antigenic specificity enabling them to respond to a variety of
cellular stress signals (69, 70). gd T cells are present in lymphoid
tissues and the blood in adult humans and rodents at low
frequencies; however, they are enriched in epithelial and mucosal
tissues. Tissue-specific gd T cells are differentiated in various T cell
subsets possessing specific functions acting as sensors of invading
pathogens (71–74). In addition, a number of cytokines and
chemokines are secreted by gd T cells that can affect overall
immune responses and tissue repair and healing (75). Several
reports suggest that gdT cells are involved in mucosal immunity
against several pathogens, although the mechanism may vary
widely (51, 57–60, 76, 77). Previously, the presence of gd T cells
in the cornea of naïve mice infected ocularly with virulent HSV-1
was shown to be essential for protection against viral infection and
resultant immunopathogenesis. Protection was associated with
infiltration of gd T CCR6 positive cells from the lymphatic
system (78, 79). Our results agree with these findings.
Specifically, we found that the gd T cell population was
prominent in mock-vaccinated animals. However, we observed a
drastic increase of gd T cell infiltration into the infected corneas as
Frontiers in Immunology | www.frontiersin.org 11
the result of VC2 intramuscular vaccination in comparison to
mock-immunized animals suggesting that VC2 intramuscular
immunization significantly altered the chemotactic movement of
these cells from the lymphatic system into the infected corneas
resulting in protection against virus-induced immunopathogenesis.

Several reports suggest that gdT cells are involved in mucosal
immunity and exhibit cytotoxic, tissue repair, and regulatory
functions (59, 60, 77, 80–83). Specifically, several studies found
that gdT cells are involved in protection during ocular damage
(60, 84–88). FTY720 mediated inhibition of gdT cell
accumulation in the corneas of vaccinated mice significantly
increased virus-induced immunopathogenesis. This suggests that
the observed gdT cell accumulation is necessary to control
exacerbated immune cell cytotoxicity, although the exact
mechanism is not clear at present. It is worth noting that the
reduction of neutrophil infiltration into the corneas of VC2-
vaccinated animals was associated with the concurrent increase
of gdT cells, since the absolute number of neutrophils was lower
in vaccinated versus mock-vaccinated animals (Figure 3F). In
addition, neutrophil numbers increased in the absence of gdT
cells when VC2-vaccinated animals were treated with FTY720.
This result suggests that gdT cells reduce tissue damage by
inhibiting the recruitment of neutrophils into the infected
corneal tissues from the systemic circulation. The expression of
several cytokines was noted to be drastically different in VC2-
vaccinated animals characterized by significant increases of IL-4,
IL-22, and reduction of the inflammatory cytokine IL-5.
Although gdT cells have been reported to secrete mainly IFNg
and IL-17, there are reports that these cells can also be a source of
IL-4 (89, 90) and IL-22 (85). Both IL-4 and Il-22 were found to be
involved in tissue repair (91–93). Future research should
determine if gdT cells are the source of these cytokines and
whether they are involved in tissue repair during HK.

Several studies proposed the presence of memory phenotypes
in gdT cell populations and their expansion following infection
(51–56, 81, 94). However, the BrdU proliferation assay
(Figure 6) suggests that the gdT cell accumulation in the
cornea did not represent proliferation of tissue-specific cells,
but infiltration of cells originating from proximal lymph nodes.
We hypothesize that VC2 induces HSV-1-specific tissue-resident
memory (TRM) cells on the cornea of vaccinated animals, which
recognize HSV-1 following infection and recruit gdT cells from
the lymphatic system. It has been reported that gB498–505
epitope-specific TRM cells with CD73+CD8+ phenotype
accumulated in mouse eyes following low-dose HSV-1
infection (95). We noted that uninfected Balb/CJ mice had a
very limited number of T cells residing in their corneas including
both gdT cell positive and negative populations. Tissue-resident-
memory CD8+ T cells are known to bridge innate immune
responses in neighboring cells and may be responsible for the
observed gdT cell accumulation. Alternatively, there may be a
HSV-1 specific gd-TRM population residing in corneas that can
efficiently recognize HSV-1 infection and recruit more gdT cells at
the site of infection. Both cell types may exist at low abundance,
rendering difficult an assessment of their phenotypic and
functional properties.
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Overall, our results strongly suggest that intramuscular
immunization of mice with the live-attenuated VC2 vaccine strain
significantly alters the infiltration of gd T cells in the corneas of
ocularly-challenged mice. These results suggest that a vaccine-
generated tissue-specific memory response results in significant
protection against HSV-1 immunopathogenesis. The mechanism
by which VC2-intramuscular immunization results into the
observed tissue-specific response is currently under investigation.
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